晶闸管产生过电流的原因
- 格式:ppt
- 大小:18.50 KB
- 文档页数:9
晶闸管击穿的原因
晶闸管击穿的原因主要有以下几个:
1. 过电压击穿:当晶闸管两端之间的电压超过其额定反向耐压时,会发生击穿。
例如,在开关电源的电流波动或突然断电时,可能会引起过电压击穿。
2. 过电流击穿:当晶闸管通过的电流超过其额定电流时,可能会引起击穿。
过电流击穿一般是由于负载电流过大或短路情况引起的。
3. 温度击穿:晶闸管的导通和堵塞状态会受到温度的影响。
当温度过高时,晶闸管的导通压降会增加,可能导致击穿。
4. 静电击穿:静电放电可能引起晶闸管的击穿。
当周围环境存在静电电荷时,将电极直接与晶闸管的封装部分接触,会产生静电击穿。
为了防止晶闸管击穿,可以采取以下措施:
1. 合理设计电路,避免过电压和过电流情况的发生。
2. 使用合适的散热装置,控制晶闸管的温度,避免温度击穿。
3. 在工作环境中注意静电保护,避免静电击穿的发生。
4. 定期检查和维护晶闸管,确保其正常运行。
1. 晶闸管的导通条件是什么?导通后流过晶闸管的电流由什么决定?负载上电压等于什么?晶闸管的关断条件是什么?答:当晶闸管承受正向电压且在门极有触发电流时晶闸管才能导通;导通后流过晶闸管的电流由电源和负载决定;负载上电压等于电源电压;当晶闸管承受反向电压或者流过晶闸管的电流为零时,晶闸管关断。
2. 晶闸管的主要参数有那些?答:晶闸管的主要参数有:断态重复峰值电压D R M U :在门极断路而结温为额定值时,允许重复加在器件上的正向峰值电压。
反向重复峰值电压RRM U :在门极断路而结温为额定值时,允许重复加在器件上的反向峰值电压。
通态(峰值)电压TM U :这是晶闸管通以某一规定倍数的额定通态平均电流时的瞬态峰值电压。
通态平均电流()T A V I :稳定结温不超过额定结温时允许流过的最大工频正弦半波电流的平均值。
维持电流H I :使晶闸管维持导通所必需的最小电流。
擎住电流L I :晶闸管刚从断态转入通态并移除出发信号后,能维持导通所需的最小电流。
浪涌电流TSM I :指由于电路异常情况引起的使结温超过额定结温的不可重复性最大正向电流。
还有动态参数:开通时间gt t 、关断时间q t 、断态电压临界上升率/du dt 和通态电流临界上升率/di dt 。
3. 什么叫全控型器件?答:通过控制信号既可控制其导通,又可控制其关断的电力电子器件称为全控型器件。
4. 工作在开关状态的电力电子器件的主要损耗有哪些?如何减小?答:主要有导通时通态损耗、阻断时断态损耗和动态开关损耗,还有基极驱动功率损耗、截止功率损耗。
降低开关频率、降低饱和导通压降、减小开通和关断时间、增加缓冲电路、加散热器冷却,均可减小损耗。
P421. 使晶闸管导通的条件是什么?答:参见上面第一题。
2. 维持晶闸管导通的条件是什么?怎样才能使晶闸管由导通变为关断?答:晶闸管一旦导通,门极就失去控制作用,不论门极出发信号是否还存在,晶闸管都保持导通,只需保持阳极电流在维持电流以上;但若利用外加电压和外电路的作用使流过晶闸管的电流降到接近于零的某一数值以下,则晶闸管关断。
晶闸管工作原理晶闸管是一种电子器件,常用于电力控制和电能变换领域。
它是一种双向可控硅,具有开关功能,能够控制电流的流动。
晶闸管的工作原理涉及到PN结、触发、导通和关断等过程。
1. PN结晶闸管由P型半导体和N型半导体构成的PN结组成。
在PN结上加之一个正向偏置电压时,会形成一个导电通道,电流可以流过。
