并联谐振电路的特点
- 格式:pptx
- 大小:2.05 MB
- 文档页数:65
论串联谐振与并联谐振区别在电阻、电容、电感串联电路中,出现电源、电压、电流同相位现象、叫做串联谐振,其特点是:电路呈纯电阻性,电源、电压和电流同相位,电抗X等于O,抗阻Z等于电阻R。
此时电路的阻抗最小,电流最大,在电感和电容上可能产生比电源电压大很多倍的高电压,因此串联谐振也称为电压谐振。
谐振电压与原电压叠加,并联谐振:在电阻、电容、电感并联电路中,出现电路端电压和总电流同相位的现象,叫做并联谐振,其特点是:并联谐振时一种完全的补偿,电源无需提供无功功率,只提供电阻所需要的有功功率,谐振时,电路的总电流最小,而支路电流往往大于电路中的总电流,因此,并联谐振也叫电流谐振。
串联谐振和并联谐振区别一1. 从负载谐振方式划分,可以为并联逆变器和串联逆变器两大类型,下面列出串联逆变器和并联逆变器的主要技术特点及其比较:串联逆变器和并联逆变器的差别,源于它们所用的振荡电路不同,前者是用L、R和C串联,后者是L、R和C并联。
(1)串联逆变器的负载电路对电源呈现低阻抗,要求由电压源供电。
因此,经整流和滤波的直流电源末端,必须并接大的滤波电容器。
当逆变失败时,浪涌电流大,保护困难。
并联逆变器的负载电路对电源呈现高阻抗,要求由电流源供电,需在直流电源末端串接大电抗器。
但在逆变失败时,由于电流受大电抗限制,冲击不大,较易保护。
串联谐振和并联谐振区别二(2)串联逆变器的输入电压恒定,输出电压为矩形波,输出电流近似正弦波,换流是在晶闸管上电流过零以后进行,因而电流总是超前电压一φ角。
并联逆变器的输入电流恒定,输出电压近似正弦波,输出电流为矩形波,换流是在谐振电容器上电压过零以前进行,负载电流也总是越前于电压一φ角。
这就是说,两者都是工作在容性负载状态。
(3)串联逆变器是恒压源供电,为避免逆变器的上、下桥臂晶闸管同时导通,造成电源短路,换流时,必须保证先关断,后开通。
即应有一段时间(t )使所有晶闸管(其它电力电子器件)都处于关断状态。
rlc并联谐振电路阻抗的特点【主题介绍】在电路中,RLC并联谐振电路是一种具有特殊频率响应的电路。
它由电感(L)、电阻(R)和电容(C)三个元件组成,能够在特定频率下表现出较低的阻抗。
本文将深入探讨RLC并联谐振电路的阻抗特点,并分享对该电路的观点和理解。
【1. RLC并联谐振电路简介】RLC并联谐振电路由电阻元件、电感元件和电容元件并联连接而成。
在电路中,电感元件储存电能,电容元件储存电荷,而电阻元件对电流产生阻碍。
当电路中的频率等于谐振频率时,电感和电容的阻抗相互抵消,使得电路整体的阻抗具有最小值,这就是并联谐振电路的特点所在。
【2. RL并联谐振电路的阻抗特点】在RLC并联谐振电路中,阻抗以复数形式呈现,由实部和虚部组成。
实部代表电路的有源部分,而虚部则代表电路的无源部分。
2.1 低阻抗:RLC并联谐振电路在谐振频率附近表现出较低的阻抗。
当电路的频率等于谐振频率时,电感和电容的阻抗相互抵消,整个电路的阻抗呈现最小值。
这种低阻抗特点使得电路在谐振频率附近对电流更加敏感,电信号可以更轻松地通过电路,实现有效的能量传输。
2.2 频率选择性:RLC并联谐振电路在谐振频率附近表现出较高的频率选择性。
谐振频率附近,电感和电容的阻抗值会急剧变化,对其他频率的电信号产生较高的阻碍。
这种频率选择性让电路能够选择通过特定频率的信号,抑制其他频率的干扰信号,从而实现滤波的功能。
