织带抗拉强度不确定度
- 格式:doc
- 大小:151.50 KB
- 文档页数:6
热轧带肋钢筋的抗拉强度测量不确定度评定摘要:通过对热轧带肋钢筋的抗拉强度测量结果的误差分析,阐述钢筋抗拉强度测量时不确定度的来源因素,依据GB/T 1499.2-2018和JJF 1059.1-2012标准下,使用微机控制电液伺服万能试验机,对钢筋抗拉强度测量结果的不确定度进行详细的评定,计算钢筋抗拉强度测量的不确定度评定结果。
结果表明:钢筋抗拉强度测量结果为:取包含因子k=2, X=(435.6±6.12)Mpa。
关键词:热轧带肋钢筋,抗拉强度,不确定度,万能试验机Uncertainty Assessment of Measurement of the Hot rolled ribbedbars tensile strengthLi Zhao Tian* Du Chang(Jiang xi Provincial Product Quality Supervision Testing College,jiang xi,Nanchang 30029)Abstract:Through the error analysis of tensile strength measurement result of Hot rolled ribbed bars, the source factors in the uncertainty of tensile strength measurement were expounded. According to GB/T 1499.2-2018and JJF 1059.1-2012 standard, the measurement result in uncertainty of Hot rolled ribbed bars tensile strength was detailedly evaluated by use of universal tester. the measurement evaluation result in uncertainty of Hot rolled ribbed bars tensile strength was calculated.The results show that the measurement result of Hot rolled ribbed bars tensile strength X was(435.6±6.12)Mpa,and the coverage factor k was 2.Keywords: Hot rolled ribbed bars, ensile strength,uncertainty , universal tester热轧带肋钢筋以优良强度和焊接性能作为工民建筑和道路桥梁等混凝土工程的产品,抗拉强度是热轧带肋钢筋最基本的检测项目之一,通过检测初步了解其力学性能及其产品质量情况。
土工织物拉伸强度试验不确定度评定胡宁宁【摘要】本文根据水利部标准《土工合成材料测试规程》(SL 235—2012)对机织土工织物的拉伸强度进行测试,依据国家计量规范《测量不确定度的评定与表示》(JJF 1059.1—2012)对试验结果进行测量不确定度评估,对引起不确定度的来源进行分析并量化,求得扩展不确定度并给出不确定度分析结果.【期刊名称】《中国水能及电气化》【年(卷),期】2017(000)009【总页数】4页(P44-46,43)【关键词】土工织物;拉伸强度;不确定度;评定【作者】胡宁宁【作者单位】上海勘测设计研究院有限公司, 上海 200434【正文语种】中文【中图分类】TV49目前,土工合成材料作为国民生产中非常重要的一类材料,广泛应用于工业、交通、能源、农业、水利、环境和国土改造等领域[1]。
拉伸强度是反映其性能优劣的最重要的指标。
水利部标准《土工合成材料测试规程》(SL 235—2012)给出了该指标的具体测试方法[2],本文尝试利用该测试方法展开试验,并对试验结果的不确定度进行评定,给出符合计量技术规范的扩展不确定度报告及分析结果。
2.1 试验原理此次试验采用机织土工织物,将试样夹持在电子万能试验机上、下夹具内(见下图),在外加负荷不断增大时,试样开始破坏直至完全断裂。
