光学三维测量技术综述
- 格式:doc
- 大小:318.58 KB
- 文档页数:12
光学投影式三维轮廓测量技术研究摘要:光学投影式三维轮廓测量技术是一种非接触式、高效率的三维测量手段,其能够对被测物的表面轮廓进行快速、准确的获取。
本文介绍了光学投影式三维轮廓测量技术的基本原理、系统组成以及应用领域,并着重探讨了其误差来源和误差补偿方法,为光学投影式三维轮廓测量技术的进一步发展提供参考。
关键词:光学投影式三维轮廓测量技术;误差来源;误差补偿;应用领域。
一、概述随着现代制造工艺的发展,对于产品的精度要求越来越高,因此,对于产品的三维测量技术也有了更高的要求。
光学投影式三维轮廓测量技术是一种非接触式、高效率的三维测量手段,其能够对被测物的表面轮廓进行快速、准确的获取。
1. 非接触式测量,不损伤被测物;2. 快速测量:可以实现对复杂表面轮廓的快速获取;3. 高精度测量:可以满足精度要求较高的测量需求;4. 高度自动化:测量数据的处理和分析可以实现自动化。
二、基本原理光学投影式三维轮廓测量技术采用投影法测量被测物表面的轮廓,其基本原理可以用下图表示:如图所示,测量系统由投影系统和相机系统组成。
投影系统将光线通过透镜进行聚焦,形成高斯光束,使其在被测物表面上形成一个条形状的光影。
相机系统捕捉被测物的轮廓图像,并通过测量分析得到被测物轮廓的三维信息。
在测量过程中,可以通过调整相机和投影系统的相对位置来满足测量精度的要求。
三、系统组成光学投影式三维轮廓测量技术的系统由投影系统、相机系统、支撑系统和计算机控制系统等几个部分组成。
1. 投影系统投影系统主要由光源、透镜、滤光片和投影面组成。
光源一般使用激光或LED光源,透镜可以将光线捕获并进行聚焦,滤光片可以增强光源的亮度和对比度,投影面是被测物表面上形成的一条光影。
2. 相机系统相机系统通常采用高速、高分辨率的相机,可以通过调整相机参数来满足不同精度测量的需求。
相机系统一般分为两种配置:单目相机和双目相机。
现代光学三维测量原理概述:现代光学三维测量原理是一种利用光学原理进行三维空间测量的方法。
通过测量目标物体上的特征点或表面形状,利用光学仪器和相应的算法,可以获取目标物体的三维坐标信息。
本文将详细介绍现代光学三维测量原理的基本概念、测量方法、仪器设备和应用领域。
一、基本概念1. 光学三维测量:利用光学原理进行三维空间测量的方法。
2. 特征点:目标物体上具有明显边缘或特殊纹理的点,用于测量和定位。
3. 表面形状:目标物体表面的几何形状,包括曲面、平面等。
4. 三维坐标:目标物体在三维空间中的位置坐标,通常用X、Y、Z表示。
二、测量方法1. 三角测量法:利用三角关系计算目标物体的三维坐标。
通过测量目标物体上的特征点在不同视角下的投影位置,利用三角关系计算出目标物体的三维坐标。
2. 相位测量法:利用光波的相位差来测量目标物体的三维形状。
通过测量光波在目标物体表面的相位差,可以得到目标物体表面的高程信息。
3. 结构光测量法:利用结构光投射到目标物体上产生的图案来测量目标物体的三维形状。
通过测量图案在目标物体上的形变,可以得到目标物体的三维形状信息。
三、仪器设备1. 光学测量仪:包括光学投影仪、相机、激光器等。
光学投影仪用于产生特定的光学图案,相机用于捕捉目标物体上的图案,激光器用于产生激光束。
2. 影像处理系统:用于处理相机捕捉到的图像,提取特征点和计算三维坐标。
3. 计算机系统:用于控制测量仪器和处理测量数据,进行三维坐标计算和可视化显示。
四、应用领域1. 工业制造:用于产品质量检测、零件尺寸测量等。
可以实现非接触式、高精度的三维测量,提高生产效率和产品质量。
2. 地质勘探:用于地质构造的测量和分析。
可以获取地表和地下的三维形状信息,帮助研究地质变化和资源勘探。
3. 医学影像:用于医学影像的三维重建和分析。
可以获取人体器官的三维形状和表面特征,帮助医生进行诊断和手术规划。
4. 文化遗产保护:用于文物的三维数字化和保护。
文章编号:1005-5630(2005)02-0090-06镜面反射面形光学三维测量技术综述X陶 涛,郭红卫,何海涛(上海大学精密机械工程系,上海200072) 摘要:讨论了用于测量镜面反射物体三维面形的各种光学技术。
这些技术分为被动式测量和主动式测量两大类。
被动式测量包括基于光度学的测量技术和基于镜面反射成分恢复面形技术。
主动式测量主要是采用结构光技术测量镜面物体。
同漫反射物体的三维测量技术相比,现有镜面物体三维测量技术的发展还不成熟,其技术研究已严重滞后于其需求的快速增长。
文章可为深入研究镜面反射物体的三维测量技术提供有益的参考。