2.3 相位角特性:RLC并联谐振电路的阻抗特点还表现在相位角上。
在谐振频率附近,电路中的电感和电容的阻抗几乎相等,且互相抵消,导致电路的相位角接近零。
而在谐振频率两侧,相位角逐渐增大,表现出较大的相位差。
这种相位角特性可以用来调节信号的相位,对于某些特定应用具有重要意义。
【3. RLC并联谐振电路的观点和理解】RLC并联谐振电路是一种常用的电路结构,具有诸多特点和应用。
以下是对该电路的观点和理解:3.1 实用性:RLC并联谐振电路的低阻抗特点使其在实际应用中具有广泛用途。
串并联谐振电路的区别详解
串联谐振电路指的是,在电子串联电路中电阻、电感以及电容出现电压、电流和电源相同相位角度情况下的现象,称为电子电路串联谐振电路。
串联谐振电路的特点是:串联谐振电路呈纯电阻性,电源、电压和电流同相位,此时,电抗等于0,阻抗等于电阻R,电路的阻抗最小,电流最大,谐振电压与原本相互电压叠加,在电感和电容上产生比电源输出电压高出很多倍的高电压,因此,串联谐振电路也称电压谐振试验项目。
并联谐振电路指的是,在电阻、电感和电容并联电路中,出现电路端电压和总电流相位相同角度的现象,称为电子电路并联电路。
并联电路的原理特点是:并联谐振是一种完全的补偿电路,电源不需要提供无功功率,只提供并联电路中电阻所需要的有功功率,输出产生谐振电路时,并联电路产生的总电流最小,此时,支路电流大于电路中的总电流,因此,并联谐振电路也叫并联谐振或者是电流谐振。
串联谐振、并联谐振试验设备,可同时满足电力变压器、交联电缆、开关柜、电动机、发电机、GIS 全气体绝缘组合电器设备和SF6开关、母线、电容套管、充油套管、电流互感器(CT)、电压互感器(PT)等试验对象的的(工频)交流耐压试验,串联谐振、并联谐振试验设备是复合型交流耐压设备。
华天电力专业生产串联谐振耐压装置,从事电测行业多年,旗下产品品质一流,欢迎广大客户前来选购。
并联谐振回路特点
并联谐振回路是一种特殊的电路,具有以下几个特点:
1. 谐振频率高:并联谐振回路的谐振频率比串联谐振回路高,可以达到几十千赫至几百兆赫的范围。
2. 阻抗变化大:在谐振频率附近,电路的阻抗呈现出非常大的变化,可以达到几百倍甚至上千倍。
3. 电压放大作用:在谐振频率附近,电路的电压可以得到很好的放大作用,可以达到几倍至几十倍的增益。
4. 电流最小化:在谐振频率附近,电路的电流呈现出最小的情况,可以达到几乎为零的程度。
5. 能量储存:在谐振频率附近,回路中的能量可以得到很好的储存,使得电路可以维持谐振状态较长的时间。
6. 应用广泛:并联谐振回路在很多领域得到广泛应用,如射频电路、滤波电路、调制解调电路等。
- 1 -。
串联谐振频率和并联谐振频率一、引言谐振是物理学中一个重要的概念,它在电路、声学、光学等领域中都有广泛的应用。
在电路中,谐振频率是指电路中的电感和电容元件在特定频率下达到最大响应的频率。
串联谐振和并联谐振是两种常见的谐振方式,它们在电路中具有不同的特点和应用。
本文将详细探讨串联谐振频率和并联谐振频率的定义、计算方法以及它们的应用。
二、串联谐振频率2.1 定义串联谐振是指电路中的电感和电容元件按照串联的方式连接,形成一个谐振回路。
当电路中的电感和电容元件的阻抗相等时,电路会在特定频率下达到最大电流响应。
这个特定频率就是串联谐振频率。
