北师大版 平行关系的判定
- 格式:ppt
- 大小:2.53 MB
- 文档页数:30
北师大版七下数学2.2.2探索直线平行的条件教案一. 教材分析《北师大版七下数学》2.2.2探索直线平行的条件是学生在学习了直线、射线、线段的基本概念后,进一步研究直线平行的性质。
这部分内容是整个初中数学的重要基础,对于学生理解几何图形、解决实际问题具有重要意义。
通过本节课的学习,学生将掌握直线平行的判定方法,为后续学习平行线的性质打下基础。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和空间想象能力,他们对直线、射线、线段有了初步的认识。
但部分学生在理解概念和定理时,仍存在一定的困难。
因此,在教学过程中,教师要关注学生的个体差异,引导他们通过观察、操作、思考、交流、归纳等途径,发现并理解直线平行的条件。
三. 教学目标1.知识与技能:使学生掌握直线平行的判定方法,能够运用平行线的性质解决简单问题。
2.过程与方法:培养学生观察、操作、思考、交流的能力,提高空间想象能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、积极进取的精神。
四. 教学重难点1.重点:直线平行的判定方法。
2.难点:理解直线平行条件的推导过程,能够灵活运用平行线的性质解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入直线平行的概念,激发学生学习兴趣。
2.启发式教学法:引导学生观察、操作、思考,发现直线平行的判定方法。
3.合作学习法:分组讨论,培养学生的团队协作能力和沟通能力。
4.巩固练习法:通过适量练习,巩固所学知识,提高运用能力。
六. 教学准备1.教具:直尺、三角板、多媒体课件。
2.学具:每人一份直线平行的实验器材。
七. 教学过程1.导入(5分钟)利用生活实例,如操场上的跑道、书桌上的直线等,引导学生回顾直线、射线、线段的概念,为新课学习做好铺垫。
2.呈现(10分钟)呈现直线平行的实验,让学生观察、操作,引导他们发现直线平行的条件。
3.操练(10分钟)分组讨论,让学生用自己的语言描述直线平行的条件,并进行实验验证。
§5平行关系5.1 平行关系的判定问题导学1.对平行关系的理解活动与探究1判断下列给出的各种说法是否正确?(1)如果直线a和平面α不相交,那么a∥α;(2)如果直线a∥平面α,直线b∥a,那么b∥α;(3)如果直线a∥平面α,那么经过直线a的平面β∥α;(4)如果平面α内的两条相交直线a和b与平面β内的两条相交直线a′和b′分别平行,那么α∥β.迁移与应用1.下列叙述中,正确的是().A.若直线l平行于平面α内的无数条直线,则l∥αB.若直线a在平面α外,则a∥αC.若直线a∥b,直线bα,则a∥αD.若直线a∥b,bα,那么直线a平行于平面α内的无数条直线2.两个平面平行的条件是().A.一个平面内的一条直线平行于另一平面B.一个平面内有两条直线平行于另一平面C.一个平面内有无数条直线平行于另一个平面D.一个平面内任何一条直线平行于另一个平面1.要全面、深刻地理解线面平行、面面平行的判定定理,运用这两个定理证明问题或判断分析结论是否正确时,一定要紧扣两个定理的条件,忽视条件,很容易导致判断错误.2.在判断一些命题的真假时,要善于列举反例来否定一个命题,要充分考虑线线关系、线面关系、面面关系中的各种情形,以对一个命题的真假作出合理的判断.2.直线与平面平行的判定活动与探究2如右图,在正方体ABCD-A1B1C1D1中,M∈AD1,N∈BD,且D1M=DN,求证:MN ∥平面CC1D1D.迁移与应用1.如图,P是平行四边形ABCD所在平面外一点,Q是PA的中点,求证:PC∥平面BDQ.2.如图所示,在四棱锥S-ABCD中,底面ABCD为平行四边形,E,F分别为AB,SC的中点.求证:EF∥平面SAD.证明直线与平面平行的关键是设法在平面内找到一条与已知直线平行的直线.把握几何体的结构特征,合理利用几何体中的三角形的中位线,平行四边形对边平行等平面图形的特点找线线平行关系是常用方法.3.平面与平面平行的判定活动与探究3如图,已知四棱锥P-ABCD中,底面ABCD为平行四边形,点M,N,Q分别在PA,BD,PD上,且PM∶MA=BN∶ND=PQ∶QD.求证:平面MNQ∥平面PBC.