数字电子技术基础课后答案 阎石 第五版 第一章第二章 习题答案
- 格式:pdf
- 大小:7.17 MB
- 文档页数:28
第一章数字逻辑习题1.1数字电路与数字信号1.1.2图形代表的二进制数0101101001.1.4一周期性数字波形如图题所示,试计算:(1)周期;(2)频率;(3)占空比例MSB LSB0121112(ms)解:因为图题所示为周期性数字波,所以两个相邻的上升沿之间持续的时间为周期,T=10ms 频率为周期的倒数,f=1/T=1/0.01s=100HZ占空比为高电平脉冲宽度与周期的百分比,q=1ms/10ms*100%=10%1.2数制2−1.2.2将下列十进制数转换为二进制数,八进制数和十六进制数(要求转换误差不大于4(2)127(4)2.718解:(2)(127)D=72-1=(10000000)B-1=(1111111)B=(177)O=(7F)H(4)(2.718)D=(10.1011)B=(2.54)O=(2.B)H1.4二进制代码1.4.1将下列十进制数转换为8421BCD码:(1)43(3)254.25解:(43)D=(01000011)BCD1.4.3试用十六进制写书下列字符繁荣ASCⅡ码的表示:P28(1)+(2)@(3)you(4)43解:首先查出每个字符所对应的二进制表示的ASCⅡ码,然后将二进制码转换为十六进制数表示。
(1)“+”的ASCⅡ码为0101011,则(00101011)B=(2B)H(2)@的ASCⅡ码为1000000,(01000000)B=(40)H(3)you的ASCⅡ码为本1111001,1101111,1110101,对应的十六进制数分别为79,6F,75(4)43的ASCⅡ码为0110100,0110011,对应的十六紧张数分别为34,331.6逻辑函数及其表示方法1.6.1在图题1.6.1中,已知输入信号A,B`的波形,画出各门电路输出L的波形。
解:(a)为与非,(b)为同或非,即异或第二章逻辑代数习题解答2.1.1用真值表证明下列恒等式(3)A B AB AB ⊕=+(A⊕B)=AB+AB 解:真值表如下A B A B⊕ABAB A B⊕AB +AB00010110110000101000011111由最右边2栏可知,A B ⊕与AB +AB 的真值表完全相同。
数电第五版答案阎⽯第⼀三章1.1⼆进制到⼗六进制、⼗进制(4)(11.001)2=(3.2) 16=(3.125) 10(3) Y (A B)(A C)AC BC第⼀章(1)Y=A+B(3)Y=1(2)Y ABC A BC(4)Y ABCD ABD ACD解:Y BC AB CC A B C 1(A + A =1)解:Y AD(BC B C) AD(B C C) AD(5)Y=0(7)Y=A+CD(6)Y AC (CD :AB) BC(BAD CE)解:Y BC(B AD CE) BC(B AD) CE ABCD(CE) ABCDE(0.63D70A )16(2)(127) 10=(1111111) 2=(7F) 16(4) (25.7)10(11001.101 1 0011)2(19.B3)16⑻丫解:A Y A (B C)(A B C)(A B A (B C)(A B C)(AC A A (ABC \ BCBC)(A B C)BC(A B C) AABC (9)Y BCA D AD(10)Y AC AD AEF BDE BDE1.9 (a)Y ABC BC(b)Y ABC ABC(c) Y 1AB ACD,Y 2AB ACDACD , ACD(d) 丫 1 AB AC BC,Y 2ABC ABCABC ABC1.10 求下列函数的反函数并化简为最简与或式 Y A C D (1)Y ABC ACBC解: Y ABCAC Be A BC A (B B)C (AA)BCA BC ABC ABC ABC ABC A B CABC ABC⑵YABCD ABCD ABCD ABCD ABCDA BCDACD(B C D) ABCD将函数化简为最⼩项之和的形式ABC(3)(0.01011111) 2=(0.5F) 16=(0.37109375) 10 1.2⼗进制到⼆进制、⼗六进制(1)(17) 10=(10001) 2=(11) 16 (3) (0.39)10 (0.0110 0011 1101 0111 