2.2 计算方法串联谐振频率的计算方法如下: 1. 首先,计算电感元件的电感值(单位:亨利)和电容元件的电容值(单位:法拉)。
2. 根据串联谐振电路的特点,计算串联谐振电路的总阻抗(单位:欧姆)。
3. 通过总阻抗和电感元件的电感值计算谐振频率(单位:赫兹)。
2.3 应用串联谐振频率在电路中有广泛的应用。
例如,在无线电通信中,串联谐振电路可以用来选择特定的频率进行信号的放大和传输。
此外,在音频设备中,串联谐振电路也可以用来调节音频信号的频率响应。
三、并联谐振频率3.1 定义并联谐振是指电路中的电感和电容元件按照并联的方式连接,形成一个谐振回路。
当电路中的电感和电容元件的阻抗相等时,电路会在特定频率下达到最小电流响应。
这个特定频率就是并联谐振频率。
3.2 计算方法并联谐振频率的计算方法如下: 1. 首先,计算电感元件的电感值(单位:亨利)和电容元件的电容值(单位:法拉)。
2. 根据并联谐振电路的特点,计算并联谐振电路的总阻抗(单位:欧姆)。
3. 通过总阻抗和电容元件的电容值计算谐振频率(单位:赫兹)。
3.3 应用并联谐振频率在电路中也有广泛的应用。
例如,在无线电通信中,并联谐振电路可以用来选择特定的频率进行信号的滤波。
此外,在音频设备中,并联谐振电路也可以用来调节音频信号的频率响应。
电路谐振的原理及应用1. 电路谐振的基本概念电路谐振是指在一定条件下,电路中的电流和电压会出现共振现象。
在谐振状态下,电路中的能量会达到最大值。
谐振频率是使电路达到最大振幅的特定频率。
2. 电路谐振的原理电路谐振主要是通过电感和电容两种元件来实现的。
具体来说,电感元件主要提供电磁能量存储的作用,而电容元件则提供电场能量的存储作用。
当电路处于谐振状态时,电感元件和电容元件之间的能量交换是最大的。
3. 串联谐振电路串联谐振电路是最常见的一种谐振电路。
它由一个电感和一个电容串联连接而成。
当电路中的频率等于谐振频率时,电压和电流将达到峰值,电路呈共振状态。
串联谐振电路的特点: - 电感和电容的串联会引起频率选择性 - 在谐振频率附近,电压和电流峰值较大,能量损耗较小 - 能量的传输效率较高,可用于放大电路和振荡器设计4. 并联谐振电路并联谐振电路由一个电感和一个电容并联连接而成。
当电路中的频率等于谐振频率时,电流和电压将达到最大值,电路呈共振状态。
并联谐振电路的特点: - 电感和电容的并联会引起频率选择性 - 在谐振频率附近,电流和电压峰值较大,能量损耗较小 - 能量的传输效率较高,可用于滤波器和天线等领域5. 电路谐振的应用电路谐振在实际中有广泛应用,下面列举几个具体的应用场景:•无线通信:在手机、电视和无线电等设备中,用以调谐和放大信号,以便在特定频率范围内传输数据。
•声音放大:在音响系统和扬声器设计中,使用电路谐振来放大声音并调整音质。
•滤波器:通过选择适当的电感和电容值,电路谐振可作为滤波器以滤除特定频率的信号。
•振荡器:电路谐振在振荡器中应用广泛,例如在电子钟、天线和无线电发射器等设备中。
6. 总结电路谐振是一种特定频率下电压和电流达到最大值的现象。
串联谐振电路和并联谐振电路是常见的谐振电路结构。
电路谐振在无线通信、声音放大、滤波器和振荡器等领域有着广泛的应用。
深入理解电路谐振原理和应用可以帮助更好地设计和优化电路。
串联谐振与并联谐振的电路特点及产生条件详解一、串联电路和并联电路的定义1、路中的各元件是逐个顺次连接来的,则电路为串联电路。
特点是:流过一个元件的电流同时也流过另一个。