关键词:三维面形测量;镜面反射;漫反射;主动测量;被动测量中图分类号:T N247 文献标识码:AOverview of optical three -dimensional measurement technique for specular reflection surfacesTA O Tao ,GUO H ong -w ei ,H E H ai -tao(Depart ment of P recisio n M echanical Engineer ing ,Shanghai U niver sity ,Shanghai 200072,China ) Abstract :In this paper ,different kinds of optical m ethods used fo r three -dimensional (3-D )shape measurement of specular reflectio n objects are discussed .They can be classified into tw o gro ups :passive measurement m ethods and active measurement m ethods.The fo rmer includes the methods base on photom etric and shape fr om specularity.T he latter makes use o f the structur ed light pared to those for diffuse reflection objects,the existing 3-D measurem ent techniques fo r specular objects are not ripe and fall behind the urgent need .This article pro vides beneficial references for research and development of 3-D measurement metho ds for specular reflection o bjects .Key words :three-dimensional shape m easur em ent;specular reflection;diffuse reflection;active measurement;passiv e measurement1 引 言上个世纪70年代以来,光学三维测量技术以其高精度、高效率和非接触性的优点在高速检测,产品开发、质量控制、反求工程、CAD/CAM 等领域得到广泛的应用和发展[1]。
基于光学原理的三维测量技术研究随着工业的发展,三维测量技术在现代生产制造中扮演着越来越重要的角色。
作为一种非接触式的测量技术,基于光学原理的三维测量技术得到了广泛应用。
本文将探讨该技术的基本原理、应用领域以及未来发展前景。
一、基本原理基于光学原理的三维测量技术主要是利用光学传感器和计算机处理技术对物体进行三维坐标测量。
传感器通过扫描物体表面,获得表面坐标信息,并将这些信息输入到计算机中,通过算法分析后得出物体的三维坐标信息。
光学传感器可以分为接触式和非接触式两种。
接触式传感器需要直接接触到物体表面才能进行测量,而非接触式传感器则可以在不接触物体的情况下进行测量。
基于光学原理的三维测量技术主要包括光栅测量、激光三角测量、结构光测量和全息干涉测量等。
其中,激光三角测量是最为常见的一种测量方法,其原理是利用激光束投射到物体表面,对反射激光的位置和方向进行测量,从而得出物体表面的三维坐标信息。
结构光测量则是通过投射光源,使其产生一个光栅条纹,然后通过扫描条纹的变化来获得物体表面的三维坐标信息。
二、应用领域基于光学原理的三维测量技术广泛应用于现代工业生产制造中,包括汽车制造、航空制造、机械制造等。
在汽车制造中,三维测量技术可以用于检测车身结构的尺寸、形状和位置等,从而保证整个车身的质量和生产效率。
在航空制造中,该技术可以用于测量飞机机翼的形状和位置等,确保飞机的安全性和可靠性。
在机械制造中,三维测量技术可以用于检测零件的尺寸和形状等,从而保证整个机器的正常运转。
此外,基于光学原理的三维测量技术还被广泛应用于建筑、医疗等领域。
在建筑领域,该技术可以用于测量建筑物的表面形貌,避免因误差造成的建筑问题。
在医疗领域,该技术可以用于测量人体器官的形状和位置等,为医疗诊断提供更加准确的数据。
三、未来发展前景随着科技的发展,基于光学原理的三维测量技术也在不断地发展和完善。
从传感器技术的改进到算法算法的改进,该技术已经取得了很大的进步。
光学遥感立体测绘技术综述及发展趋势摘要:遥感测绘技术不仅是我们获得地球地理空间信息的重要方式,而且是我们解决全球无图区、困难区测绘的重要手段。
测绘卫星具非常强的立体测绘功能,以立体化角度来观测地面目标的物理特性与几何属性。
而光学遥感立体测绘技术以及具有光学传感器、高分辨率测绘卫星最为常见。
关键词:光学遥感立体测绘技术;未来发展;发展趋势;高分辨率一、光学遥感立体测绘技术光学遥感立体测绘技术的具体来说有以下几项:测绘相机与时间同步技术、卫星定轨定姿技术、影像压缩和质量评价技术、几何定标和立体测图技术。
1、测绘相机与时间同步技术三线阵测绘相机是由三个独立 CCD摄像机组成的,三个 CCD摄像机保持正视、前视、后视特定的交会角度构成。
卫星运行期间,三个测绘相机随意扫描都将获得三个不同角度并且相互重叠的影像。
只有测绘相机镜头质量优良,内方位元素稳定,才能维持高精度的三维测量。
测绘卫星通过三线阵测绘相机进行扫描摄像,分毫之间的差异都将导致定位几米的差距,导致测绘影像的定位精度明显下降。
