2.7语音信号的数字化
- 格式:ppt
- 大小:292.50 KB
- 文档页数:18
声音的数字化流程
声音的数字化流程是将模拟声音信号转换为数字信号的过程,主要包括采样、量化和编码三个步骤。
声音数字化是现代技术中一个基础且重要的过程。
通过这一过程,连续的模拟声波信号被转换成离散的数字数据,使得声音可以被计算机处理、存储和传输。
具体的声音数字化流程包括采样、量化和编码三个关键步骤。
首先,采样是按照一定的时间间隔在连续的声波上进行取值的过程。
奈奎斯特取样定理表明,只要取样频率大于等于信号中所包含的最高频率的两倍,就可以根据其取样完全恢复出原始信号。
常见的采样率有8kHz、16kHz、32kHz、44.1kHz等,其中44.1kHz是CD标准采样率,可以满足人耳听觉范围并保留高质量音频信息。
其次,量化是将采样得到的值进行量化处理的过程,即设定一个刻度,记录每个采样点的振幅值。
量化的精度取决于用多少位二进制数来表示一个音频数据,常见的有8位、12位或16位。
量化精度越高,声音保真度也越高。
最后,编码是将量化后的样本值转换成二进制编码的过程。
常见的编码方式是PCM(脉冲编码调制),这是一种将音频信号采样并量化后转化为二进制数据的方法。
PCM数据就是一系列按时间顺序排列的二进制数值,这些数值在播放时可以通过数字到模拟转换器(DAC)转换回模拟信号,从而还原成声音。
综上所述,音频数字化是音频技术中至关重要的基础步骤,它不仅使音频信号能够被现代计算机系统处理和存储,还为音频信号的进一步处理和应用提供了可能。
语音信号数字化编码随着数字技术,特别是计算机技术的飞速发展与普及,在现代控制、通信及检测等领域,为了提高系统的性能指标,对信号的处理广泛采用了数字计算机技术。
由于系统的实际对象往往都是一些模拟量(如温度、压力、位移、图像等),要使计算机或数字仪表能识别、处理这些信号,必须首先将这些模拟信号转换成数字信号;而经计算机分析、处理后输出的数字量也往往需要将其转换为相应模拟信号才能为执行机构所接受。
这样,就需要一种能在模拟信号与数字信号之间起桥梁作用的电路——模数和数模转换器。
语音信号的数字化的编码的实现就是将一个语音信号转换成数字信号。
标签:语音信号;数字信号;模数转换1 设计要求1.1 语音信号的数字化编码的实现即将模拟信号进行数字化处理。
1.2 要求运用pcm编码(脉冲编码调制)的基本原理。
1.3 要求软硬件结合。
2 设计原理语音信号数字化编码的实现就是将一个语音信号转换成数字信号。
语音是人类发音器官发出的,具有一定意义的,能起到社会交际作用的声音。
普通人语音信号频率范围20HZ——20KHZ。
语音信号转换电信号的过程:声音通过空气把震动传给声音传感器的薄膜,薄膜振动带动线圈在磁场中做切割磁感线运动,产生大小不一的电流。
通常把从模拟信号抽样、量化,直到变换成为二进制符号的基本过程,称为脉冲编码调制(pcm),简称脉码调制。
Pcm系统的原理方框如图1所示,在编码器中有冲激脉冲对模拟信号抽样,得到在抽样时刻上的值。
这个抽样值仍是模拟量。
在它量化之前,通常用保持电路将其作短暂的保存,以便电路有时间对其进行量化。
在实际电路中,常把抽样和保持电路作在一起,称为抽样保持电路。
图中的量化器把模拟抽样信号变成离散的数字量,然后再编码器中进行二进制编码。
这样,每个二进制码组成就代表一个量化后的信号抽样值。
3 基本电路5 设计总结21世纪是信息时代。
信息技术的迅猛发展和广泛应用为教学提供了丰富的学习资源,所以我们有必要了解信号的传输常用两种模式——模拟信号和数字信号。
《通信原理》模拟题+答案一、单选题(共50题,每题1分,共50分)1、( )是能在接口端口间提供可控的VC(虚容器)的透明连接和再连接的设备,其端口速率既可以是SDH速率,也可以是PDH速率。
此外,它还具有一定的控制、管理功能。
A、TMB、SDHC、SDXCD、ADM正确答案:C2、能够发现错误并能纠正错误码叫做()A、差错码B、纠删码C、纠错码D、检错码正确答案:C3、帧结构由信息净负荷(Pay load)、段开销(SOH)和( )三个区域组成A、POHB、管理指针单元C、RSOHD、SDH复接结构正确答案:B4、信源又称为信息源或发终端,是()的产生地,是各种消息转换成电信号的转换器,信源输出的信号称为基带信号。