2.2 试验步骤先将样品置于温度为(20±2)℃、相对湿度(60±10)%的环境中调温调湿24h。
此次试验采用窄条法,将已调温调湿过的样品裁取纵、横向各10块试样,每块试样长度不小于200mm,宽度60mm,在两边抽去大约相同数量的边纱,使试样宽度达到50mm。
试样上不得有影响试验结果的可见疵点。
此次试验在温度21℃、相对湿度64%的环境中进行。
校正仪器上、下夹具的隔距为100mm,设定拉伸速率为20mm/min。
将试样置于上、下夹具内,然后旋紧上、下夹具螺丝,启动万能试验机,待试样完全破坏,记录最大拉伸力值,并计算拉伸强度,以kN/m为单位。
测量不确定度的评定报告一、金属材料抗拉强度、断后伸长率和断面收缩率的试验概述试验采用万能材料试验机, 依据 GB /T228.1-2010《金属材料 拉伸试验 第1部分:室温试验方法》,对螺栓在室温下进行试验,以规定速率施加拉力,直至试样断裂,在同一试验条件下,试验共进行9次。
测得抗拉强度、断后伸长率和断面收缩率。
二、抗拉强度不确定度的评定:数学模型:()Rmv u rep u Fm u Rm u rel rel rel crel 222)()()(++=式中:Rm —— 抗拉强度; Fm —— 最大力; rep —— 重复性;Rmv ——拉伸速率对抗拉强度的影响;使用9个试样得到测量数值,结果见表1,试验标准偏差按贝塞尔公式计算:式中:批准/日期: 审核/日期: 制定/日期:测量不确定度的评定报告表1 重复性试验测量结果序号 抗拉强度 Mpa断后伸长率 %断面收缩率 %1 1344.7 6.9 52 2 1345.5 6.8 513 1346.6 6.8 514 1346.7 7.2 515 1347.0 7.1 526 1349.3 7.2 527 1354.5 6.9 538 1356.8 7.2 539 1360.4 7.1 51 平均值 1350.2 Mpa 7.02 % 51.78 % 标准偏差 5.64 Mpa 0.172 % 0.833 % 相对标准偏差0.418%2.45%1.609%2.1 A 类相对标准不确定度分量的评定: 评定三个试样测量平均值的不确定度: )(rep u rel =3%418.0=0.241 %2.2 最大力Fm 的B 类相对标准不确定度分量 )(Fm u rel 的评定: 试验机测力系统示值误差带来的相对标准不确定度)(Fm u rel 1.0级的拉力试验机示值误差为±1.0% ,按均匀分布考虑则 )(Fm u rel =3%0.1=0.577 %2.3 拉伸速率影响带来的相对标准不确定度分量)(Rmvu rel 试验得出,在拉伸速率变化范围内抗拉强度最大相差10Mpa,所以,拉伸速率对抗拉强度的影响是±5Mpa,按均匀性分布考虑:)(Rmv u =35= 2.877 )(Rmv urel =2.1350877.2= 0.21%批准/日期: 审核/日期: 制定/日期:测量不确定度的评定报告2.4 抗拉强度的合成相对不确定度:()Rmv u rep u Fm u Rm u rel rel rel crel 222)()()(++==222%)21.0(%)577.0(%)241.0(++=0.66 %2.5 抗拉强度的扩展相对不确定度: 取包含概率p = 95%,按k =2: )(*)(m m R u k R U rel rel ==2X0.66%=1.32%三、断后伸长率不确定度的评定:数学模型:断后伸长(Lu-Lo )的测量应准确到±0.25mm 。
抗拉强度测量结果的不确定度评定1、测量依据GB/T228.1-2010《金属材料拉伸试验第1部分:室温试验方法》2、试验设备电子万能试验机,型号:QJ212,(0~200)kN,准度度等级:0.5级。
数显卡尺,(0~150)mm,分度值0.01mm。
3、数学模型R m=F m a×b式中:R m——抗拉强度,MPa;F m——试样在屈服阶段之后所能抵抗的最大力,N;a——试样厚度,mm;b——试样宽度,mm。
4、抗拉强度不确定度分量的来源拉力引起的不确定度分量u1﹔试样厚度引起的不确定度分量u2﹔试样宽度引起的不确定度分量u3﹔抗拉结果的重复性引人的不确定度u4﹔数据修约引起的不确定度分量u5。
