当前位置:文档之家› 电路的频率响应和谐振现象

电路的频率响应和谐振现象

电路的频率响应和谐振现象
电路的频率响应和谐振现象

第七章

例10.1 电路如图10.4(a )所示:

(1)试求出电压比H(j ω)=1

2/U U (2)判断电路有何种性质,简画幅频特性。

图10.4 例10.1用图

(3)若R 1=R 2=1K,L 1=10mH,C 2=0.0μf 时,求截止频率ω0 及品质因数Q 。

分析:这是典型的二阶电路。通过阻抗分压求出输出比输入的频率响应,与标准形式相比,就可判断出电路属于何性质电路,可大致画出其幅频特性,并且由标准形式可求出电路的截止频率和品质因数。

解 :(1) 2.

U =

22112

21

1C j G L j R C j G ωωω++

++1.

U

H(jω) =

1

)1

)((1

22

11.1

.

2+++=

C j R L j R U U ωω

=

1

)((1

2

12121212++++)R R

j R L C R C L j ωω

=

2

12122112212

12

1

)

)1()(1)1(C L R R j C R L R j LC

R R R R R +(1++++

+ωω

(2)由滤波器电路的标准形式可判断此电路为低通滤波器电路,其幅频特性如图10.4

(b )。

(3)当R 1=R 2=1k,L 1=10mH,C 2=0.01 uf 时

ω0=2×105

rad/s

Q =

707.02

2

==

10*25

ω 〔评注〕:在截止频率处,频率响应等于最大值的0.707

倍,此点也称为半功率点。从品质因数较低可看

出,电路从通带到止带的过渡是很缓慢的,与理想特性相差甚远,因此实际电路通常采用有源滤波或其它形式的电路,以改进频率响应。

例10.2 滤波器电路如图10.5所示,欲设计中心频率ω =1000Hz,带宽为100Hz,试确定各元件的值。

图10.5 例10.2用图

分析:这是一个有源滤波电路,首先必须根据节点方程和理想运算放大器的特性,求出输出电压与输入电压之比,再于标准形式比较,得到中心频率和带宽与元件的关系,求出元件值。

解:设节点电位u 1, 列节点电位方程:

0)()(1)()211(

01

121=--++s sCU s Ui R s U sC R R 0)

()(3

01=+

R s U s sCU 消去U 1(s), 得到 H(s) =

)

()

(0s Ui s U H(s) =3

212

2132

121R R R C R R s C R s s C

R +++-

H(jω) =

3

21221

3212

(1

R R R C R R j C R j j C

R +++)-

ωωω

可见这是个带通滤波电路。

)11(11

213R R R C +=0ω B=

C

R Q

32=

ω

设 C= 0.1μ f 则 200101.01002

26

3=??=?=

-C B R k Ω 假定 R 1 >>R 2 3

21

1R R C

=

0ω 2

0=ω2321

C R R =614310

10102001???-=0.5k Ω 取R 1 =100 k Ω 即可。

〔评注〕利用各变量的拉普拉斯变换,使推导和计算更为方便。另外,在设计元件时,往往需要一些近似,或者先确定某个元件值,再由公式确定另外一些元件值。

例10.3 一个RLC 串联谐振电路,电源电压Us=1V ,且保持不变。当调节电源频率,使电路达到谐振时,f =100kHz,这时回路电流I=100mA;当频率改变为f =99kHz 时,回路电流I=70.7mA 。求回路的品质因数和电路r,L,C 参数值。

分析:当外加电源振幅不变,但频率变化时,由于L,C 的存在,使电路响应发生不同的变化。电路达到谐振时,回路电流最大,当失谐时,电流相应减小,且f =99kHz 时,电流为谐振时的0.707倍,此频率点为电路的截止频率。

解: ∵ f 0=

LC

121π

∴ LC=

2

0)2(1

f π

又 ∵ f 1为99kHz , 回路电流 I= 2

0I =0.707 ×I 0

∴ f 1为回路的截止频率。 B=2(f 0-f 1)=2kHz L r

r

L Q f B ππωω20=

2==

0 而 I 0= Us/r

联立求解,得:

r=10Ω L=796mH C=3180μf Q=20

〔评注〕:做题时,要熟知串联谐振电路的特性与一些公式,如谐振时,回路电流最大,且与电源电压同相,电阻上电压就等于电源电压,所以I 0= Us/r ,以及谐振角频率与通频带的公式,则求解就很方便了。

例 10.4 电路如10.6所示,图中0

图10.6 例10.4用图

分析:当电路谐振时总阻抗为纯电阻,因此通过求等效阻抗或等效导纳,使虚部为零来寻找谐振频率与元件的关系。

解:设电流 I = .1U R +

.