在串联电路中,由于电流的路径只有一条,所以,从电源正极流出的电流将依次逐个流过各个用电器,后回到电源负极。
因此在串联电路中,如果有一个用电器损坏或某一处断开,整个电路将变成断路,电路就会无电流,所有用电器都将停止工作,所以在串联电路中,各个用电器互相牵连,要么全工作,要么全部停止工作。
2、元件“首首相接,尾尾相连”并列地连在电源之间,则电路就是并联电路。
特点是:干路的电流在分支处分成几部分,分别流过几个支路中的各个元件。
在并联电路中,从电源正极流出的电流在分支处要分为几路,每一路都有电流流过,因此即使某一支路断开,但另一支路仍会与干路构成通路。
由此可见,在并联电路中,各个支路之间互不牵连。
二、实例分析串联电路和并联电路的特点1、串联电路用电器各元件逐个顺次连接起来,接入电路就组成了串联电路。
我们常见的装饰用的“满天星”小彩灯,常常就是串联的。
串联电路有以下一些特点:A、电路连接特点:串联的整个电路是一个回路,各用电器依次相连,没有“分支点”。
B、用电器工作特点:各用电器相互影响,电路中一个用电器不工作,其余的用电器就无法工作。
C、开关控制特点:串联电路中的开关控制整个电路,开关位置变了,对电路的控制作用没有影响。
即串联电路中开关的控制作用与其在电路中的位置无关。
2、并联电路用电器各元件并列连接在电路的两点间,就组成了并联电路。
家庭中的电灯、电风扇、电冰箱、电视机等用电器都是并联在电路中的。
并联电路有以下特点:A、电路连接特点:并联电路由干路和若干条支路组成,有“分支点”。
每条支路各自和干路形成回路,有几条支路,就有几个回路。
B、用电器工作特点:并联电路中,一条支路中的用电器若不工作,其他支路的用电器仍能工作。
C、开关控制特点:并联电路中,干路开关的作用与支路开关的作用不同。
R、L、C串/并联谐振电路的特性分析及应用摘要:本文对RLC串联、RLC并联及RL-C并联三种谐振电路的阻抗Z、谐振频率 、及品质因数Q三种特性进行了分析。
其中品质因数Q是电路在谐振状态下最为重要的电路特性,我们从Q的几种定义出发,着重研究了它对三种最基本的谐振电路的几个重要影响。
同时简单介绍了串/并联谐振电路在生活中的具体应用。
关键词:谐振电路;谐振特性;品质因数目录0 引言: (1)1 RLC串联与RLC并联及RL-C并联电路阻抗及谐振频率 (2)1.1 RLC串联电路的阻抗及谐振频率 (2)1.2 RLC并联电路的阻抗及谐振频率 (2)1.3 RL-C并联电路的阻抗及谐振频率 (3)2 R、L、C串/并联电路的品质因数Q (3)2.1 电路的品质因数Q (3)2.2 谐振电路的品质因数Q的几点重要性 (4)2.2.1 Q对回路中能量交换及能量储存的影响 (4)2.2.2 Q值与谐振电路的选择性 (4)2.2.2.1 Q值与串联谐振电路的选择性 (4)2.2.2.2 Q值与RL-C并联谐振电路的选择性 (6)2.2.2.3 RLC并联谐振回路与RL-C并联谐振回路的品质因数的统一性 (8)3 谐振电路在生活中的应用 (11)0 引言:构成各种复杂电路的基础通常是RLC 串/并联谐振电路,本文就简单介绍了其三种连接方式如图,而了解这些基本电路的频率特性对于理解更复杂的电路甚至实用电路是非常有益的,并且对于深入了解其它重要的相关特性是十分有帮助的。
本文简单阐述了下面三种电路图的Z 、ω及Q 以及一些具体实际的应用。
下面是R 、L 、C 串/并联谐振电路的简图,如图1,图2,图3所示。