5、标准不确定度分量的评定5.1 拉力引起的不确定度分量u1依据QJ212电子万能试验机电子万能试验机的检定证书提供准度度符合0.5级,则其相对标准不确定度为:u rel1=0.5%。
5.2 试样厚度引起的不确定度分量u2根据数显卡尺的校准证书提供测量结果不确定度U=0.01mm,k=2,则:u2=U2=0.005mm同一试样测量3次数据为5.05mm、5.04mm、5.00mm,取3次结果的算数平均值5.03mm 为测量结果。
其相对标准不确定度为:u rel2=u√3×5.03=0.06%5.3 试样宽度引起的不确定度分量u3由于宽度测量同厚度测量使用同一设备,那么:u3=u2=0.005mm同一试样测量3次数据为19.82mm、19.69mm、19.88mm,取3次结果的算数平均值19.80mm为测量结果。
其相对标准不确定度为:u rel3=u √3×19.80=0.01%5.4抗拉结果的重复性引人的不确定度u 4同一块板材上按同一方向均匀截取10片试样进行抗拉试验,所有试样的切割边缘统一进行去硬化处理以消除样品制备对抗拉强度的影响。
进行抗拉试验,结果如下:580MPa 、 585MPa 、585MPa 、590MPa 、580MPa 、 590MPa 、 580MPa 、590MPa 、590MPa 、590MPa 。
金属材料的抗拉强度断后伸长率和断面收缩率的不确定度评定抗拉强度是指材料在拉伸过程中抵抗拉力的能力。
对于金属材料的抗拉强度,其不确定度评定主要包括以下几个方面:1.采样样品选择不确定度:抗拉强度是对材料整体性能的反映,因此选取样品时需要考虑材料的均匀性和代表性。
样品的几何形状、尺寸和制备工艺等都会对抗拉强度的测试结果产生影响。
2.设备精度不确定度:抗拉强度测试需要使用专用的拉伸试验机,该设备的精度对测试结果会产生影响。
因此,在开展抗拉强度测试时需要校准设备,并确保测试设备的稳定性和准确性。
3.试验过程中的操作不确定度:抗拉强度的测试需要在一定的试验条件下进行,包括温度、速度等方面的控制。
试验中操作人员的技术水平和经验也会对抗拉强度测试结果的准确性产生影响。
4.统计分析方法的不确定度:抗拉强度的测试结果需要进行统计分析,并计算平均值和标准差等统计参数。
统计分析方法的选择和数据处理的准确性会对抗拉强度的不确定度评定产生影响。
以上是抗拉强度的不确定度评定的主要方面,通过合理的样品选择、设备校准和操作规范等措施可以降低抗拉强度测试的不确定度。
断后伸长率和断面收缩率是评估材料的延展性和塑性的重要指标。
对于断后伸长率和断面收缩率的不确定度评定,主要包括以下几个方面:1.断裂形态的不确定度:断后伸长率和断面收缩率是在材料断裂后对样品进行测量得到的。
在实际测试中,材料的断裂形态受到多种因素的影响,包括材料组织、应力状态、试验温度等。
因此,在进行断后伸长率和断面收缩率测试时,需要结合材料的断裂形态进行评估,以减小测试结果的不确定度。
2.测试方法的不确定度:断后伸长率和断面收缩率的测试需要依靠一定的试验方法和设备。
测试方法的选择和设备的精度会对测试结果产生影响。
因此,在进行测试时需要选择适合的测试方法,并确保测试设备的准确性和稳定性。
3.试验数据的处理不确定度:断后伸长率和断面收缩率的测试结果需要进行数据处理和统计分析。
钢管抗拉强度试验结果的不确定度评定1、 目的:对圆钢抗拉强度试验结果进行不确定评定,以得到抗拉强度实际不确定度。
2、方法:从一根钢管(规格Φ114mm ×3.75,牌号Q235)上,取10段长度为35cm 进行抗拉强度试验,按测量不确定度评定程序试验结果作不确定度评定。
抗拉试验前,在钢管上测量其直径,取114mm 上的最小值,后计算其抗拉强度。
(金属材料 室温拉伸试验方法 GB/T 228-2002)3、 计算公式: U c 2(R m )=U 2(AF)+U 2(△x ) 3.1 R m =f m /S 0 S 0=ab (1+b 2/6D (D-2a ))R m 表示抗拉强度,S 0表示最大拉力,D 表示直径,a 表示壁厚,b 表示宽度25mm 。
4、 求平均值:有附表所列钢管抗拉强度实验结果,求得10次抗拉强度平均值。
R m = 425.34MPa ,修约后R m = 425MPa 。