因此,测绘卫星应当适当添加具有高效载荷时间、高精度的系统,确保卫星在CCD推扫摄影上的时间保持一致,从而满足测绘任务的相关要求。
2、卫星定轨定姿技术在利用航天遥感影像对地面进行精密定位时,为确保其测量精度、姿态方面的准确度,往往还需利用地面控制点进行辅助。
若不能在区域内设置控制点,则无控制点摄影测量技术的优势就难以突显。
三线阵测绘卫星在无控制点摄影测量时要符合三个条件,从而最终实现立体测量工作与定位目标任务。
一是要利用仪器设施对卫星运行轨道进行了位置测定,给出了三个外方位位置要素;二是应利用三线阵测绘相机对地面进行推进扫描,获得三个重叠的航带影像;三是对卫星姿态进行了三个外方位角的测定。
GPS接收机是一种常见的用于测量卫星轨道的仪器,星敏感器、红外姿态测量仪等仪器是最常见的卫星姿态测量设施。
3、影像压缩质量评价技术随着测绘卫星成像技术不断增强,遥感测绘技术不断优化,影像数据的规模不断扩大,但由于传输渠道限制,目前只能对影像数据进行压缩处理。
光学投影式三维轮廓测量技术研究
光学投影式三维轮廓测量技术原理
光学投影式三维轮廓测量技术主要由投影装置、相机系统和计算机软件组成,其工作原理如下:
1. 投影装置:光学投影式三维轮廓测量技术使用高亮度、高分辨率的投影仪对待测物体进行光学投影。
投影仪通过计算机控制,将预先设定的光栅图案或条纹图案投影到待测物体表面。
2. 相机系统:相机系统通常由高分辨率的工业相机组成,用于捕捉待测物体表面的投影图案。
相机系统通过适当的角度和距离布置,以获得物体表面的多个投影图像。
3. 计算机软件:计算机软件主要负责处理和分析相机捕捉到的图像数据,通过图像处理算法提取出物体表面的三维轮廓信息。
光学投影式三维轮廓测量技术应用
光学投影式三维轮廓测量技术在工业领域具有广泛的应用,主要包括以下几个方面:
1. 三维检测与测量:光学投影式三维轮廓测量技术可以实现对工件的高精度三维轮廓测量,适用于汽车制造、航空航天、电子设备等行业的产品检测与测量。
2. 三维重建与建模:通过光学投影式三维轮廓测量技术可以对物体进行三维重建与建模,为产品设计、建筑设计、文物保护等领域提供高精度的三维数据支持。
3. 质量控制与检验:光学投影式三维轮廓测量技术可以实现对产品的尺寸、形状、表面质量等进行全方位的质量控制与检验,提高产品的质量稳定性和产品一致性。
4. 快速成像与测量:光学投影式三维轮廓测量技术具有快速成像和测量速度快的特点,适用于对物体进行快速成像和测量,提高生产效率。
光学三维测量技术综述精选文档TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-光学三维测量技术综述1.引言客观景物三维信息的获取是计算机辅助设计、三维重建以及三维成像技术中的基础环节,被测物体的三维信息的快速、准确的获得在虚拟现实、逆向工程、生物与医学工程等领域有着广泛的应用[1]。
三维测量方法总的包括两大类,接触式以及非接触式。
如图所示。
图三维测量方法分类接触式的三维测量方法到目前为止已经发展了很长一段时间,这方面的技术理论已经非常完善和成熟,所以,在实际的测量中会有比较高的准确性。
但是尽管如此,依然会有一些缺点[2]:(1) 在测量过程中,接触式测量必须要接触被测物体,这就很容易造成被测物体表面的划伤。
(2) 接触式测量设备在经过长时间的使用之后,测量头有时会出现形变现象,这无疑会对整个测量结果造成影响。
(3) 接触式测量要依靠测量头遍历被测物体上所有的点,可见,其测量效率还是相当低的。
接触式三维测量技术发展已久,应用最广泛的莫过于三坐标测量机。
该方法基于精密机械,并结合了当前一些比较先进技术,如光学、计算机等。
并且该方法现在已经得到了广泛的应用,特别是在一些复杂物体的轮廓、尺寸等信息的精确测量上。
在测量过程中,三坐标测量机的测量头在世界坐标系的三个坐标轴上都可以移动,而且测量头可以到达被测物体上的任意一个位置上,只要测量头能到达该位置,测量机就可以得到该位置的坐标,而且可以达到微米级的测量精度。
但由于三坐标机测量系统成本较高,加之上述的一些缺点,广泛应用还不太现实。
非接触式三维测量技术一般通过利用磁学、光学、声学等学科中的物理量测量物体表面点坐标位置。
核磁共振法、工业计算机断层扫描法、超声波数字化法等非光学的非接触式三维测量方法也都可以测量物体的内部及外部结构的表面信息,且不需要破坏被测物体,但是这种测量方法的精度不高。
而光学三维轮廓测量由于其非接触性、高精度与高分辨率,在CAD /CAE、反求工程、在线检测与质量保证、多媒体技术、医疗诊断、机器视觉等领域得到日益广泛的应用,被公认是最有前途的三维轮廓测量方法[3]。
浅谈光学三维测量技术光学三维测量属于非接触式光学面形测量方法,能快速准确测量出物体的表面形状,被广泛地应用在机械、电影等领域。
文章概述了光学三维测量技术的分类,介绍了几种常见的光学测量技术及其在各个领域的应用。
标签:光学三维测量;三维激光扫描;面结构光光学三维测量是指运用光学方法获取物体表面的三维立体坐标的技术。
光学三维测量利用现代光学技术成就,结合光电子学、计算机图像处理等学科成就发展起来的一种先进测量技术。
1 光学三维测量的分类图1 光学三维测量技术分类图光学三维测量技术按测量原理可以分为摄影测量方法、结构光技术和光学干涉方法。