迁移与应用如图,在棱长为a的正方体ABCD-A1B1C1D1中,E,F,G分别是CB,CD,CC1的中点.求证:平面AB1D1∥平面EFG.证明面面平行的基本思想是将面面平行转化为线面平行,其基本步骤是:线线平行⇒线面平行⇒面面平行.但必须注意的是:在其中一个面内找到的两条直线必须是相交直线,且这两条相交直线都与另一个平面平行时,这两个平面才平行.当堂检测1.若一个平面内的两条直线分别平行于另一个平面内的两条直线,则这两个平面的位置关系是().A.一定平行B.一定相交C.平行或相交D.以上都不对2.A,B是不在直线l上的两点,则过点A,B且与直线l平行的平面的个数是().A.0B.1C.无数D.以上三种情况均有可能3.梯形ABCD中,AB∥CD,ABα,CDα,则直线CD与平面α的位置关系是__________.4.如图,在四棱锥P-ABCD中,底面ABCD是矩形,E,F分别是PB,PC的中点.证明EF∥平面PAD.5.如图所示,在正方体ABCD-A1B1C1D1中,M,N,E,F分别是棱A1B1,A1D1,B1C1,C1D1的中点.求证:平面AMN∥平面EFDB.提示:用最精练的语言把你当堂掌握的核心知识的精华部分和基本技能的要领部分写下来并进行识记.课前预习导学预习导引1.(1)一条直线平行预习交流1提示:直线a平面α是指a∥α或a与α相交.预习交流2提示:不正确.不符合线面平行的判定定理,只有当直线l在平面α外,且与平面α内的一条直线平行时,直线l才与平面平行.预习交流3提示:(1)线面平行的判定定理表明可以通过直线间的平行,推证直线与平面平行.这是处理空间问题的一种常用方法,即将直线与平面的平行关系转化为直线与直线的平行关系,把空间问题平面化.(2)线面平行的判定定理在使用时三个条件缺一不可:①直线a不在平面α内,即aα;②直线b在平面α内,即bα;③两条直线a,b平行,即a∥b.2.(1)两条相交直线预习交流4提示:不一定,平面α与平面β相交或平行.预习交流5提示:一定平行.由直线与平面平行的判定定理知,平面α内的两条相交直线与平面β都平行,再由面面平行的判定定理可得α∥β.课堂合作探究问题导学活动与探究1思路分析:按照线面平行、面面平行的定义及判定定理对每个命题进行分析判断,得出其是否正确.解:(1)不正确.当直线a和平面α不相交时,可能有aα,不一定有a∥α;(2)不正确.当直线b∥a时,如果bα,则有b∥α,如果bα,则没有b∥α;(3)不正确.当a∥α时,经过直线a的平面β可能与α平行,也可能与α相交;(4)正确.由线面平行的判定定理,知a∥β,b∥β,且a,bα,a与b相交,所以必有α∥β.迁移与应用1.D解析:当a∥b,bα时,不论a∥α还是aα,a都平行于平面α内的无数条直线,故选项D正确.2.D解析:因一个平面内任何一条直线平行于另一个平面,可在这个平面内选两条相交直线,则这两条相交直线都与另一平面平行,由平面与平面平行的判定定理可得两个平面平行.活动与探究2思路分析:要证MN∥平面CC1D1D,只需证明MN平行于平面CC1D1D 中的一条直线即可.证明:方法一:连接AN并延长,交直线CD于E,连接D1E.∵AB ∥CD , ∴AN NE =BN ND ⇒AE NE =BD ND. ∵BD =AD 1,且D 1M =DN , ∴AE EN =AD 1MD 1. 在△AD 1E 中,MN ∥D 1E , 又MN平面CC 1D 1D ,D 1E平面CC 1D 1D ,∴MN ∥平面CC 1D 1D .方法二:过点M 作MP ∥AD ,交DD 1于P ,过点N 作NQ ∥AD 交CD 于点Q ,连接PQ , 则MP ∥NQ ,在△D 1AD 中,MP AD =D 1MD 1A .∵NQ ∥AD ,AD ∥BC , ∴NQ ∥BC .在△DBC 中,NQ BC =DNDB,∵D 1M =DN ,D 1A =DB ,AD =BC ,∴NQ =MP . ∴四边形MNQP 为平行四边形,则MN∥PQ.而MN平面CC 1D1D,PQ平面CC1D1D,∴MN∥平面CC1D1D.迁移与应用1.证明:连接AC交BD于O,连接QO.∵四边形ABCD是平行四边形,∴O为AC的中点.又Q为PA的中点,∴QO∥PC.显然QO平面BDQ,PC平面BDQ,∴PC∥平面BDQ.2.证明:作FG∥DC交SD于点G,则G为SD的中点.连接AG,FG12CD,又CD AB,且E为AB的中点,故FG AE,四边形AEFG为平行四边形.