1U L

j ω +j ωC(..U k U -) = .)1(1

1U C j k L j R ??

????-++ωω

Y=

??

????

--+L k C j R

ωω1)1(1 令其虚部为零,则 )

1(1

k LC -=

2

)

1(210k L f -=

π

〔评注〕:如果是规则的串联或并联谐振电路,则谐振频率只要带入公式求即可,对于本题这种电路,只能通过谐振电路的本质特性去求,也就要求对谐振电路的谐振现象有更深刻的理解。

例10.5 如图10.7(a )所示谐振电路。已知谐振回路本身Q 0=40, 信号源内阻Ri=40k Ω, C=100pf, L=100μH 。

(a ) 图10.7 例10.5用图 (b ) 求(1)谐振频率 f 0 及电路通频带。

(2)当接上负载R L =40k Ω, 电路通频带有何变化?

分析:并联谐振电路在接入电源后,其电路的谐振频率不变,谐振频率仅与电路参数有关。Q 0是回路本身仅与电阻r 有关的品质因数,

内阻的引入使总电路的品质因数和通频带

都会发生变化,内阻越小,影响越大,接入负载的影响同样。

解:(1)

14

6

122010

10*100*10*10011===

--LC ω π

πω21070=2=0f =1.59×106

Hz

Q 0 =r

C

L r L =ω Ω===2540

10000Q C L

r

电路等效为图 10.7(b)

Ω===

k Cr L R 4025

106

0 Q =202

40

)//(0==

0i R R C ω B=20

107=0

Q ω =5×105

=500kHz (2) 当接入R L 时,Q 进一步降低,通频带进一步展宽 Q=3

40

3)////(00==

0Q R R R C L i ω B=

3Q Q

=

ωω=3×250 =750 k Ω 〔评注〕:求解实用性并联谐振电路,一般先等效成完全并联谐振电路,然后由已知条件,求出未知参数。另外,对串联谐振电路,串入的内阻越大,品质因数变的越小;而对并联谐振电路,电源内阻越小,品质因数变的越小。

例 10.6 电路如图10.8所示,u s (t)中含有基波及谐波成分,ω0 =1000 rad/s ,若使电路能阻止二次谐波电流通过,让基波顺利通过负载,求C 1和C 2 。

分析:若阻止二次谐波电流通过,则应使电路某一局部断开 ;使基波顺利通至负载,则从电源到负载对基波的阻抗应为零,这样通过串并联谐振都能实现。

解:令 L 和C1对二次谐波发生并联谐振,则局部 Y=0, Z=∞

0ω2 =

1

1LC L

C 2=

ω411=10μf

当ω<2ω0时,L 与C 1

2

令:

01

11

2

1

1=++

00000C j C j L j C j L

j ωωωωω 得 C 2=30 μf

图10.8 例10.6用图

例10.7正弦稳态电路如图10.9所示。u s (t)= (4+cos103

t+2cos2×103

t)V , 求输出u 0(t)。

图10.9 例10.7用图

分析:由于电感、电容对不同频率信号呈现的阻抗不同,所以要分别计算us(t)中的三个分量引起的响应。

解:(1)当u s1(t)=4V 时,直流稳态电路中电感短路,电容开路 ,则u 01(t)=0。

(2)当u S2(t)=6cos103

tV 作用时,由L1及C1 形成的导纳

Y=j ωC 1-j

L ω1= j×103

-j 310

1= 0 所以L1与C1对ω= 103

rad/s 形成并联谐振,阻抗无穷大,形成断路

u 02(t)=

2

1u s 2(t) =3cos103

t V (3)当u s 3(t)=2cos2×103

t V 作用时,由L1,C1,L 2形成的总阻抗

Z=1

11111

C j L j C j L j +

?

ωωωω+jωL 2 =5.02)5.0(2j j j j --+j 3

2

=0

因而相当于对2×103

rad/s 形成串联谐振,电路短路

u 03 = 0

三个分量迭加: u 0(t)= 3cos103

t V

〔评注〕:当不同频率信号作用时,要分别建立相量模型来求解。这里是巧妙地利用并联谐振与串联谐振,使计算简单化。

例10.8 图10.10所示电路为中频放大器选频等效电路,信号源is(t)含有多个频率分

量,最低频率为455kHz,最高频率为475 kHz ,信号源内阻为90k Ω,并联谐振电路作为负载,其中L=244μH ,C= 400pf ,空载品质因数Q 0=115。

求:(1)此时输出u(t)是否有严重失真?为什么?(2)欲减小失真,采取何种措施? 分析:是否失真,就要判断输入信号频率是否处于电路的通频带内,若在通频带外则产生失真。

图10.10 例10.8用图

解:(1) ω0 =

LC

1=

12

610400102441

--???=

44

.221 ? 107

f 0 =

π

ω20

=509.7kHz 等效电路如图10.10(b)

R 0=Cr L =r

C

L ×

C L =Q 0C

L =89.8k Ω.