摄影测量法是基于多视角的非主动式测量方法。
在普通照明(阳光、日光灯)情况下,由摄像头获取多视角物体图像,利用计算机查找多幅图像的同态标记点,进而获得物体的表面形貌。
结构光技术通过不同宽度且明暗相间的结构光照射被测物体表面,获取到的经物体调制的图像,再经过计算获取物体的立体形貌信息。
光学干涉法是利用干涉原理进行测量,具有高精度、高分辨率等优点。
以下介绍几种常见的光学三维测量方法。
图2 三维激光扫描工作原理图三维激光扫描技术根据光学三角形测量原理,以激光作为光源,光电探测器接收反射光,通过对采集到数据进行计算得到物体的深度信息。
三维激光扫描仪包括发射器和接收器。
发射器射出一束脉冲激光,激光经过物体表面漫反射,沿相同路线射入接收器。
由脉冲激光发射到反射被接收的时间tL可计算出扫描点到扫描仪的距离值S。
扫描仪内精密测量系统获取每个激光脉冲的水平方向角α和垂直方向角度β。
依据上述数据计算出扫描点的三维空间坐标(XP、YP、ZP)[1]。
双目视觉技术属于摄影测量方法,是通过视差原理被动测量三维数据的技术。
双目视觉技术测量物体三维形貌的原理是,从两个或以上的视角去观察一个物体,获得多张不同视角下物体的二维图片,根据三角测量原理得出同一个像素点的坐标偏差,以此获得测量物体的三维形态。
光学测量三维形貌的综述汇总光学测量三维形貌是一种非接触式的测量技术,可以实时且非破坏地获取物体表面的三维形貌信息。
这种测量技术在工业制造、医学、文化遗产保护等领域具有广泛的应用。
本文将综述光学测量三维形貌的原理、方法、应用以及未来的发展方向。
光学测量三维形貌的原理是基于光的散射与反射特性。
光线在物体表面的反射或散射会受到物体表面形貌的影响,通过测量光线的变化可以确定物体表面的形状和高度信息。
光学测量三维形貌的主要方法可以分为三种:三角法、光栅投影法和相位移法。
三角法是光学测量三维形貌最常用的方法之一、它基于三角形的几何关系,通过测量物体表面上多个点与光源之间的距离和角度,计算出物体表面的形状和高度信息。
这种方法简单直观,测量精度较高,适用于表面比较平整的物体。
光栅投影法是一种通过投射光栅纹影来测量三维形貌的方法。
它利用光栅的周期性纹理,在物体表面投射一组光栅纹影,通过测量光栅纹影的形变和位移,推导出物体表面的形状和高度信息。
这种方法适用于表面比较复杂的物体,如曲面和薄膜。
相位移法是一种通过测量光波的相位变化来计算三维形貌的方法。
它利用光的干涉原理,通过在物体表面上投射一组相干光束,并通过相位移的测量得到物体表面的高度信息。
这种方法具有测量精度高、适用范围广的优点,但需要复杂的光学系统和数据处理算法。
光学测量三维形貌在工业制造中有广泛的应用。
例如,在汽车制造中,可以用光学测量技术来评估车身的质量和精度;在航空航天制造中,可以利用光学测量技术来检测飞机表面的缺陷和变形;在电子制造中,可以通过光学测量技术对电路板和芯片进行形貌测量。
在医学领域,光学测量三维形貌也具有重要的应用。
例如,可以利用光学测量技术来测量人体的表面形貌,用于人体测量、假肢制造和医学成像;还可以利用光学测量技术对生物组织的表面形貌进行分析和诊断。
光学测量三维形貌的未来发展方向主要包括提高测量精度、扩展测量范围和提高测量速度。
随着光学技术、图像处理算法和计算机性能的不断提高,光学测量三维形貌的应用将更加广泛。
光学投影式三维轮廓测量技术研究光学投影式三维轮廓测量技术是一种利用光学原理进行三维物体表面形状测量的技术。
它可以通过对物体表面投影光线,并观察投影结果,来获得物体表面的三维轮廓信息。
光学投影式三维轮廓测量技术主要包括两个关键步骤:光源的投影和投影结果的测量。
在光源的投影阶段,通常采用点光源或线光源来照射待测物体。
通过改变光源的位置、光源的形状或光的颜色等参数,可以实现不同投影效果,进而获取不同程度的表面轮廓信息。
在投影结果的测量阶段,使用合适的测量仪器(如相机或扫描仪)对投影结果进行捕捉,并进行图像处理和数据分析,从而获得物体表面的三维轮廓信息。
1. 非接触性测量:光学投影式三维轮廓测量技术可以在不接触物体的情况下进行测量,避免了传统测量方法中可能产生的物体损伤或变形问题。
2. 高精度测量:通过合适的光源和测量仪器,以及精确的数据处理算法,可以实现高精度的物体表面形状测量。
对于一些具有复杂表面形状或微小特征的物体,光学投影式三维轮廓测量技术可以提供更准确的测量结果。
3. 快速测量:与传统的三维测量方法相比,光学投影式三维轮廓测量技术通常具有较快的测量速度。
这主要得益于光学投影的非接触性和计算机图像处理的高效性。
光学投影式三维轮廓测量技术在众多领域都有广泛的应用。
例如在工业制造中,可以用于产品质量检测、尺寸测量和形状分析等方面;在医学领域,可以用于人体无创检测、病变分析和手术导航等方面;在文化遗产保护中,可以用于文物修复和数字化保存等方面。
光学投影式三维轮廓测量技术是一种灵活、精确和高效的三维测量方法,具有广泛的应用前景。
随着相关技术的不断发展和改进,相信它将在更多领域展示出更多的潜力和优势。
基于光学技术的三维检测与测量随着科学技术的不断发展,人们对于实物的量测和检测需求也越来越高。
而传统的二维量测方法已经不能满足现代人的需求,更加精准和快速的三维量测方法因此应运而生。