∴EF∥AG.又∵AG平面SAD,EF平面SAD,∴EF∥平面SAD.活动与探究3思路分析:在平面MNQ内找到两条相交直线与平面PBC平行,条件中给出了线段比相等,故可利用平行线截线段成比例的性质证得线线平行,再转化为线面平行,然后根据面面平行的判定定理证明.证明:在△PAD中,∵PM∶MA=PQ∶QD,∴MQ∥AD.又∵AD∥BC,∴MQ∥BC.∵MQ平面PBC,BC平面PBC,∴MQ∥平面PBC.在△PBD中,∵BN∶ND=PQ∶QD,∴NQ∥PB.∵NQ平面PBC,PB平面PBC,∴NQ∥平面PBC.∵MQ∩NQ=Q,∴平面MNQ∥平面PBC.迁移与应用证明:在正方体ABCD-A1B1C1D1中,连接BD,∵DD1∥B1B,DD1=B1B,∴四边形DD1B1B为平行四边形,∴D1B1∥DB.∵E,F分别为BC,CD的中点,∴EF∥BD,∴EF∥D1B1.∵EF平面EFG,D1B1平面EFG,∴D1B1∥平面EFG.同理AB1∥平面EFG.∵D1B1∩AB1=B1,∴平面AB1D1∥平面EFG.当堂检测1.C2.D3.平行4.证明:在△PBC中,∵E,F分别是PB,PC的中点,∴EF∥BC.∵四边形ABCD为矩形,∴BC∥AD,∴EF∥AD.又∵AD平面PAD,EF平面PAD,∴EF∥平面PAD.5.证明:如图所示,连接MF.∵M,F分别是A1B1,C1D1的中点,且四边形A1B1C1D1为正方形,∴MF∥A1D1,且MF=A1D1.又∵A1D1=AD,且AD∥A1D1,∴MF=AD,且MF∥AD.∴四边形AMFD是平行四边形,∴AM∥DF.又DF平面EFDB,AM平面EFDB,∴AM∥平面EFDB.同理可证,AN∥平面EFDB.又AN,AM平面AMN,AM∩AN=A,∴平面AMN∥平面EFDB.。
专题2.3 平行线的性质-重难点题型【北师大版】【题型1 两直线平行同位角相等】【例1】(2021春•环江县期末)如图,a∥b,∠1=60°,则∠2的大小是( )A.60°B.80°C.100°D.120°【解题思路】根据同位角相等,两直线平行即可求解.【解答过程】解:如图:因为a∥b,∠1=60°,所以∠3=∠1=60°.因为∠2+∠3=180°,所以∠2=180°﹣60°=120°.故选:D.【变式1-1】(2021秋•长沙期中)如图,点D,E分别在∠ABC的边BA,BC上,DE⊥AB,过BA上的点F(位于点D上方)作FG∥BC,若∠AFG=42°,则∠DEB的度数为( )A.42°B.48°C.52°D.58°【解题思路】根据FG∥BC,得∠DBE=∠AFG=42°,由DE⊥AB,得∠BDE=90°,由∠DEB=180°﹣∠DBE﹣∠BDE即可解答.【解答过程】解:∵FG∥BC,∠AFG=42°,∴∠DBE=∠AFG=42°,∵DE⊥AB,∴∠BDE=90°,∴∠DEB=180°﹣∠DBE﹣∠BDE=180°﹣42°﹣90°=48°.故选:B.【变式1-2】(2021春•萝北县期末)如图,将三角板的直角顶点放在直尺的一边上,如果∠1=65°,那么∠2的度数为( )A.15度B.30度C.25度D.65度【解题思路】利用平行线的性质可得∠3的度数,再利用平角定义可得∠2的度数.【解答过程】解:∵a∥b,∴∠1=∠3=65°,∵∠4=90°,∴∠2=180°﹣90°﹣65°=25°,故选:C.【变式1-3】(2021•临沭县模拟)如图,已知AB∥CD,∠A=56°,∠E=18°,则∠C的度数是( )A.32°B.34°C.36°D.38°【解题思路】设AE与CD交于点O,由AB∥CD,利用“两直线平行,同位角相等”可得出∠DOE的度数,再利用三角形内角和,即可求出∠C的度数.【解答过程】解:设AE与CD交于点O,如图所示:∵AB∥CD,∠A=56°,∴∠DOE=∠A=56°.∵∠DOE=∠C+∠E,∠E=18°,∴∠C=∠DOE﹣∠E=56°﹣18°=38°.故选:D.【题型2 两直线平行内错角相等】【例2】(2021春•宁阳县期末)如图,CD是∠ACB的平分线,∠ACB=82°,∠B=48°,DE∥BC.求∠EDC和∠BDC的度数.【解题思路】由平分线的性质可得∠BCD的大小,又由平行线及三角形内角和定理可得∠EDC和∠BDC 的大小.【解答过程】解:∵CD是∠ACB的平分线,∠ACB=82°,∴∠DCB=∠ACD=41°,又∵DE∥BC,∴∠EDC=∠DCB=41°,在△BCD中,∵∠B=48°,∠DCB=41°,∴∠BDC=180°﹣48°﹣41°=91°.