A、信息B、信号C、消息D、信道正确答案:A5、调制信道分为恒参信道和( )A、变参信道B、有线信道C、调制信道D、无线信道正确答案:A6、( )完成数字分接功能的设备A、数字分接器B、复接器C、数字D、字母正确答案:A7、频率调制又分为调频FM、脉冲载频调制PFM和( )A、PSKB、ASKC、频率键控FSKD、PAM正确答案:C8、噪声的分类按照来源划分分为人为噪声、自然噪声和( )A、单频噪声B、脉冲噪声C、起伏噪声D、内部噪声正确答案:D9、( )通信是通过人力或畜力或烽火台传递完成的A、现代B、原始C、近代D、未来正确答案:B10、信道分为狭义信道和( )A、有线信道B、调制信道C、无线信道D、广义信道正确答案:D11、( )的基本思想是利用相邻样值信号幅度的相关性,以相邻样值信号幅度的差值变化来描述模拟信号的变化规律,即将前一样值点与当前样值点之间的幅值之差编码来传递信息A、增量调制B、调制C、多调制D、改调制正确答案:A12、以下那个英文代表的是局域网()A、WANB、MANC、JAND、LAN正确答案:D13、在信道上传输的是()的通信系统称为数字通信系统A、任何信号B、模拟信号C、数字信号D、以上均不对正确答案:C14、( )输出信噪比。
语音信号数字化语音信号是模拟信号,其频率为300 Hz~3.4 kHz。
原始语音信号如图2-1所示。
要将语音信号在数字传输系统中进行传递,就必须使模拟的语音信号数字化。
语音信号数字化是进行数字化交换和传输的基础。
语音信号数字化的方法有很多,用得最多的是PCM。
PCM是将模拟信号数字化的取样技术,它可将模拟语音信号变换为数字信号的编码方式,特别是对于音频信号。
在PCM传输系统中,发送端的模拟语音信号经声/电转换成模拟电信号,根据采样定理(采样过程所应遵循的规律,又称抽样定理、取样定理)对模拟电信号进行取样,取样之后进行幅度量化,最后进行二进制编码。
经过抽样、量化和编码3个模数变换(A/D)过程,模拟电信号变成一连串二进制PCM数字语音信号,进入传输线路进行传输,传输至接收端后,PCM数字语音信号经过模数反变换(D/A)还原为模拟信号,再由低通滤波器恢复出原始的模拟语音信号,就完成了语音信号的数字化传输,如下图所示。
PCM过程的各阶段语音信号波形如下图所示。
1.抽样抽样又称采样,是指在时间轴上等距离地在各取样点取出原始模拟信号的幅度值。
1928年,美国电信工程师H.奈奎斯特(H.Nyquist)提出了采样定理。
采样定理说明了采样频率与信号频谱之间的关系,是连续信号离散化的基本依据。
采样定理为采样频率建立了一个足够的条件,该采样频率允许离散采样序列从有限带宽的连续时间信号中捕获所有信息。
(1)奈奎斯特采样定理。
在进行模/数转换过程中,当采样频率fs大于或等于信号中最高频率fmax的2倍时,采样之后的数字信号会完整保留原始信号的全部信息。
一般实际应用中保证fs为fmax的2.56~4倍。
(2)语音信号抽样。
由采样定理可知,当满足奈奎斯特采样定理条件时,在接收端只需经过一个低通滤波器就能够还原成原模拟信号。
这一过程称为脉冲振幅调制(pulse amplitude modulation,PAM)。
取样后的信号称为脉冲振幅调制信号。
声音信号的数字化过程声音是一种由空气震动产生的机械波,具有频率和振幅两个基本特征。
为了将声音信号进行处理、存储和传输,需要将其转化为数字信号,即进行数字化处理。
声音信号的数字化过程可以分为采样、量化和编码三个步骤。
首先是采样过程。
采样是指在时间上对连续的声音信号进行离散化处理,将其转化为一系列离散的采样值。
采样过程需要以一定的频率进行采样,采样频率越高,采样点越多,对原始声音信号的还原就越精确。
常用的采样频率为44.1kHz或48kHz,这是为了满足人耳对声音的听觉需求而设定的。
接下来是量化过程。
量化是指对采样得到的离散采样值进行幅度的离散化处理,将其转化为一系列离散的量化值。
量化过程需要确定一个量化级别,即将连续的幅度范围划分为有限个离散的幅度值。
量化级别越高,对声音信号的还原就越精确,但同时会增加数字化后的数据量。
通常采用的量化级别为16位或24位,分别对应于2^16和2^24个离散的幅度值。
最后是编码过程。
编码是指将量化后得到的离散量化值转化为二进制数,以便计算机进行处理。
常用的编码方式有脉冲编码调制(PCM)和脉冲编码调制(PCM)。
PCM是将每个量化值直接转化为对应的二进制数,而DPCM则是通过利用前一采样值与当前采样值之间的差异来进行编码,可以进一步减小数据量。
编码后的数字信号可以通过存储介质或网络传输等方式进行处理和传输。
声音信号的数字化过程使得我们能够方便地对声音进行处理、存储和传输。
数字化后的声音信号可以通过计算机进行音频编辑、混音等处理,也可以方便地存储在数字设备中,如CD、MP3等。
此外,数字化的声音信号还可以通过网络传输,使得人们可以随时随地地进行语音通信和音乐分享。
然而,声音信号的数字化过程也存在一些问题。
首先是采样过程可能会引入采样误差,特别是在采样频率较低或声音信号频率较高的情况下。
其次是量化过程可能会引入量化误差,即由于量化级别有限而导致的信号失真。
此外,编码过程也可能会引入编码误差,特别是在使用压缩编码算法时。