其中基于光学技术的三维检测与测量技术非常的受人们的青睐,因其非接触测量、高精度、高速度等特点而得到广泛的应用。
一、光学三维检测技术光学三维检测技术是一种通过发射光源,在观测区域内接收返回的光线,利用光学的原理,进行三维形状和尺寸量测的检测技术。
光学三维检测具有接触面积小、高精度、高速度等显著特点,是应用相机成像、投影等技术实现的。
目前,光学三维检测技术主要包括结构光法、激光三角测量法、视觉测量法及数字全息术等。
二、结构光法结构光法依托于光源对被测物体表面投射光图案进行三维检测。
利用由投影器投射的光栅或随机图案,位于另一固定位置的相机采集对应图案,根据成像图案的偏移量,便可推断出相机与目标投影面之间的距离。
从而可以计算出被测物体的三维测量结果。
结构光法可以实现高速度测量,准确度比较高,同时也可以适用于很多不规则物体的量测,因此受到了广泛的关注和应用。
例如除了常规工业制造过程中的三维量测外,近年来,也引入半导体厂所使用的牛顿环对象检测以及胶合板打孔定位等方面,成功取得了应用。
三、激光三角测量法激光三角测量法,顾名思义,就是利用激光进行三角测量,常用于高精度测量。
其原理就是三角形中,若知道了两条边的长度和其夹角,那么就可以计算出第三条边的长度。
利用此原理,我们可以将激光光束投射到被测物体表面,观测光线在表面上反射的位置,计算反射位置与投射位置之间的夹角,再与激光光线和被测物体表面法线(直接垂直于表面的一条线)之间的夹角,即可得出被测物体所在空间的位置坐标。
一旦给定了空间坐标的数据,就可以得到被测物体的三维形状和尺寸测量结果。
四、视觉测量法视觉测量法简单来说,就是利用飞行时间被称为“TOF“的技术(利用飞行时间计算距离),测定距离来获得物体测量数据。
光学投影式 3D 轮廓测量专利技术综述摘要:本文立足于专利文献,从专利的角度对光学投影式3D轮廓测量技术进行了介绍和分析,对该领域全球专利文献数据进行统计、筛选、定量、定性分析,借助计算机分析软件实现专利分析图表的绘制,为相关领域的审查工作提供技术支持,并对光学投影式3D轮廓测量技术的技术发展趋势提供参考。
关键词:光学投影 3D轮廓测量叠相还原专利技术分析一、光学投影式3D轮廓测量技术概述光学投影式3D轮廓测量是光学式三维测量领域中基于结构光法中重要分支,光学投影式3D轮廓测量是通过向被测物表面投射能量,由图像传感器接收并记录投射的光斑位置,由于物体高度起伏产生了变形成像,通过系统间的几何关系,恢复被测物体的面形轮廓。
由于其具有非接触、自扫描、高精度的特点规避了传统机械扫描方式(例如扫坐标测量)设备冗余、数据处理慢、接触式测量的缺陷,已成为信息光学研究的前沿技术,因此,对其进行专利技术分析具有重要意义。
光学投影式3D轮廓测量技术总体分为两大类,基于光学三角法的轮廓测量和基于相位测量的轮廓测量[1][2]。
光学三角法轮廓测量可以用“像点位移”的概念解释,坐标系OXYZ中空间一点P射出的光线PB与参考平面XOY交于B点,并成像于探测器平面XOY上的B'点,当放入被测物时,光线PB交物面于H点,H点像点A'。
从探测器像面上看,由于被测物体的存在,像点由B'移动到A',对应于参考面上的距离为AB,该距离AB与H点高度符合三角关系,因此,可通过测量像点位移得到物体的高度信息。
而相位轮廓测量也是基于光学三角法,但它不是直接寻找和判断位置变动后的像点,而是通过测量相位间接实现。
通过将规则的光栅图像投射到被测物表面,通过CCD探测器从另一角度观察由于受物体高度影响而产生的条纹变形,该种变形可解释为相位和振幅均被调制的空间载波信号,对变形条纹进行解调,恢复相位信息,通过相位确定高度,进而得出轮廓信息。
工程应用中光学投影3D轮廓测量涉及的技术分支较多,必须考虑其所涉及的多个技术分支,通过采用对宏观数据进行定量分析及对重点技术进行定性分析相结合的研究方式,发现目前申请人最关注的技术为:投影方式、叠相还原、误差分析补偿三个一级分支,而投影方式涉及投影采用的仪器设备和投影的条纹调制方式两个二级分支;叠相还原分为基于一幅干涉图像解调相位信息的空域叠相还原和基于多幅图像的时域叠相还原二级技术分支;而误差分析补偿常见的为基于对硬件或软件补偿两个二级技术分支。
光学投影式三维轮廓测量技术研究1.引言随着科技的不断发展,三维测量技术在工业生产、医疗、地质勘探等领域得到了广泛的应用。
光学投影式三维轮廓测量技术是一种常用的三维测量技术之一,它通过投射光线或光斑在被测物体表面上形成光影,再利用相机或传感器采集光影信息,从而实现对被测物体表面的三维轮廓的测量。
本文将对光学投影式三维轮廓测量技术进行探讨和研究,从原理、设备、方法以及应用等方面进行详细的介绍和分析。
光学投影式三维轮廓测量技术是基于光学测量原理,利用光的投影、成像和重构特性来实现对被测物体的三维轮廓测量的一种技术。
其原理主要包括以下几个方面:2.1 光源和投影光学投影式三维轮廓测量技术中,光源一般是激光或白光,通过透镜或其他光学装置对光源进行聚焦和改变,使其成为一道平行或近似平行的光束。
将光束投射到被测物体的表面上,形成光影或光斑。
2.2 形成光影当光束照射到被测物体表面上时,由于光线的不同入射角度和入射位置,使得光线经过反射、折射、漫反射等过程,在被测物体表面上形成光影或光斑。