∴∠EDC和∠BDC的度数分别为41°、91°.【变式2-1】(2021春•沂水县期末)如图,AB∥CD,BD⊥CF,垂足为B,∠ABF=35°,则∠BDC的度数为( )A.25°B.35°C.45°D.55°【解题思路】根据BD⊥CF,得到∠DBA=90°﹣∠ABF=55°,根据AB∥CD,即可得∠BDC的度数.【解答过程】解:∵BD⊥CF,∴∠DBF=90°,∵∠ABF=35°,∴∠DBA=90°﹣∠ABF=55°,∵AB∥CD,∴∠BDC=∠DBA=55°.故选:D.【变式2-2】(2021秋•凤山县期中)如图,若要使l1与l2平行,则l1绕点O至少旋转的度数是( )A.38°B.42°C.80°D.138°【解题思路】根据平行线的性质,可以得到若要使l1与l2平行,则∠1和∠2相等,再根据∠2的度数和图形中原来∠1的度数,从而可以得到若要使l1与l2平行,则l1绕点O至少旋转的度数.【解答过程】解:若l1与l2平行,则∠1和∠2相等,∵∠2=42°,∴∠1=42°,∴若要使l1与l2平行,则l1绕点O至少旋转的度数是80°﹣42°=38°,故选:A.【变式2-3】(2021•中原区校级开学)填空:(将下面的推理过程及依据补充完整)如图,已知:CD平分∠ACB,AC∥DE、CD∥EF,求证:EF平分∠DEB.证明:∵CD平分∠ACB(已知),∴∠DCA= ∠DCE (角平分线的定义),∵AC∥DE(已知),∴∠DCA=( ∠CDE ),∴∠DCE=∠CDE(等量代换),∵CD∥EF( 已知 ),∴ ∠DEF =∠CDE( 两直线平行,内错角相等 ),∠DCE=∠BEF( 两直线平行,同位角相等 ),∴ ∠DEF = ∠FEB (等量代换).∴EF平分∠DEB( 角平分线的定义 ).【解题思路】根据平行线的性质和平行线的判定及等量代换等来完成解答即可.【解答过程】证明:∵CD平分∠ACB(已知),∴∠DCA=∠DCE(角平分线的定义),∵AC∥DE(已知),∴∠DCA=∠CDE(两直线平行,内错角相等),∴∠DCE=∠CDE(等量代换),∵CD∥EF(已知),∴∠DEF=∠CDE(两直线平行,内错角相等),∠DCE=∠FEB(两直线平行,同位角相等),∴∠DEF=∠FEB(等量代换),∴EF平分∠DEB(角平分线的定义).故答案为:∠DCE;∠CDE,已知,∠DEF,两直线平行,内错角相等;两直线平行,同位角相等;∠DEF;∠FEB;角平分线的定义.【题型3 两直线平行同旁内角互补】【例3】(2021春•椒江区期末)如图,AB∥CD,AB∥GE,∠B=110°,∠C=100°.∠BFC等于多少度?为什么?【解题思路】由AB∥CD,AB∥GE得CD∥GE,根据两直线平行,同旁内角互补得到∠B+∠BFG=180°,∠C+∠CFE=180°,而∠B=110°,∠C=100°,可以求出∠BFG和∠CFE,最后可以求出∠BFC.【解答过程】解:∠BFC等于30度,理由如下:∵AB∥GE,∴∠B+∠BFG=180°,∵∠B=110°,∴∠BFG=180°﹣110°=70°,∵AB∥CD,AB∥GE,∴CD∥GE,∴∠C+∠CFE=180°,∵∠C=100°.∴∠CFE=180°﹣100°=80°,∴∠BFC=180°﹣∠BFG﹣∠CFE=180°﹣70°﹣80°=30°.【变式3-1】(2021秋•北碚区校级期末)如图,AB∥CD,CD∥EF,∠1=∠2=60°,∠A和∠E各是多少度?它们相等吗?【解题思路】先根据AB∥CD得出∠A的度数,再由CD∥EF求出∠E的度数,进而可得出结论.【解答过程】解:∵AB∥CD(已知),∴∠A=180°﹣∠1=180°﹣60°=120°(两直线平行,同旁内角互补).∵CD∥EF(已知),∴∠E=180°﹣∠2=180°﹣60°=120°,∴∠A=∠E.∴∠A和∠E都是120度,它们相等.【变式3-2】(2021•怀宁县模拟)如图,将一块含有30°角的直角三角板的两个顶点分别放在直尺的两条平行对边上,若∠β=85°,则α等于( )A.155°B.145°C.135°D.125°【解题思路】直接利用平行线的性质以及含有30°角的直角三角板的特征进而得出答案.