•R U•L U+•U•C U图1,串联谐振电路RLC•U— 图2,并联谐振电路RLC图3,并联谐振电路C RL -1 RLC 串联与RLC 并联及RL-C 并联电路阻抗及谐振频率 1.1 RLC 串联电路的阻抗及谐振频率由图1知RLC 串联电路的复阻抗Z 和阻抗z 分别为()()22111CL R z L L j R C jL j R Z ωωωωωω-+=-+=-+=电路中的I 和z 以及U 之间的关系为:()221CL R U zU I ωω-+==(1)由于谐振时01=-C L ωω,故谐振时的电流 R U I I =00为。
串联谐振电路和并联谐振电路的阻抗在电路的世界里,串联谐振电路和并联谐振电路就像是一对欢喜冤家,各自有各自的特点和魅力。
想象一下,串联谐振电路就像是一条紧紧相连的链子,每个链接都相互依赖,缺一不可。
电流像水流一样,从一个元件流向另一个元件,电感和电容在这条链子上舞动着,互相配合。
当频率达到某个特定值时,电路的阻抗会达到最低点,电流如同洪水猛兽,尽情地奔腾而过,这就是我们说的谐振。
简直就像一场音乐会,所有乐器合奏得天衣无缝,观众们都陶醉其中。
而说到并联谐振电路,哦,这就像是一场派对,大家各自为政,想怎么玩就怎么玩。
电流在不同的路径上分流,各个元件各自独立,互不干扰。
每当频率合适时,这些独立的元件又齐心协力,产生最低的阻抗,真是热闹非凡,电流像开了挂一样,欢快地在每个支路上游荡。
想想那些独立的乐手,各自弹奏着不同的旋律,但一旦达到和谐的时刻,整个乐队瞬间凝聚成一体,效果真是令人惊艳。
你可能会问,这两者之间有什么区别呢?串联谐振电路的阻抗是由电感和电容的相互作用决定的。
电感像个调皮的小孩,抵抗变化的电流;而电容则像个爱捣乱的朋友,存储能量,随时准备释放。
它们之间的斗智斗勇,构成了串联谐振的精彩部分。
此时,阻抗达到最小,电流流动畅通无阻,这种感觉就像是在拥挤的地铁里突然找到一处空间,舒舒服服地松了一口气。
而并联谐振电路的阻抗就更有意思了。
这种电路的总阻抗是由各个支路的阻抗并行组合而成的,真是让人目不暇接。
电流在每条支路上分流,各自的阻抗犹如一场无形的较量,最终形成一个最低的总阻抗。
这就像在马拉松比赛中,选手们各自发挥,谁也不甘示弱,最后却在终点线前形成了惊人的协作,仿佛共同打破了时间的桎梏。
生活中这些电路又能给我们带来什么启示呢?串联和并联就像生活中的合作与独立。
有时候我们需要团结一心,像串联电路一样,大家齐心协力,才能战胜困难;而我们又要学会独立,像并联电路一样,各自发挥所长,成就自己的目标。
这样的道理,简直是电路给我们的生活上了一课。
中频炉串联谐振与并联谐振的比较目前行业内,从控制系统上主要存在两种结构:串联谐振,并联谐振。
以下就从几个方面分别进行阐述:1、原理并联谐振:谐振电压与原电压叠加,并联谐振:在电阻、电容、电感并联电路中,出现电路端电压和总电流同相位的现象,叫做并联谐振,其特点是:并联谐振是一种完全的补偿,电源无需提供无功功率,只提供电阻所需要的有功功率,谐振时,电路的总电流最小,而支路电流往往大于电路中的总电流,因此,并联谐振也叫电流谐振。
串联谐振:串联谐振装置就用运用串联谐振原理设计的最新型交流耐压试验设备。
一套串联谐振耐压试验设备,可兼顾电力变压器、交联电缆、开关柜、电动机、发电机、GIS和SF6开关、母线、套管、CT、PT等试品的交流耐压试验,是全能型的交流耐压设备。