而在反向偏置电压下,PN结会处于截止状态,电流无法通过。
2. 触发为了使晶闸管导通,需要对其进行触发。
触发电压可以通过控制电路提供。
当触发电压达到一定阈值时,晶闸管将开始导通。
3. 导通一旦晶闸管被触发,它将进入导通状态。
在导通状态下,晶闸管的正向电压降低,内部电流开始流动。
晶闸管的导通状态可以持续,直到电流降至零或者施加反向电压。
4. 关断要使晶闸管关断,需要通过控制电路施加一个关断电压。
当关断电压施加到晶闸管上时,PN结会进入截止状态,电流无法通过,晶闸管将住手导通。
晶闸管的工作原理可以总结为:通过控制电路对晶闸管施加触发电压,使其进入导通状态;通过施加关断电压,使其住手导通。
晶闸管的导通和关断状态可以通过外部控制,实现对电流的控制和变换。
晶闸管具有许多优点,例如响应速度快、可靠性高、功率损耗小等。
它在电力控制领域广泛应用,如交流电调压、交流电调速、交流电变频等。
同时,晶闸管还可以用于电力系统的保护和控制,如过电流保护、短路保护等。
总结起来,晶闸管是一种双向可控硅,通过控制电路对其施加触发和关断电压,实现对电流的控制和变换。
它在电力控制和电能变换领域具有重要的应用价值。
防止晶闸管损坏的保护措施
晶闸管元件的主要弱点是承受过电流和过电压的力量很差,即使短时间的过流和过电压,也可能导致晶闸管的损坏,所以必需对它采纳适当的爱护措施。
1、过流爱护
晶闸管消失过电流的主要缘由是过载、短路和误触发。
过流爱护有以下几种:
a)快速容断器,快速容断器中的溶丝是银质的,只要选用适当,在同样的过电流倍数下,它可以在晶闸管损坏前先溶断,从而爱护了晶闸管;
b)过电流继电器,当电流超过过电流继电器的整定值时,过电流继电器就会动作,切断爱护电路。
但由于继电器动作到切断电路需要肯定时间,所以只能用作晶闸管的过载爱护;
c)过载截止爱护,利用过电流的信号将晶闸管的触发信号后移或使晶闸管的导通角减小,或干脆停止触发爱护晶闸管。
2、过压爱护
过电压可能导致晶闸管的击穿。
其主要缘由是由于电路中电感元件的通断、熔断器熔断或晶闸管在导通与截止间的转换。
对过压爱护可采纳两种措施:
a)阻容爱护,阻容爱护是电阻和电容串联后,接在晶闸管电路中的一种过电压爱护方式。
其实质是利用电容器两端电压不能突变和电
容器的电场储能以及电阻使耗能元件的特性,把过电压的能量变成电场能量储存在电场中,并利用电阻把这部分能量消耗掉;
b)硒堆爱护。
几种常见的晶闸管损坏原因的判别方法晶闸管作为一种重要的半导体器件,在电力电子和电力控制中有广泛的应用。
然而,由于工作环境的恶劣和过电流、过压、过温等因素的影响,晶闸管很容易出现损坏。
为了及时准确地判断晶闸管的损坏原因,下面将介绍几种常见的晶闸管损坏原因的判别方法。
首先,晶闸管的损坏可以分为短路损坏和开路损坏。
短路损坏指的是晶闸管在工作时出现导通状态,无法关闭的情况,通常会引起过热现象。
开路损坏则是指当晶闸管工作时发生断电,无法导通的情况。
一、短路损坏的判别方法:1.观察晶闸管是否存在明显的外部损坏,如外部熔丝开断、烧焦、开裂等情况。
2.检查晶闸管的各个引脚是否存在短路现象,可以通过万用表等测试工具进行测试。
3.使用红外热像仪检测晶闸管的温度分布,如果部分温度异常高,则很可能是该部分短路导致的。
4.检查相应的电路电压是否超过晶闸管的额定工作电压,过高的电压容易导致晶闸管的击穿和短路。
二、开路损坏的判别方法:1.检查晶闸管的各个引脚是否存在断路现象,可以使用万用表等测试工具进行测试。