0000 1010) 2 1.8⽤公式化简逻辑函数 (1) Y AC BC 解:丫 (A B)(A C)AC BC[(AB)(A C) AC] BC(5)Y(AB AC BCAD AC BCD C 解:丫 (A D)( A C)(BAC)(BC)C D)C AC(A D)(B D)1.11(3) Y A B CD解:Y A(BCDBCD BCD BCD BCD BCD BCD BCD)B(ACDACDA CD A CD ACD ACD ACDACD) (AB AB AB AB)CDABCD ABCDABCD ABCD ABCDABCD ABCD ABCDA B CD A B C D A BCD A BCDABCD (13)⑷ Y ABCD ABCD ABCD ABCD ABCD ABCD ABCD ABCD(5) Y LMN LMN LMN LMN LMN LMN 1.12 将下列各函数式化为最⼤项之积的形式(1) Y (A B C)(A B C)(A B C) (2)(5) Y M o M 3 M 5 1.13⽤卡诺图化简法将下列函数化为最简与或形式:1.20将下列函数化为最简与或式(1) Y ACD BCD AD (2) Y B AD AC(3) Y A BCA BD(5) Y 1(6)YCDBD ACY (A B C)(A B C)(A B C)(3) Y M o M 3 M 4 M 6 M 7Y M 0 M 4 M 6 M 9 M 12 M 13(1) Y A D (2) Y AB AC BCCD AB AC BC0 i r:0 J 1i1 1[1JLi)D AB(6)(9)E p0 011〕 0ABACY AB AC BC Y BD AD BCA CD(8) Y(A,B,C,D) m (0,1,2,3,4,6,8,9,10,11,14) (10) Y (A ,B ,C)10 0 J 0 0 D 1j i11B CD AD1 0 0 11Y ABC ABC ABC(1) YABCD (2) ⑶ YAB D AC(4)⑸ Y A B D E CEBDE AD A C DEY CD ACD YBC BD00 01 II 10,1 JIt LCM 01.11 1001 11 101.14化简下列逻辑函数3.1解:由图可写出 Y i 、Y 2的逻辑表达式:Y 1 ABC (A B C) ―AC ―BCABC ABC ABC ABC Y 2 AB AC BC真值表:ABC Yi Yi0 0 0 0 Q0 & 1 0 1 0 ;J 曲真值表知,电路是⼀亍⼀位全加器。
第1章习题与参考答案【题1-1】将下列十进制数转换为二进制数、八进制数、十六进制数。
(1)25;(2)43;(3)56;(4)78解:(1)25=(11001)2=(31)8=(19)16(2)43=(101011)2=(53)8=(2B)16(3)56=(111000)2=(70)8=(38)16(4)(1001110)2、(116)8、(4E)16【题1-2】将下列二进制数转换为十进制数。
(1)10110001;(2)10101010;(3)11110001;(4)10001000 解:(1)10110001=177(2)10101010=170(3)11110001=241(4)10001000=136【题1-3】将下列十六进制数转换为十进制数。
(1)FF;(2)3FF;(3)AB;(4)13FF解:(1)(FF)16=255(2)(3FF)16=1023(3)(AB)16=171(4)(13FF)16=5119【题1-4】将下列十六进制数转换为二进制数。
(1)11;(2)9C;(3)B1;(4)AF解:(1)(11)16=(00010001)2(2)(9C)16=(10011100)2(3)(B1)16=(1011 0001)2(4)(AF)16=(10101111)2【题1-5】将下列二进制数转换为十进制数。
(1)1110.01;(2)1010.11;(3)1100.101;(4)1001.0101解:(1)(1110.01)2=14.25(2)(1010.11)2=10.75(3)(1001.0101)2=9.3125【题1-6】将下列十进制数转换为二进制数。