光影的形成是由被测物体的表面轮廓和光源的参数共同决定的。
2.3 采集光影信息利用相机、传感器或扫描装置对形成的光影进行采集和记录,获取光影的图像数据。
光影的图像数据包含了被测物体表面的三维轮廓信息。
2.4 重构三维轮廓通过图像处理、计算机视觉、三维重建等技术手段,对采集到的光影图像数据进行分析和处理,将二维图像数据转换为三维坐标数据,从而实现对被测物体表面的三维轮廓的重构和测量。
光学投影式三维轮廓测量技术的设备主要包括光源、投影透镜、相机或传感器、图像处理系统等组成部分。
光源是光学测量的基础设备,其选择直接影响到测量的效果和精度。
常用的光源包括激光器、白光灯等,根据不同的测量需求和被测物体特性选择合适的光源。
3.2 投影透镜投影透镜用来对光源进行聚焦和改变,使光束成为平行或近似平行的光束,从而实现光束的投射。
投影透镜的参数和特性直接影响到光影的形成和采集。
光学三维测量技术综述1.引言客观景物三维信息的获取是计算机辅助设计、三维重建以及三维成像技术中的基础环节,被测物体的三维信息的快速、准确的获得在虚拟现实、逆向工程、生物与医学工程等领域有着广泛的应用[1]。
三维测量方法总的包括两大类,接触式以及非接触式。
如图 1.1 所示。
图1.1 三维测量方法分类接触式的三维测量方法到目前为止已经发展了很长一段时间,这方面的技术理论已经非常完善和成熟,所以,在实际的测量中会有比较高的准确性。
但是尽管如此,依然会有一些缺点[2]:(1) 在测量过程中,接触式测量必须要接触被测物体,这就很容易造成被测物体表面的划伤。
(2) 接触式测量设备在经过长时间的使用之后,测量头有时会出现形变现象,这无疑会对整个测量结果造成影响。
(3) 接触式测量要依靠测量头遍历被测物体上所有的点,可见,其测量效率还是相当低的。
接触式三维测量技术发展已久,应用最广泛的莫过于三坐标测量机。
该方法基于精密机械,并结合了当前一些比较先进技术,如光学、计算机等。
并且该方法现在已经得到了广泛的应用,特别是在一些复杂物体的轮廓、尺寸等信息的精确测量上。
在测量过程中,三坐标测量机的测量头在世界坐标系的三个坐标轴上都可以移动,而且测量头可以到达被测物体上的任意一个位置上,只要测量头能到达该位置,测量机就可以得到该位置的坐标,而且可以达到微米级的测量精度。
但由于三坐标机测量系统成本较高,加之上述的一些缺点,广泛应用还不太现实。
非接触式三维测量技术一般通过利用磁学、光学、声学等学科中的物理量测量物体表面点坐标位置。
核磁共振法、工业计算机断层扫描法、超声波数字化法等非光学的非接触式三维测量方法也都可以测量物体的内部及外部结构的表面信息,且不需要破坏被测物体,但是这种测量方法的精度不高。
而光学三维轮廓测量由于其非接触性、高精度与高分辨率,在CAD /CAE、反求工程、在线检测与质量保证、多媒体技术、医疗诊断、机器视觉等领域得到日益广泛的应用,被公认是最有前途的三维轮廓测量方法[3]。
三维测量技术综述基于工业摄影与机器视觉的三维测量技术综述摄影测量(Photogrammetry)是一门通过分析记录在胶片或电子载体上的影像来定被测物体的位置、形状和大小的科学,属于测绘学的分支学科。
它包括航空摄测量、航天摄影测量和近景摄影测量等。
其中,近景摄影测量是指测量范围小于100米,相机布设在物体附近的摄影测量。
近年来,随着微电子和半导体技术的飞速发展,尤其是固体阵相机和计算机硬件的发展,使得工业摄影测量已进入全数字近景摄影测量时代。
同时,随着机器视觉理论的迅速发展,机器视觉也逐渐发展成一门由计算机技术、控制理论、人工智能和模式识别等众多领域交叉综合的新学科。
1.三维形貌与变形测量技术简介光学三维形貌与变形测量技术经过近年来的快速发展,涌现出多种技术及方法。
其中主要有:时间飞行法、全息干涉法、莫尔条纹法、结构光方法(点、线、面)、数字摄影测量法和数字图像相关法等,下面介绍几种常用的三维测量方法,并分析在这些方面的研究发展情况。
1)时间飞行法时间飞行法(Time of Flight)基于三维形貌对激光束产生的时间调制。
原理如图1所示。
激光脉冲信号从发射器发出,经待测物体表面反射后,沿近乎相同的路径反向传回接收器,检测激光脉冲从发出到接收时刻之间的时间差,就可以计算出距离。
结合扫描装置使激光脉冲扫描整个物体就可以得到三维形貌数据。
图1 时间飞行法原理图时间飞行法的分辨率约为1 mm。
若采用亚皮秒激光脉冲和高分辨率的电子器件,深度分辨率可达亚毫米级。
采用时间相干的单光子计数法,测量lm距离,深度分辨率可达30μm;另一种称之为飞行光全息技术的测量方法利用超短光脉冲结合数字重建,深度分辨率可达6.5μm,这种方法的优点是不存在阴影和遮挡问题。
但是要得到较高的测量精度,对信号处理系统的时间分辨率有较高的要求。
2)全息干涉法全息干涉法测量技术利用光的相干性原理,如图2所示,当两束相干性好的光束在被测物体表面相遇时,其光波发生干涉,形成的干涉条纹反映了物体的形貌信息。
光学三维测量技术综述1.引言客观景物三维信息的获取是计算机辅助设计、三维重建以及三维成像技术中的基础环节,被测物体的三维信息的快速、准确的获得在虚拟现实、逆向工程、生物与医学工程等领域有着广泛的应用[1]。