2.通过激励信号观察晶闸管的导通情况,如果无法导通则可能存在开路现象。
可以使用示波器等测试工具进行观察。
3.检查晶闸管的外壳是否变黑、熔化、变形等,这些现象可能是晶闸管在过流、过压等情况下发生瞬态过热导致的。
4.检查晶闸管工作的电路,检查是否存在开路的原因,如电源供电异常、外部保护电路故障等。
除了以上方法1.通过V-I特性曲线测试,观察晶闸管的正常工作点是否发生偏移。
如果工作点偏移较大,说明晶闸管可能存在故障。
2.使用暂态过电压测试仪测试晶闸管的过电压容限,判断是否发生击穿或过压故障。
3.使用电热继电器测试晶闸管的过电流容限,判断是否发生过流故障。
第四章晶闸管及其应用第一节晶闸管的构造、工作原理、特性和参数晶闸管—可控硅,是一种受控硅二极管。
优点:体积小、重量轻、耐压高、容量大、响应速度快、控制灵活、寿命长、使用维护方便。
缺点:大多工作与断续的非线性周期工作状态,产生大量谐波干扰电网;过载能力和抗扰能力较差、控制电路复杂。
(由于技术进步,近年有改善)1.1晶闸管的基本结构:晶闸管是具有三个PN结的四层结构,其外形、结构及符号如图。
1.2晶闸管的工作原理在极短时间内使两个三极管均饱和导通,此过程称触发导通。
晶闸管导通后,去掉EG ,依靠正反馈,仍可维持导通状态。
晶闸管导通必须同时具备两个条件:1. 晶闸管阳极电路(阳极与阴极之间)施加正向电压。
2. 晶闸管控制电路(控制极与阴极之间)加正向电压或正向脉冲(正向触发电压)。
晶闸管导通后,控制极便失去作用。
依靠正反馈,晶闸管仍可维持导通状态。
晶闸管关断的条件:1. 必须使可控硅阳极电流减小,直到正反馈效应不能维持。
2. 将阳极电源断开或者在晶闸管的阳极和阴极间加反向电压。
1.3晶闸管的伏安特性静态特性承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通;承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通;晶闸管一旦导通,门极就失去控制作用;要使晶闸管关断,只能使晶闸管的电流降到接近于零的某一数值以下。
晶闸管的阳极伏安特性是指晶闸管阳极电流和阳极电压之间的关系曲线,如图3所示。
其中:第I象限的是正向特性;第III象限的是反向特性图3 晶闸管阳极伏安特性I G2>I G1>I GI G=0时,器件两端施加正向电压,正向阻断状态,只有很小的正向漏电流流过,正向电压超过临界极限即正向转折电压U bo,则漏电流急剧增大,器件开通。
这种开通叫“硬开通”,一般不允许硬开通;随着门极电流幅值的增大,正向转折电压降低;导通后的晶闸管特性和二极管的正向特性相仿;晶闸管本身的压降很小,在1V左右;导通期间,如果门极电流为零,并且阳极电流降至接近于零的某一数值I H以下,则晶闸管又回到正向阻断状态。
晶闸管的工作原理
晶闸管又称为双向可控硅,是一种电力电子器件,具有双向触发和单
向导电的特点。
它广泛应用于电力电子控制、调节、转换和变换等领域。
首先是关断状态,当晶闸管两个控制极(即阳极和门极)之间的电压
低于它的阻断电压时,晶闸管将处于关断状态。
此时通过门极的控制电流
较小,晶闸管内部的p-n结处于正向偏置状态。
关断状态下,晶闸管不导电,内部不存在主电流。
当通过门极的电流超过晶闸管的触发电流,电压上升到一定程度时,
晶闸管将进入触发和导通状态。
在这个状态下,晶闸管内部的p-n结开始