(1)20.7;(2)10.2;(3)5.8;(4)101.71解:(1)20.7=(10100.1011)2(2)10.2=(1010.0011)2(3)5.8=(101.1100)2(4)101.71=(1100101.1011)2【题1-7】写出下列二进制数的反码与补码(最高位为符号位)。
第一章逻辑代数基础1.1 、用布尔代数的基本公式和规则证明下列等式。
1.2 、求下列函数的反函数。
1.3 、写出下列函数的对偶式。
1.4 、证明函数F 为自对偶函数。
1.5 、用公式将下列函数化简为最简“与或”式。
1.6 、逻辑函数。
若 A 、B 、C 、D 、的输入波形如图所示,画出逻辑函数 F 的波形。
1.7 、逻辑函数F 1 、F 2 、F 3 的逻辑图如图2 — 35 所示,证明F 1 =F 2 =F 3 。
1.8 、给出“与非”门、“或非”门及“异或”门逻辑符号如图2 — 36 (a )所示,若A 、B 的波形如图2 — 36 ( b ),画出F 1 、 F 2 、 F 3 波形图。
1.9 、用卡诺图将下列函数化为最简“与或”式。
1.10 、将下列具有无关最小项的函数化为最简“与或”式;1.11 、用卡诺图将下列函数化为最简“与或”式;1.12 用卡诺图化简下列带有约束条件的逻辑函数1.13 、用最少的“与非”门画出下列多输出逻辑函数的逻辑图。
第二章门电路2.1 由TTL 门组成的电路如图2.1 所示,已知它们的输入短路电流为I is =1.6mA ,高电平输入漏电流I iH = 40。
试问:当A=B=1 时,G 1 的灌电流(拉,灌)为3.2mA ;A=0时,G 1 的拉电流(拉,灌)为120。
2.2 图2.2 中示出了某门电路的特性曲线,试据此确定它的下列参数:输出高电平U OH = 3V ;输出低电平U OL = 0.3V ;输入短路电流I iS = 1.4mA ;高电平输入漏电流I iH = 0.02mA ;阈值电平U T = 1.5V ;开门电平U ON = 1.5V ;关门电平U OFF = 1.5V ;低电平噪声容限U NL = 1.2V ;高电平噪声容限U NH = 1.5V ;最大灌电流I OLmax = 15mA ;扇出系数N= 10 .2.3 TTL 门电路输入端悬空时,应视为高电平;(高电平,低电平,不定)此时如用万用表测量其电压,读数约为1.4V (3.6V ,0V ,1.4V )。
第2章 逻辑代数基础2.1 试用列真值表的方法证明下列异或运算公式。
(1)A⊕0=A(2)A⊕1=A '(3)A⊕A=0(4)A⊕A'=1(5)(A⊕B)⊕C=A⊕(B⊕C)(6)A(B⊕C)=AB⊕AC (7)A⊕B'=(A⊕B)'=A⊕B⊕1证明:左式和右式的真值表若相同,则表达式得证。
真值表如表2-1所示。
表2-12.2 证明下列逻辑恒等式(方法不限)(1)AB '+B +A 'B =A +B(2)(A +C ')(B +D )(B +D ')=AB +BC '(3)((A +B +C ')'C 'D )'+(B +C ')(AB 'D +B 'C ')=1(4)A 'B 'C '+A (B +C )+BC =(AB 'C '+A 'B 'C +A 'BC ')'证明:(1)左边=AB'+B +A'B =AB'+(B +A'B )=AB'+B =A +B =右边(2)左边=(A +C')(B +D )(B +D')(A +C')(B +BD +BD')=B (A +C')=AB +BC'=右边(3)()()()()()'''''''''''''''A B C C D B C AB D B C A B C C D AB C D B C +++++=+++++''''A B C C D B C =+++++=1即左边=右边(4)左右两式的真值表如表2-2所示。
表2-2由表2-9可知,等式成立。
2.3 已知逻辑函数Y 1和Y 2的真值表如表2-3(a )、(b )所示,试写出Y 1和Y 2的逻辑函数式。
表2-3(a )表2-3(b)解:由表2-3(a)可得,Y1的逻辑函数式为:Y1=A'B'C'+A'B'C+AB'C'+AB'C+ABC由表2-3(b)可得,Y2的逻辑函数式为:Y2=A'B'C'D+A'B'CD'+A'BC'D'+A'BCD+AB'C'D'+AB'CD+ABC'D+ABCD'2.4 已知逻辑函数的真值表如表2-4(a)、(b)所示,试写出对应的逻辑函数式。