串联谐振也较电压谐振。
2、使用并联谐振俗称一拖一,就是一台中频电源对一台中频炉进行供电。
此种用法是大众的使用方法,在设备使用过程中炉衬寿命存在周期,因此厂家在推荐用户购买时多备用一个炉体。
但是,并联谐振在工作时容易产生高次谐波:5,7,11,17次,对电网产生污染;另外功率因数也偏低,最好效果能达到0.88,达不到国家电网关于无用功的标准0.9.因此很多用户提出,并联谐振设备是电老虎。
而串联谐振是针对并联谐振出现的种种问题而诞生的,在任意功率下功率因数都能达到0.95,而且5,7次谐波可以消除。
但是一拖二串联谐振设备价格昂贵,技术属于摸索阶段,调试周期长。
IGBT更是如此,国产IGBT性能不好用,国外的IGBT价格昂贵。
3、与并联谐振共存的中频炉消谐无功补偿装置并联谐振的问题确实存在,但是经过我们的研究。
消谐无功补偿装置诞生了。
他主要针对:功率因数、高次谐波而产生的。
为此,电力系统和谐波源用户都有责任和必要的对谐波装置加大限制和治理,以保证电力系统和用户的安全可靠运行,提高整个电网运行的经济效益。
从一般中频电源工作原理可知,它是通过三相桥式整流装置再进行脉冲调频来进行变频的,它的正常运行必然产生较大的谐波电流,且功率因数也达不到0.90的要求。
并联谐振和串联谐振的区别
并联谐振是⼀种完全的补偿,电源⽆需提供⽆功功率,只提供电阻所需要的有功功率。
谐振时,电路的总电流最⼩,⽽⽀路的电流往往⼤于电路的总电流,因此,并联谐振也称为电流谐振。
串联谐振是⼀种电路性质。
同时也是串联谐振试验装置。
串联谐振产品优点
1.所需电源容量⼤⼤减⼩。
系列串联谐振试验装置是利⽤谐振电抗器和被试品电容产⽣谐振,从⽽得到所需⾼电压和⼤电流的,在整个系统中,电源只需要提供系统中有功消耗的部分,因此,试验所需的电源功率只有试验容量的1/Q倍(Q为品质因素)。
2.设备的重量和体积⼤⼤减⼩。
串联谐振电源中,不但省去了笨重的⼤功率调压装置和普通的⼤功率⼯频试验变压器,⽽且,谐振激磁电源只需试验容量的1/Q,使得系统重量和体积⼤⼤减⼩,⼀般为普通试验装置的1/5~1/10。
3.改善输出电压波形。
谐振电源是谐振式滤波电路,能改善输出电压的波形畸变,获得很好的正弦波,有效地防⽌了谐波峰值引起的对被试品的误击穿。
4.防⽌⼤的短路电流烧伤故障点。
在谐振状态,当被试品的绝缘弱点被击穿时,电路⽴即脱谐(电容量变化,不满⾜谐振条件),回路电流迅速下降为正常试验电流的1/Q。
⽽采⽤并联谐振或者传统试验变压器的⽅式进⾏交流耐压试验时,击穿电流⽴即上升⼏⼗倍,两者相⽐,短路电流与击穿电流相差数百倍。
所以,串联谐振能有效地找到绝缘弱点,⼜不存在⼤的短路电流烧伤故障点的忧患。
5.不会出现任何恢复过电压。
被试品发⽣击穿闪络时,因失去谐振条件,⾼电压也⽴即消失,电弧⽴刻熄灭,装置的保护回路动作,切断输出。
电容电感并联谐振电容电感并联谐振是电路中常见的现象之一。
在这种电路中,电容和电感两个元件同时被连接并形成了一个共同的电路。
通过合适的参数设置,这个电路将可以达到共振的状态,进而发生振荡现象。
本文将从电容电感并联的简介、电容电感并联的工作原理、简单并联谐振电路的构成、并联谐振电路的特点以及应用等多个角度来介绍电容电感并联谐振电路。
第一部分:电容电感简介在物理学中,电容和电感是两个非常基本的物理量。
电容指的是元件两端的电荷量和电容电势之间的比率。