【解答过程】解:如图:根据题意得∠2=60°,∠β=85°,∵∠2=60°,∠1+∠2+∠β=180°,∴∠1=180°﹣∠2﹣∠β=180°﹣60°﹣85°=35°,∵AB∥CD,∴∠α+∠1=180°,∴∠α=180°﹣∠1=180°﹣35°=145°.故选:B.【变式3-3】(2021春•汉阳区期中)如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=3∠BCF,∠ACF =20°,(1)求∠DAC的度数.(2)求∠FEC的度数.(3)当∠B为多少度时,∠BAC=3∠B?并说明此时AB与AC的位置关系.【解题思路】(1)直接利用角平分线的定义结合平行线的性质得出答案;(2)利用已知得出EF∥CB,进而得出答案;(3)利用∠BAC=3∠B,利用平行线的性质得出∠B=30°,即可得出答案.【解答过程】解:(1)∵CE平分∠BCF,∴设∠BCE=∠FCE=x,∵∠DAC=3∠BCF,∴∠DAC=6x,∵AD∥BC,∴∠DAC+∠BCA=180°,∴6x+2x+20°=180°,∴x=20°,∴∠DAC=120°;(2)∵EF∥AD,AD∥BC,∴EF∥CB,∴∠FEC=∠BCE=20°;(3)当∠B=30°时,∵AD∥BC,∴∠DAB=∠B,又∵∠BAC=3∠B,∴∠DAC=4∠B=120°,∴∠B=30°,∴∠BAC=90°,∴AB⊥AC.【题型4 平行线的判定与性质的综合应用】【例4】(2021春•江油市期中)如图,直线EF分别与直线AB,CD相交于点G,H,已知∠1=∠2=50°,GM平分∠HGB交直线CD于点M,则∠GMD=( )A.120°B.115°C.130°D.110°【解题思路】求出∠BGM,根据平行线的判定得出AB∥CD,根据平行线的性质推出∠3=∠BGM,利用补角的定义即可得出答案.【解答过程】解:如图,∵∠1=50°,∴∠BGF=180°﹣∠1=130°,∵GM平分∠BGF,∴∠BGM=12∠BGF=65°,∵∠1=∠2=50°,∴AB∥CD,∴∠3=∠BGM=65°,∴∠GMD=180°﹣∠BGM=180°﹣65°=115°,故选:B.【变式4-1】(2021春•五华区期末)如图,∠1=60°,∠2=120°,∠3=70°,则∠4的度数是( )A.70°B.60°C.50°D.40°【解题思路】先由邻补角互补求出∠5,然后根据∠2=∠5判断出l1∥l2,再根据平行线的性质得出∠3=∠6,而∠4=∠6从而求出∠4.【解答过程】解:如图所示:∵∠1+∠5=180°,∴∠5=180°﹣60°=120°=∠2,∴l1∥l2,∴∠3=∠6,∵∠3=70°,∴∠6=70°∵∠4=∠6,∴∠4=70°.故选:A.【变式4-2】(2021春•大丰区月考)如图,直线MN分别与直线AB,CD相交于点E,F,EG平分∠BEF,交直线CD于点G,若∠MFD=∠BEF=58°,射线GP⊥EG于点G,则∠PGF= 61或119 °.【解题思路】分两种情况:①当射线GP⊥EG于点G时,∠PGE=90°,②当射线GP′⊥EG于点G 时,∠P′GE=90°,根据平行线的判定与性质和角平分线定义即可求出∠PGF的度数.【解答过程】解:如图,①当射线GP⊥EG于点G时,∠PGE=90°,∵∠MFD=∠BEF=58°,∴CD∥AB,∴∠GEB=∠FGE,∵EG平分∠BEF,∴∠GEB=∠GEF=12∠BEF=29°,∴∠FGE=29°,∴∠PGF=∠PGE﹣∠FGE=90°﹣29°=61°;②当射线GP′⊥EG于点G时,∠P′GE=90°,同理:∠P′GF=∠PGE+∠FGE=90°+29°=119°.则∠PGF的度数为61°或119°.故答案为:61或119.【变式4-3】(2021春•奉化区校级期末)如图,PQ∥MN,A,B分别为直线MN、PQ上两点,且∠BAN=45°,若射线AM绕点A顺时针旋转至AN后立即回转,射线BQ绕点B逆时针旋转至BP后立即回转,两射线分别绕点A、点B不停地旋转,若射线AM转动的速度是a°/秒,射线BQ转动的速度是b°/秒,且a、b满足|a﹣5|+(b﹣1)2=0.若射线AM绕点A顺时针先转动18秒,射线BQ才开始绕点B逆时针旋转,在射线BQ到达BA之前,问射线AM再转动 15或22.5 秒时,射线AM与射线BQ互相平行.【解题思路】分两种情况讨论,依据∠ABQ'=∠BAM″时,BQ'∥AM″,列出方程即可得到射线AM、射线BQ互相平行时的时间.【解答过程】解:设射线AM再转动t秒时,射线AM、射线BQ互相平行.