在阳极和门极之间形成通道,这个过程称为触发。
一旦触发完成,晶闸管
将开始导电,内部主电流开始流动。
接下来是持续导通状态,晶闸管在触发完成之后将一直导通,直到主
电流降到零或改变触发方式。
在持续导通状态下,晶闸管有较低的电压降,表现出较小的功耗。
最后是关断状态,当主电流降到或小于零时,晶闸管将进入关断状态。
此时,电压在晶闸管的结上再次达到阻断电压,因此电流无法继续流动,
晶闸管停止导电。
需要注意的是,即使通过门极的电流消失,晶闸管仍会
处于导通状态,只有当主电流从阳极流过p-n结到达门极时,晶闸管才能
进入关断状态。
综上所述,晶闸管的工作原理是通过门极的控制电流和电压的变化来
控制晶闸管的导通和关断状态。
通过调节门极电流和触发方式,可以实现
晶闸管的灵活控制和应用于各种电力电子系统。
单元十三电力电子技术基础(教案)注:表格内黑体字格式为(黑体,小四号,1.25倍行距,居中)13.2晶闸管可控整流电路【教学过程】组织教学:1.检查出勤情况。
2.检查学生教材,习题册是否符合要求。
3.宣布上课。
引入新课:1.可控整流电路的作用是将交流电变换为电压大小可以调节的直流电,以供给直流用电设备,如直流电动机的转速控制、同步发电机的励磁调节、电镀和电解电源等,它主要利用晶闸管的单向导电性和可控性构成。
2.通过实物演示及列举实例,让学生了解桥式整流电路的原理及应用,从而激发他们的学习兴趣。
讲授新课:13.2晶闸管可控整流电路13.2.1整流电路可控整流电路的作用是将交流电变换为电压大小可以调节的直流电,以供给直流用电设备,如直流电动机的转速控制、同步发电机的励磁调节、电镀和电解电源等,它主要利用晶闸管的单向导电性和可控性构成。
13.2.1整流电路单相半波可控整流电路虽然具有电路简单、调整方便、使用元件少的优点,但却有整流电压脉动大、输出整流电流小的缺点。
比较常用的是半控桥式整流电路,简称半控桥,其电路如图13-2-1所示。
在变压器副边电压u的正半周(a端为正)时,T1和D2承受正向电压。
这时如对晶闸管T1引入触发信号,则T1和D2导通,电流的通路为a→T1→R L→D2→b图13-2-1 电阻性负载的单相半控桥式整流电路这时T2和D1都因承受反向电压而截止。
同样,在电压u的负半周时,T2和D1(讲解)(讲解)观看PPT:整流电路)承受正向电压。
这时,如对晶闸管T 2引入触发信号,则T 2和D 1导通,电流的通路为: b→T 2→R L →D 1→a图13-2-2 电阻性负载时单相半控桥式整流电路的电压与电流的波形这时T 1和D 2处于截止状态。
电压与电流的波形如图13-2-2所示。
桥式整流电路的输出电压的平均值为2cos 219.00a U U +⋅= (13-2-1)输出电流的平均值为2cos 19.000aR U R U I L L +⋅==(13-2-2) 13.2.2晶闸管的过电流、过电压保护1.晶闸管的过电流保护由于晶闸管的热容量很小,一旦发生过电流时,温度就会急剧上升而可能把PN 结烧坏,造成元件内部短路或开路。
晶闸管的过电压和过电流保护在电力电子电路中,为确保变流电路正常工作,除了适当选择电力电子器件参数、设计良好的驱动电路外,还要采用必要的保护措施,即过电压保护、过电流保护、du/dt及di/dt的限制。
晶闸管的过电压保护晶闸管的过电压能力极差,当元件承受的反向电压超过其反向击穿电压时,即使时间很短,也会造成元器件反向击穿损坏。