5、 不确定度来源:5.1、被测材料:从同钢管上抽样,避免不同钢管带来的不确定度;试样的不均匀性可有重复试验反映。
5.2、检测人员:尺寸、抗拉强度都有同一人操作,可消除有人员带来的不确定度;读数误差可有多次实验包含。
5.3、检测设备:液压式万能试验机(编号YCZJ-03):最大示值600kN ,示值误差不超过±1%,最大变动值为0.24% , U 1=KN k a 510.0234.425%24.0=⨯= 不确定度为0.510KN ( K=2 )5.4、拉伸速度:拉伸速度对检测结果有一定影响,本次实验有一人操作,保持恒定的速率,通过重复实验反映检测值。
5.5 重复性影响,重复性影响是通过多次重复测量来评定的。
包括人员操作的重复性,试验机的重复性,样品的不均匀性等因素,测量次数n=10,单次测量的标准偏差为S (F )=0.6KN ,则U 2=KN F s 424.026.02)(==5.6 读数误差的影响,人工读数可以估计到分度值的五分之一即0.4KN ,不确定度按均匀分布考虑U 3=KN d k a 23.034.0==5.6、环境条件:实验室温湿度对实验结果影响较小,可忽略不计。
钢筋抗拉强度检测结果不确定度的探讨分析摘要:为全面提升钢筋抗拉强度检测准确性,要全面分析造成试验分析误差的原因,从而更好地评估具体参数,以便于能更好地维持钢筋应用质量效果,减少质量处理不当造成的安全隐患。
本文介绍了钢筋抗拉强度检测结果不确定度产生的原因,并对钢筋抗拉强度检测结果不确定度评定内容展开讨论。
关键词:钢筋抗拉强度检测;不确定度;原因;评定随着建筑工程项目的不断发展,钢筋作为主要施工材料,其质量受到了更多的关注,在工程开始前要落实规范化检测流程,只有各项基数满足检验标准才能投入使用,维持整体建筑工程项目安全性,实现经济效益和安全效益和谐统一的目标。
一、钢筋抗拉强度检测结果不确定度产生原因在钢筋抗拉强度检测工序中,拉伸试验能有效完成金属材料质量评定检测,但是,在实际测试过程中,却也存在一些外界影响因素,制约钢筋抗拉强度检测结果的准确性。
(一)取样和试样制备对于钢筋抗拉强度检测工作而言,取样工作是非常关键的环节,任何作业中存在的异常现象都会对最终的检测结果形成作用,出现不确定度。
第一,取样的位置会对最终的检测结果产生不同程度的影响,由于钢筋结构铸造过程中存在工艺缺陷或者是分布不均匀等问题,使得加工变形现象较为常见,此时,就会造成钢筋结构不同位置的力学性能存在差异,就算是同一个位置进行取样,不同取样方向也会影响最终的力学性能检测结果[1]。
第二,试样的尺寸和形状,正是因为金属材料截面位置的差异性,使得检测结果也存在一定的差异。
第三,试样制备过程,试样制备要完成样坯切取处理,要预防力学性能受热或者是加工硬化造成的变形问题,所以,取样要选取同批次的钢筋,并且避开钢筋结构的两端,尽量选取中间位置,才能真正突出试验检测分析数据的代表性。
(二)试验设备和仪器主要是从钢筋抗拉强度试验设备以及试验测试仪器两个方面进行分析。
1.试验设备在钢筋抗拉强度检测过程中,一般会应用万能试验机完成作业,一旦操作中出现试样夹取位置偏移、弯曲、不平直等情况,都会造成受力不同轴现象,形成试验误差。
关于钢筋抗拉强度检测中的误差及不确定度分析张淮【摘要】首先对钢筋抗拉强度检测中的误差进行了简要分析,然后阐述了不确定度及其与误差之间的关系,在此基础上,以HRB400钢筋作为研究对象,对钢筋抗拉强度检测中不确定度的评定进行论述.期望通过文章的研究能够对钢筋抗拉强度检测结果准确性的提高有所帮助.【期刊名称】《安徽建筑》【年(卷),期】2016(023)003【总页数】3页(P268-270)【关键词】钢筋;抗拉强度检测;误差;不确定度【作者】张淮【作者单位】黄山市建设工程质量监督检测中心,安徽黄山245000【正文语种】中文【中图分类】TU502不确定度的概念是在20世纪60年代初期由美国标准局的一位数理统计学专家提出的,这一概念提出后,受到了各国的普遍关注。
上个世纪80年代国际计量局发出了采用不确定度评定测量结果的建议书,其要求在出具测量结果时,应当给出合成标准的不确定度,自此各国在开展检测工作时,均开始引入不确定的概念。
基于此点,下面本文就钢筋抗拉强度检测中的误差及不确定度展开研究。