如图,射线AM绕点A顺时针先转动18秒后,AM转动至AM'的位置,∠MAM'=18×5=90°,分两种情况:①当9<t<18时,∠QBQ'=t°,∠M'AM″=5t°,∵∠BAN=45°=∠ABQ,∴∠ABQ'=45°﹣t°,∠BAM″=∠M'AM″﹣∠M'AB=5t﹣45°,当∠ABQ'=∠BAM″时,BQ'∥AM″,此时,45°﹣t°=5t﹣45°,解得t=15;②当18<t<27时,∠QBQ'=t°,∠NAM″=5t°﹣90°,∠BAM″=45°﹣(5t°﹣90°)=135°﹣5t°,∵∠BAN=45°=∠ABQ,∴∠ABQ'=45°﹣t°,∠BAM″=45°﹣(5t°﹣90°)=135°﹣5t°,当∠ABQ'=∠BAM″时,BQ'∥AM″,此时,45°﹣t°=135°﹣5t,解得t=22.5;综上所述,射线AM再转动15秒或22.5秒时,射线AM、射线BQ互相平行.故答案为15或22.5.【题型5 单拐点作平行线】【例5】(2021春•忻州期中)已知:如图,AB∥CD,AP平分∠BAC,CP平分∠ACD,求∠APC的度数;请补全下列解法中的空缺部分.解:过点P作PG∥AB交AC于点G.∵AB∥CD( 已知 ),∴ ∠CAB +∠ACD=180°( 两直线平行,同旁内角互补 ),∵PG∥AB( 已知 ),∴∠BAP= ∠APG ( 两直线平行,内错角相等 ),且PG∥ CD (平行于同一直线的两直线也互相平行),∴∠GPC= ∠PCD (两直线平行,内错角相等),∵AP平分∠BAC,CP平分∠ACD.∴∠BAP=12∠ BAC ,∠PCD=12∠ ACD .( 角平分线定义 ),∴∠BAP+∠PCD=12∠BAC+12∠ACD=90°( 等量代换 ),∴∠APC=∠APG+∠CPG=∠BAP+∠CDP=90°.总结:两直线平行时,同旁内角的角平分线 互相垂直 .【解题思路】过点P作PG∥AB交AC于点G,根据平行线的判定与性质,即可得到∠APC的度数,进而得出结论.【解答过程】解:过点P作PG∥AB交AC于点G.∵AB∥CD(已知),∴∠CAB+∠ACD=180°(两直线平行,同旁内角互补),∵PG∥AB(已知),∴∠BAP=∠APG(两直线平行,内错角相等),且PG∥CD(平行于同一直线的两直线也互相平行),∴∠GPC=∠PCD(两直线平行,内错角相等),∵AP平分∠BAC,CP平分∠ACD,∴∠BAP=12∠BAC,∠PCD=12∠ACD(角平分线定义),∴∠BAP+∠PCD=12∠BAC+12∠ACD=90°(等量代换),∴∠APC=∠APG+∠CPG=∠BAP+∠CDP=90°.总结:两直线平行时,同旁内角的角平分线互相垂直.故答案为:已知;∠CAB;两直线平行,同旁内角互补;CD;∠PCD;BAC;ACD;角平分线定义;等量代换;互相垂直.【变式5-1】(2021•河北模拟)如图,AB∥DE,∠1=135°,∠C为直角.则∠D的度数为( )A.35°B.40°C.45°D.55°【解题思路】过点C作CF∥AB,由题意可求得∠BAC=180°﹣∠1=45°,由平行线的性质可得∠ACF =∠BAC=45°,CF∥DE,从而可求∠DCF的度数,则可求∠D的度数.【解答过程】解:过点C作CF∥AB,如图所示:∵∠1=135°,∴∠BAC=180°﹣∠1=45°,∵CF∥AB,AB∥DE,∴∠ACF=∠BAC=45°,CF∥DE,∴∠DCF=∠D,∵∠ACD为直角,∴∠DCF=90°﹣∠ACF=45°,∴∠D=45°.故选:C.【变式5-2】(2021•南关区校级一模)将一块直角三角尺和一张矩形纸片如图摆放,若∠1=47°,则∠2的大小为( )A.127°B.133°C.137°D.143°【解题思路】过点E作EF∥AC,由平行线的性质可得∴∠CEF=∠1=47°,BD∥EF,从而可得∠2+∠DEF=180°,结合条件可求得∠DEF的度数,即可求解.【解答过程】解:过点E作EF∥AC,如图所示:∵AC∥EF,AC∥BD,∴∠CEF=∠1=47°,BD∥EF,∴∠2+∠DEF=180°,∵∠CED=90°,∴∠DEF=90°﹣∠CEF=43°,∴∠2=180°﹣∠DEF=137°.故选:C.【变式5-3】(2021春•重庆期中)已知:AB∥CD,E、G是AB上的点,F、H是CD上的点,∠1=∠2.