如果正向电压超过晶闸管的正向转折电压,会引起晶闸管硬开通,它不仅使电路工作失常,且多次硬开通后元器件正向转折电压要降低,甚至失去正向阻断能力而损坏。
因此必须抑制晶闸管上可能出现的过电压,采取过电压保护措施。
1.晶闸管关断过电压及其保护晶闸管从导通到阻断时,和开关电路一样,因线路电感(主要是变压器漏感)释放能量会产生过电压。
由于晶闸管在导通期间,载流子充满元件内部,所以元器件在关断过程中,正向电流下降到零时,元器件内部仍残存着载流子。
这些积蓄载流子在反向电压作用下瞬时出现较大的反向电流,使积蓄载流子迅速消失,这时反向电流减小的速度极快,即di/dt极大。
晶闸管关断过程中电流与管压降的变化如图1所示。
因此,即使和元器件串联的线路电感L很小,电感产生的感应电势L(di/dt)值仍很大,这个电势与电源电压串联,反向加在已恢复阻断的元器件上,可能导致晶闸管的反向击穿。
这种由于晶闸管关断引起的过电压,称为关断过电压,其数值可达工作电压峰值的5~6倍,所以必须采取抑制措施。
如图2(a)所示,晶闸管两端的电压波形在管子关断的瞬时出现反向电压尖峰(毛刺)即为关断过电压。
当整流器输出端接续流二极管时,续流二极管由导通转为截止的瞬间,也是立即承受反向电压的,所以同样会产生关断过电压,故对续流二极管也应采取过电压保护措施。
图1 晶闸管关断过程中电流与管压降的变化图2 晶闸管关断过电压波形对于这种呈尖峰状的瞬时过电压,最常用的保护方法是在晶闸管两端并联电容,利用电容两端电压瞬时不能突变的特性,吸收尖峰过电压,把电压限制在管子允许的范围。
晶闸管的相关知识分析晶闸管损坏原因当晶闸管损坏后需要检查分析其原因时,可把管芯从冷却套中取出,打开芯盒再取出芯片,观察其损坏后的痕迹,以判断是何原因。
下面介绍几种常见现象分析。
1、电压击穿。
晶闸管因不能承受电压而损坏,其芯片中有一个光洁的小孔,有时需用扩大镜才能看见。
其原因可能是管子本身耐压下降或被电路断开时产生的高电压击穿。
2、电流损坏。
电流损坏的痕迹特征是芯片被烧成一个凹坑,且粗糙,其位置在远离控制极上。
3电流上升率损坏。
其痕迹与电流损坏相同,而其位置在控制极附近或就在控制极上。
4、边缘损坏。
他发生在芯片外圆倒角处,有细小光洁小孔。
用放大镜可看到倒角面上有细细金属物划痕。
这是制造厂家安装不慎所造成的。
它导致电压击穿。
晶闸管应用指南一.参数说明1.参数表中所给出的数据,I TSM、I2t、dv/dt、di/dt指的是元件所能满足的最小值, Q r、V TM、V TO、r T指元件可满足(不超过)的最大值。
2.通态平均电流额定值I TAV(I FAV) I TAV(I FAV)指在双面冷却条件下,保证散热器温度55℃时,允许元件流过的最大正弦半波电流平均值。
I TAV(I FAV)对应元件额定有效值I RMS=1.57 I TAV。
实际使用中,若不能保证散热器温度低于55℃或散热器与元件接触热阻远大于规定值,则元件应降额使用。
3.晶闸管通态电流上升率di/dt参数表中所给的为元件通态电流上升率的临界重复值。
其对应不重复测试值为重复值的2倍以上,在使用过程中,必须保证元件导通期任何时候的电流上升率都不能超过其重复值。
4.晶闸管使用频率晶闸管可工作的最大频率由其工作时的电流脉冲宽度t p,关断时间t q以及从关断后承受正压开始至其再次开通的时间t V决定。
f max=1/(t q+t p+t V)。
根据工作频率选取元件时必须保证元件从正向电流过零至开始承受正压的时间间隔t H>t q,并留有一定的裕量。