三维测量方法总的包括两大类,接触式以及非接触式。
如图 1.1 所示。
图1.1 三维测量方法分类接触式的三维测量方法到目前为止已经发展了很长一段时间,这方面的技术理论已经非常完善和成熟,所以,在实际的测量中会有比较高的准确性。
但是尽管如此,依然会有一些缺点[2]:(1) 在测量过程中,接触式测量必须要接触被测物体,这就很容易造成被测物体表面的划伤。
(2) 接触式测量设备在经过长时间的使用之后,测量头有时会出现形变现象,这无疑会对整个测量结果造成影响。
(3) 接触式测量要依靠测量头遍历被测物体上所有的点,可见,其测量效率还是相当低的。
接触式三维测量技术发展已久,应用最广泛的莫过于三坐标测量机。
该方法基于精密机械,并结合了当前一些比较先进技术,如光学、计算机等。
并且该方法现在已经得到了广泛的应用,特别是在一些复杂物体的轮廓、尺寸等信息的精确测量上。
在测量过程中,三坐标测量机的测量头在世界坐标系的三个坐标轴上都可以移动,而且测量头可以到达被测物体上的任意一个位置上,只要测量头能到达该位置,测量机就可以得到该位置的坐标,而且可以达到微米级的测量精度。
但由于三坐标机测量系统成本较高,加之上述的一些缺点,广泛应用还不太现实。
非接触式三维测量技术一般通过利用磁学、光学、声学等学科中的物理量测量物体表面点坐标位置。
核磁共振法、工业计算机断层扫描法、超声波数字化法等非光学的非接触式三维测量方法也都可以测量物体的内部及外部结构的表面信息,且不需要破坏被测物体,但是这种测量方法的精度不高。
而光学三维轮廓测量由于其非接触性、高精度与高分辨率,在CAD /CAE、反求工程、在线检测与质量保证、多媒体技术、医疗诊断、机器视觉等领域得到日益广泛的应用,被公认是最有前途的三维轮廓测量方法[3]。
由于光不能深入物体内部,所以光学三维测量只能测量物体表面轮廓,因此,本文中所言光学三维测量即指光学三维轮廓测量,此后不再单独解释。
光学三维测量技术总体而言可以分为主动式光学三维测量和被动式光学三维测量,根据具体的原理又可以分为双目立体视觉测量法、离焦测量法、飞行时间法、激光三角法、莫尔轮廓术和结构光编码法等。
下面就刚刚提到的几种光学三维测量技术的原理进行逐一讲解。
2.测量原理2.1被动式光学三维测量2.1.1双目立体视觉测量法双目成像采用视觉原理来获得同一场景的2幅不同图像。
通过对物体上同一点在2幅图像上的2个像点的匹配和检测,可以得到该点的坐标信息。
测量原理如图2.1.1所示。
设摄像机基线长为B,视差定义为D= P1- P2,其中P1、P2为空间点W(X,Y,Z)在2像面上的投影点,则由几何关系可得Z=Bf/ D。
计算出物点的深度坐标后,其它2个坐标可以通过简单的几何透视关系得出。
双目视觉成像原理简单,但由于需要在两幅图像中寻找对定点的匹配,实际计算过程较为复杂。
图2.1.1 双目立体视觉法三维测量原理图2.1.2离焦测量法离焦测量法根据标定出的离焦模型计算被测点相对于摄像机的距离。
测量模型如图2.1.2所示。
参考点A成像在像平面上的A'点,物体表面上的B点成像在B'点,则在像面上形成两个像点B1和B2,测出两点之间的距离则可以得到物体上点B的坐标。
镜头前挡板上挖的两个小孔保证了探测器上最外围的两像点是由轴上物点形成的。
离焦测量法避免了寻找精确的聚焦位置,但却增加了标定过程的复杂性。
另外,由于每次只能获取一个轴上点的三维坐标,所以离焦测量法需要通过二维扫描来完成物体轮廓面上各离散点的坐标测量,因此测量效率比较低。
图2.1.2 离焦测量法原理图2.2主动式光学三维测量2.2.1飞行时间法飞行时间法(Time of Flight,简称TOF)简单而言就是通过激光或者其他光源脉冲发射时间,通过测量飞行时间达到测量的目的,测量系统模型如图2.2.1所示。
该测量方法具体如下:首先利用系统发射的激光或其他光源脉冲照射被测物体,通过反射原理到达系统接收器接收,就可以计算出激光或者其他光源脉冲的运行时间及距离。
通过对被测量物体外部形态逐步扫描在通过数据处理得到物体的三维原始外貌。
该测量方法运用激光或者其他光源脉冲飞行时间进行及接收器的带宽、灵敏度等进行测量,并且时间间隔的误差在一个很小的范围之内。
因此运用飞行时间法的测量系统目前误差已经达到微米级[3]。
为了进一步使该系统的测量精度提高,目前比较常用的方法是提高测量系统工作时的频率,同时可以通过相位调制的方法。
当激光束幅度被正弦波调制时,测量系统与被测物体之间的距离就可以由发射光束和接收光束之间的相位差得到。
相位调制测量方法与脉冲调制方法相比较要复杂许多,然而减小了带宽,而且通过正弦波相位调制能够获得比较大的测量视角。
基于飞行时间法的测量系统装置复杂,并要求配备带宽大、灵敏性高以和热稳定性好的电子设备,因而造价偏高,这些因素制约了其实际应用。
图2.2.1 飞行时间法原理图 2.2.2激光三角法近年来随着激光技术的发展,激光三角形法逐渐得到广泛应用。
它所采用的光源主要有点结构、线结构和双线结构。
其基本原理是光学三角形原理,如图2.2.2所示。
由图可以得到=/tan(), arctan(/)L B d f αγγ-= (2.2-1)由此可以得到深度信息L 。