钢筋是建筑工程施工建设中使用较多的一种材料,常被用于钢混结构及钢筋笼绑扎当中,抗拉强度是钢筋性能的一个关键技术指标,一般在使用之前,需要对该指标进行检测。
对于钢筋的抗拉强度检测而言,整个过程会受到各种因素的影响,从而不可避免地会使检测结果产生一定的误差,大致可将检测中的误差分为以下几种类型。
1.1 系统误差这种类型的误差具体是指对某一个相同的物理量进行2次或以上的同等精度的测量时,误差始终保持恒定不变的状态,或是以特定的规律发生变化,具体而言,系统误差有着某种确定性,但是在实际测量中却无法有效消除,也就是说,此类误差会伴随着测量过程一直存在。
1.2 随机误差随机误差具体是指在对某一个相同的物理量进行2次或以上的测量过程中,所产生出来的误差的大小不一致,并且没有任何变化规律,有着显著的随机性特点,所以必须通过尽可能多的测量次数来使误差减小到最低程度。
热轧带肋钢筋抗拉强度测量结果不确定度的评定【摘要】取公称直径20mm的热轧带肋钢筋按照GB/T228.1-2010标准重复进行10次拉伸试验,求得抗拉强度。
分析其引起的不确定度分量,然后合成标准不确定度和扩展不确定度,最后获得抗拉强度的测量结果不确定度报告。
【关键词】:最大力原始截面积抗拉强度不确定度分量相对标准不确定度相对合成不确定度扩展不确定度1、前言《金属材料拉伸试验第1部分:室温试验方法》GB/T228.1-2010标准于2011年12月1日实施变更。
新标准对金属材料拉伸试验测量结果不确定度的评定提出了新的要求。
本文就该标准的要求以热轧带肋钢筋为例,进行抗拉强度结果不确定度的评定。
测量原理2.1测量对象取公称直径为20mm牌号为HRB400符合标准GB/T1499.2-2007的热轧带肋钢筋进行试验。
2.2试验方法标准《金属材料拉伸试验第1部分:室温试验方法》GB/T228.1-20102.3仪器设备电子拉力机2.4环境条件2.5测量过程取公称直径为20mm牌号为HRB400符合标准GB/T1499.2-2007的热轧带肋钢筋10个试样,进行拉伸试验。
记录试样直径、原始截面积、最大力与抗拉强度。
试验结果取10个试样的算术平均值。
具体数据见表一、重复性试验测量结果表一、重复性试验测量结果序号试样直径d(mm)原始截面积S0(mm2)最大力Fm(kN)抗拉强度Rm(Mpa)1 20.00 314.0 188.0 5992 20.08 316.5 187.9 5943 19.98 313.4 182.7 5834 20.04 315.2 183.1 5815 20.00 314.0 186.5 5946 19.96 312.7 185.3 5927 19.96 312.7 184.9 5918 20.02 314.6 184.0 5859 19.98 313.4 188.9 60310 20.00 314.0 189.0 602平均值592标准偏差si 2.3相对标准偏差0.389% 评定步骤3.1数学模型Rm=其中:Rm为抗拉强度,单位为Mpa;Fm为最大力,单位为kN;S0为原始横截面积,单位为mm2。
纺织品纤维机械检测方法及不确定度分析纤维在纺织品中起到决定性的作用,而纤维机械检测方法则可以帮助
确定纺织品的质量和性能。
本文将探讨纺织品纤维机械检测方法及不确定
度分析。
1.纤维长度测定:纤维长度是纺织品强度和柔软度的重要指标之一、
纤维长度的测定通常使用光学显微镜或自动纤维长度测定仪来完成。
该方
法通过测量一定数量的纤维的长度,并计算出平均长度来评估纤维的长度
分布。
2.纤维直径测定:纤维直径也是纺织品性能的关键参数之一、常用的
纤维直径测定方法包括显微镜观察和纤维直径分析仪测量。
纤维直径的测
定可以帮助评估纤维的柔软性和细度,并对织物的强度和外观质量进行预测。
3.纤维抗拉强度测定:纤维抗拉强度是评估纤维的强度和韧性的关键
参数。
常用的纤维抗拉强度测定方法包括万能材料试验机测试和单纤维抗
拉试验。
这些方法通过施加一定的拉力来破坏测试样本,并记录所需的力
和位移来计算纤维的抗拉强度。
4.纤维弹性模量测定:纤维的弹性模量是衡量纤维刚度和回弹性的指标。
常用的纤维弹性模量测定方法包括张力-变形测试和纳米压痕仪测量。
这些方法通过施加不同的压力或拉伸来测定纤维的应变,以计算出纤维的
弹性模量。
在纤维机械检测中,不确定度分析可以通过以下步骤完成:。