电感则是指由电流通过电感产生的磁通量与电流强度之比。
电容和电感这两个基本元件在电路中都有重要的应用。
常常被用来存储电荷或磁能,并用作电路中的滤波器、谐振器等组成部分。
当它们被并联连接时,就会产生电容电感并联谐振电路。
第二部分:电容电感并联的工作原理电容电感并联谐振电路通常是由一个电容和一个电感串联组成,并且会连接在一个外部负载电阻上。
当电容电感并联电路被连接到一个电源时,电源会产生交流电信号在电路中传输。
这个信号会激发电容和电感中的电子在电路中相互交换。
当电源的频率接近共振频率时,电容和电感中的电子就会在电路中极度激励。
这时,电容和电感的阻抗将几乎相等,并且电路中的电荷和磁力能量也将共振到相同的频率。
因此,电容电感并联电路中的电阻变成一个很低的值,这样就会导致电路中的电流增加。
第三部分:简单并联谐振电路的构成简单的电容电感并联谐振电路可以使用简单的公式来计算其元件值。
这个公式如下:f = 1 / (2π√(LC))当L和C的值被正确调整时,电容电感并联谐振电路将在其共振频率上显示出最大的带宽。
这个频率与电容和电感的值有关,并且通常会在电路元件的规格表上列出。
在实际应用中,通过调整电容或电感的值来改变频率通常是最方便的做法。
电容电感并联电路的频率范围通常在几百KHz至几百MHz之间。
谐振时,电容与电感串联,其总阻抗降为最小,等于串联电容电感两端电阻的平方根,也可以利用公式来计算:Zmin=√L/C。
总结并联谐振的特点总结并联谐振的特点篇一:串并联谐振的特点串联谐振的特点1. 谐振时回路的阻抗最小,且2. 谐振时的回路电流最大,且与激励源同相。
3. 谐振时电阻上的电压,与激励源大小相等,相位相同。
4. 电路在谐振时,电容上的电压与电感L上的电压相位相反、大小相等,都等于电源电压的注意:由于倍。
值通常很大,谐振时(或)上的端电压将很高,往往会造成元件的损坏。
但谐振时和频率特性两端的总等效阻抗为零。
图示电路中的电流为:谐振时的电流为:可以推导得:相对失谐。
幅频特性,其中,称为定义:信号幅度随频率变化的关系,则可以证明:回路值越高,曲线越尖锐,回路选择信号的能力越强,选择性越好。
并联谐振的特点以下讨论都是在品质因数很高的条件下进行特点1. 谐振时回路的阻抗最大,且2. 谐振时的回路端电压最大,且与激励源同相3. 电路在谐振时,电容支路和电感支路的电流几乎大小相等、相位相反。
二者的大小近似等于激励电流源频率特性的倍。
图示电路的端电压为:在()的情况下,有可以推导得:幅频特性,其中定义:信号幅度随频率变化的关系,则可以证明与串联谐振电路相同,回路选择性越好。
值越高,曲线越尖锐,回路选择信号能力越强,谐振回路的能量关系(功率)1.不论是串联谐振回路还是并联谐振回路都是由电阻、电容2.电阻和电感组成。
是耗能元件,它将消耗能量;电容是储能元件,它将储存电场能量;电感均不会消耗能量。
也是储能元件,它将储存磁场能量。
、3.由于谐振时回路为纯阻性,则激励源提供的能量将全部消耗掉。
4.谐振回路的能量关系:电容储存的电能和电感储存的磁能将以振荡的形式(因为电容端电压和流过电感的电流为正弦信号)互相转换,总的储存能量保持不变。
而激励源供给电路的能量,全部消耗在电阻上转化为热能。
谐振回路的通频带通频带的意义:定义通频带是为了衡量回路选择一定范围内频率的能力。
谐振回路的选择性:1.回路的值越高,选择信号的能力越强,偏离谐振频率的信号越容易被抑制。