(1)如图1,求证:EF∥GH;(2)如图2,过F点作FM⊥GH交GH延长线于点M,作∠BEF、∠DFM的角平分线交于点N,EN 交GH于点P,求证:∠N=45°;(3)如图3,在(2)的条件下,作∠AGH的角平分线交CD于点Q,若3∠FEN=4∠HFM,直接写出∠GQH∠MPN的值.【解题思路】(1)由平行线的性质得∠1=∠3,再由内错角相等得出EF∥GH;(2)过点N作NK∥CD,设角度,由平行线的性质和角平分线的性质即可得出结论;(3)由3∠FEN=4∠HFM结合前面(2)的结论,求出角度可得∠GQH∠MPN =1 4.【解答过程】解:(1)证明:∵AB∥CD,∴∠2=∠3,又∵∠1=∠2,∴∠1=∠3,∴EF∥GH;(2)如图2,过点N作NK∥CD,∴∠KNE=∠4,∠6=∠7,设∠4=x,∠7=y,∵EN、FN分别平分∠BEF、∠DFM,∴∠ENK=∠5=∠4=x,∠6=∠8=∠7=y,又∵AB∥CD,∴∠EFD=180°﹣2x,又∵FM⊥GH,∴∠EFM=90°,∴180°﹣2x+2y=90°,∴x﹣y=45°,∴∠ENE=∠ENK﹣∠6=x﹣y=45°,(3)∠GQH∠MPN=14∵3∠FEN=4∠HFM,即3x=4×2y,∴x=83 y,∴x﹣y=83y―y=45°∴y=27°,x=72°,又∵EN和GQ是角平分线,∴GQ⊥EN,∴∠GQH=∠EGQ=180°﹣90°﹣72°=18°,又∵∠MPN=∠FEN=x=72°,∴∠GQH∠MPN=14,故答案为1 4.【题型6 多拐点作平行线】【例6】(2021春•青县期末)直线l1∥l2,∠A=125°,∠B=105°,求∠1+∠2的度数【解题思路】分别过A、B作l1的平行线AC和BD,则可知AC∥BD∥l1∥l2,再利用平行线的性质求得答案.【解答过程】解:如图,分别过A、B作l1的平行线AC和BD,∵l1∥l2,∴AC∥BD∥l1∥l2,∴∠1=∠EAC,∠2=∠FBD,∠CAB+∠DBA=180°,∵∠EAB+∠FBA=125°+105°=230°,∴∠EAC+∠CAB+∠DBA+∠FBD=230°,即∠1+∠2+180°=230°,∴∠1+∠2=50°.【变式6-1】(2021春•莱州市期末)(1)如图1,a∥b,则∠1+∠2= 180° (2)如图2,AB∥CD,则∠1+∠2+∠3= 360° ,并说明理由(3)如图3,a∥b,则∠1+∠2+∠3+∠4= 540° (4)如图4,a∥b,根据以上结论,试探究∠1+∠2+∠3+∠4+…+∠n= (n﹣1)•180° (直接写出你的结论,无需说明理由)【解题思路】(1)根据两直线平行,同旁内角互补解答;(2)过点E作EF∥AB,然后根据两直线平行,同旁内角互补解答;(3)过∠2、∠3的顶点作a的平行线,然后根据两直线平行,同旁内角互补解答;(4)过∠2、∠3…的顶点作a的平行线,然后根据两直线平行,同旁内角互补解答.【解答过程】解:(1)∵a∥b,∴∠1+∠2=180°;(2)过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠1+∠AEF=180°,∠CEF+∠3=180°,∴∠1+∠AEF+∠CEF+∠3=180°+180°,即∠1+∠2+∠3=360°;(3)如图,过∠2、∠3的顶点作a的平行线,则∠1+∠2+∠3+∠4=180°×3=540°;(4)如图,过∠2、∠3…的顶点作a的平行线,则∠1+∠2+∠3+∠4+…+∠n=(n﹣1)•180°.故答案为:180°;360°;540°;(n﹣1)•180°.【变式6-2】(2021秋•金凤区校级期末)如图1,已知AB∥CD,∠B=30°,∠D=120°;(1)若∠E=60°,则∠F= ;(2)请探索∠E与∠F之间满足的数量关系?说明理由;(3)如图2,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P的度数.【解题思路】(1)如图1,分别过点E,F作EM∥AB,FN∥AB,根据平行线的性质得到∠B=∠BEM=30°,∠MEF=∠EFN,∠D+∠DFN=180°,代入数据即可得到结论;(2)如图1,根据平行线的性质得到∠B=∠BEM=30°,∠MEF=∠EFN,由AB∥CD,AB∥FN,得到CD∥FN,根据平行线的性质得到∠D+∠DFN=180°,于是得到结论;(3)如图2,过点F作FH∥EP,设∠BEF=2x°,则∠EFD=(2x+30)°,根据角平分线的定义得到∠PEF=12∠BEF=x°,∠EFG=12∠EFD=(x+15)°,根据平行线的性质得到∠PEF=∠EFH=x°,∠P=∠HFG,于是得到结论.