这种方法具有原理简单、测量速度快和精度高等优点;缺点是对物体表面特性和反射率、复杂程度等有较大限制[4]。
图2.2.2 激光三角法 2.2.3莫尔轮廓术莫尔轮廓术又可以称为莫尔等高线法,是一种非接触式三维测量方法,1970年由 H.Taksaki 首次提出。
莫尔轮廓术得到莫尔条纹的方法如下:一个基准光栅和投影到三维物体表面上受到物体表面高度调制的变形光栅叠合来形成莫尔条纹,而该条纹描绘出了被测物体的等高线,然后根据莫尔条纹的分布规律就可以得出被测物体的表面形貌。
从这个基本原理出发,出现了几类不同布局的莫尔轮廓装置,主要为影像莫尔法、投影莫尔法和扫描莫尔法以及移相莫尔法等。
(1)影像莫尔法影像莫尔法(shadowmoirémethod)采用基准光栅,把它放在靠近被测物体表面处,用点光源或平行光源照射基准光栅,并在另一侧通过基准光栅观察物体,形成干涉条纹,如图2.2.3-1所示。
鉴于此原理,影像莫尔法的测量范围必须小于所使用基准光栅的范围,而制作大面积、高精度的基准光栅十分困难,所以只适合测量较小尺寸的物体。
另外,当被测物体表面梯度变化较大时,投影到表面的栅线易发生散射而变得模糊,限制了被测物体的可测景深,所以只适合测量表面变化较为缓慢的物体。
图2.2.3-1 影像莫尔法原理(2)投影莫尔法投影莫尔法利用光源将基准光栅经过聚光透镜投影到被测物体表面,经物体表面调制后的栅线与观察点处的参考栅相互干涉,从而形成莫尔条纹。
它与影像莫尔法的主要区别在于在投影光和接收器附近各放置1个光栅,这样就可用较小的高密度栅板代替较大尺寸的基准栅板来检测较大的物体,扩大了检测物体的范围。
一般,这种方法的检测精度和条纹分辨率没有影像莫尔法高。
上述两种方法是通过基准栅和试件栅之间的干涉形成莫尔条纹,所得的条纹图是等高线,通过分配条纹级次和确定条纹中心来解调等高线上的高度信息,对所得条纹的处理分析包括条纹中心线的跟踪、条纹级数的确定和表面凸凹性的判别等,这就限制了应用过程的自动化。
同时,此种方法不适合测量表面梯度变化较大的物体。
为了弥补此方面的缺点,可通过移动条纹或采用复合栅代替单一频率的栅线。
图2.2.3-2 扫描莫尔法原理图(3)扫描莫尔法在阴影莫尔法和投影莫尔法中,如要判断得出被测物体表面的凹凸情况,只能从莫尔等高线上出发,因此就很难在计量中进行确定。
为了使莫尔法能够满足三维面形的自动测量,在投影莫尔法中可以使一块基准光栅(投影系统中的光栅G1 或成像系统的光栅G2)沿垂直于栅线方向做微小地移动,然后对于目标物体表面的凹凸情况可以采用莫尔条纹同时移动的方向来确定。
如果类似于投影莫尔法测量,但是在成像系统中不用第二块基准光栅去观察,而是像电视扫描那样通过电子扫描的方法得到观察的基准光栅,这种方法就称为扫描莫尔法,它的基本原理如图2.2.3-2所示。
实际中替代第二块基准光栅的扫描线可以利用计算机图像处理系统去加入,这就意味着只要通过图像系统(包括摄像输入)获取一幅变形的光栅像,因此要想得到莫尔条纹,只要采用计算机得到光栅的方法就可以得到。
通过计算机产生的第二块基准光栅的周期和光栅的移动都容易改变,这种扫描莫尔法的图像系统能够实现三维面形的自动测量。
综上所述,莫尔轮廓术的主要特点在于:○1能够对三维物体的粗糙表面形貌进行测量,也能够对镜面形貌测量以及大尺寸的物体表面测量。
测量的灵敏度可以在很大范围内进行调整;○2对测量装置的稳定性要求不高而且装置简单可靠,对外界条件要求不严格,相干光源和非相干光源都可以适用;○3易于和高速摄影技术相结合,适合测量动态三维形貌,易于和电子计算机技术相结合,来获得莫尔条纹的数字输出和实现虚拟光栅技术。
2.2.4结构光投影法根据光学测量系统的投射模式,结构光投影法能够为以下几种:点结构光投影法、线结构光投影法、多线结构光投影法、网格结构光投影法、面结构光投影法。
点结构光投影法即为激光扫描法,而多线结构光投影法可以视为面结构光投影法的一种特例,所以这里只讨论线结构光投影法和面结构光投影法。
(1)线结构光投影法线结构光投影法也可以以光带模式投影法命名。
在测量时投射系统产生的光束在空间中由于一个柱面镜的作用出现一窄的平面狭缝光,当与被测物体的表面相交时,在被测物体的表面上产生了一个亮的光条纹。
该光条纹因为被测物体表面深度的变化和可能的间隙从而受到调制,表现为图像的光条纹发生了不同变化和不持续,而且被测物体高度越高,所得图像的畸变程度越大,而被测物体表面之间的物理间隙则可以通过所得图像的不连续性得出[5]。
线结构光投影的主要目的就是从发生了不同变化的光条纹的图像数据中获得被测物体表面深度的三维数据。
线结构光投影法可以视为点结构光投影法的扩展。
相对于点结构光投影法来说,线结构光投影法大大提高了测量效率,而测量精度相比之言只是略低,此方法在商业上获取三维深度信息的应用已经非常成熟。
(2)面结构光投影法在线结构光投影法的基础之上,井口征士等人提出了一种更为优越的结构光投影法,就是面结构光投影法的。
即将各种模式的面结构光投影到被测物体,在面结构光被投影到目标物体之时,如果从与投影光轴方向不同的观测点方向来看,在目标物体表面产生由于物体形状的凹凸变化而随之发生畸变的面结构光条纹,这种畸变是由于所投影的面结构光条纹收到目标物体的表面形状的调制所引起的,所以被测物体表面形状的三维信息也就包含在内。