【解答过程】解:(1)如图1,分别过点E,F作EM∥AB,FN∥AB,∴EM∥AB∥FN,∴∠B=∠BEM=30°,∠MEF=∠EFN,又∵AB∥CD,AB∥FN,∴CD∥FN,∴∠D+∠DFN=180°,又∵∠D=120°,∴∠DFN=60°,∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,∴∠EFD=∠MEF+60°∴∠EFD=∠BEF+30°=90°;故答案为:90°;(2)如图1,分别过点E,F作EM∥AB,FN∥AB,∴EM∥AB∥FN,∴∠B=∠BEM=30°,∠MEF=∠EFN,又∵AB∥CD,AB∥FN,∴CD∥FN,∴∠D+∠DFN=180°,又∵∠D=120°,∴∠DFN=60°,∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,∴∠EFD=∠MEF+60°,∴∠EFD=∠BEF+30°;(3)如图2,过点F作FH∥EP,由(2)知,∠EFD=∠BEF+30°,设∠BEF=2x°,则∠EFD=(2x+30)°,∵EP平分∠BEF,GF平分∠EFD,∴∠PEF=12∠BEF=x°,∠EFG=12∠EFD=(x+15)°,∴∠PEF=∠EFH=x°,∠P=∠HFG,∵∠HFG=∠EFG﹣∠EFH=15°,∴∠P=15°.【变式6-3】(2021春•硚口区期末)已知直线EF分别交直线AB、CD于点G、H,∠1+∠2=180°.(1)如图1,求证:AB∥CD;(2)如图2,M、N分别为直线AB、CD上的点,P、Q为直线AB、CD之间不同的两点,∠PMQ=2∠BMQ,∠PNQ=2∠DNQ,∠MQN=30°.①求证:PM⊥PN;②如图3,∠EGB的平分线GL与∠MPN的邻补角∠MPT的平分线PL交于点L,∠PNH的平分线NK交EF于点K.若∠EKN+∠GLP=170°,直接写出∠PNH﹣∠EHD的大小.【解题思路】(1)利用∠1=∠HGB,再利用等量代换,即可解决;(2)①过Q作QK∥AB,因为AB∥CD,所以AB∥CD∥QK,则∠BMQ=∠MQK,∠DNQ=∠KQN,所以∠MQN=∠BMQ+∠DNQ,同理∠MPN=∠BMP+∠DNP,设∠BMQ=x,∠DNQ=y,利用∠MQN =30°,得到x+y=30°,又∠MPN=3x+3y,代入即可解决.②如图,过L作IS∥AB,过P作PW′∥AB,过K作KW∥AB,利用AB∥CD,可以得到SI∥AB∥CD∥KW∥PW′,设∠EGL=∠LGB=x,∠CNK=∠KNP=y,利用平行线的性质,分别用x,y表示出∠EKN和∠GLP,因为∠EKN+∠GLP=170°,得到x与y的关系式,整体代入运算,即可解决.【解答过程】证明:(1)∵∠1=∠HGB,∠1+∠2=180°,∴∠HGB+∠2=180°,(2)①过Q作QK∥AB,如图1,∵AB∥CD,∴QK∥AB∥CD,∴∠BMQ=∠MQK,∠DNQ=∠KQN,∴∠MQN=∠MQK+∠KQN=∠BMQ+∠DNQ,同理,∠MPN=∠BMP+∠DNP,设∠BMQ=x,∠DNQ=y,则∠MQK=x,∠KQN=y,∠PMQ=2x,∠PNQ=2y,∵∠MQN=30°,∴x+y=30°,∴∠MPN=3x+3y=90°,∴PM⊥PN;解:(2)②如图2,过L作IS∥AB,过P作PW′∥AB,过K作KW∥AB,∵AB∥CD,∴SI∥AB∥CD∥KW∥PW′,∵GL平分∠EGB,∴可设∠EGL=∠LGB=x,同理,∠MPL=∠TPL=45°,可设∠CNK=∠KNP=y,∵IS∥AB∥PW′,∴∠ILG=∠LGB=x,∠SLP=∠LPW′,∵PW′∥CD,∴∠W′PN=180°﹣∠CNP=180°﹣2y,∴∠W′PL=180°﹣∠W′PN﹣∠LPT=2y﹣45°,∴∠SLP=∠LPW′=2y﹣45°,∴∠GLP=180°﹣∠ILG﹣∠SLP=225°﹣x﹣2y,∵AB∥KW∥CD,∴∠AGK=∠GKW=∠EGB=2x,∠WKN=∠KNC=y,∴∠EKN=∠GKW+∠WKN=2x+y,∵∠EKN+∠GLP=170°,∴2x+y+225°﹣x﹣2y=170°,∴y﹣x=55°,∴∠PNH﹣∠EHD=2y﹣2x=110°.。