=90k Ω 则 Q= ω 0C(R s // R 0)=1/2Q 0 =52.5

B=f 0/Q = 509.7/52.5 = 9.7 Hz

从中看出,电源信号频率在(f 0-5,f 0+5)之外,输出严重失真。

(2)欲减小失真,可以并接电阻,降低Q 值,增宽频带,但是一味降低电阻, Q 值变低,只能使电路性能变坏,所以最好是改变中心频率,使f 0=465kHz ,这样只要改变电容参数就可以办到。

pf L

f C 480)2(1

20==

π

Z KH RC

Q f B 2.7210===

π

从中得知, 通频带没有达到要求,因此应再并接一个电阻,使通频带达到10 kHz 。

[评注]一个电路的好坏,应根据对它的要求来评判。如本题,要使电源的最低频率到最高频率处于

通频带之内,且它的范围就是通频带,这就要求中心频率在通频带中间。若通频带过宽,品质因数太低,则电路的性能变坏,因此应根据要求来选电路参数。

例10.9 如图10.11(a )所示电路,已知谐振频率f 0=465kHz ,回路自身的品质因数Q =100,初级线圈N =160匝,N 1 = 40匝,次级线圈N 2 =10 匝,C=200 pf ,电源内阻Rs =16K Ω,负载电阻R L =1k Ω。求:电感L 和回路的有载品质因数Q L 。

分析:这是从线圈中间引出线接电源的谐振电路,根据原理,首先求出LC 两端的等

效电路,其次的计算和LC 并联谐振电路一样。

图10.11 例10.9用图 解:接入系数

m = N

N 1 =16040=41 等效电路如图(b )

Rs '

=

21

m

Rs =256 k Ω R 0 =

Cr L =Q C

L = 172k Ω L =

C

f 20)2(1

π=586 uH

R L ’=21m ×2

21???

?

??N N R L =256 k Ω 总的等效电阻 R= Rs’ // R 0 // R L ’ =73.4 k Ω Q L =ω0CR

=.

42.9

[评注]:N 1与N 2构成理想变压器,根据变阻抗特性,先把负载等效到N 1两端,再由接入系数,将其等效到N 两端,同时将电源与内阻也等效到LC 并联回路两端,其次的计算和简单并联谐振电路计算相同。

三 . 习题

1. 单项选择题(将正确答案填写在题后的括号中)

(1)rLC 串联电路发生谐振时,下列选择哪个是错误的?( )

(A ).电流最小 (B )电流最大 (C) 阻抗模值最小 (D )电压电流同相 (2)如图(2)电路,已知Is=5mA 。当电路对电源频率谐振时,I L0 =( )

(2) 图10.12 习题1 (3)

(A )jQ .

Is (B )-jQ .

Is (C ) QIs (D )-

Qis

(3)图(3)所示并联谐振电路,其品质因数Q为( )

(A)10 (B) 20 (C) 40 (D) 80

(4)如图(4)所示电路,有二个谐振角频率ω01与ω02,在电源处于ω01与ω02之间时,等效电抗为什么性质?( )

(A)容性(B)感性(C)阻性(D)不确定

图10.12 习题1(4) 图10.13 习题2(1)

2.填空题

(1)如图(1),向量模型,已知

.

U= 100/00V, 则当电路处于谐振时

.

I=___。

(2)图(2)所示电路,求电路的谐振频率ω0 =__。

(2) 图10.13 习题2 (3)

(3)如图(3)所示,互感M =50 μH,求电路的并联谐振频率ω0 =__。

(4)如图(4)并联谐振电路,接入系数m=_

3.如图10.14是三层电路构成的滤波电路,试分析它是什么样的滤波电路,并求出ω0及通带宽度BW

图10.13 习题2 (4) 图10.14 习题3

4.已知某系统的频率响应H(jω)如图10.15所示,当输入f(t) =2+0.5cost +2/3 cos2t 时,求输出y(t)。

图10.15 习题4

5.RLC 串联谐振电路的谐振频率为810 kHz,品质因数Q为90,已知L=32mH

(1)求R,C 和通频带BW。

(2)若电源电压Us =15 V, 求谐振时,电容两端的电压。

6.如图10.16所示并联谐振电路,电源内阻Rs=40kΩ,Is = 1mA。

(1)电路的谐振频率和电源未接入时的品质因数。

(2)电源接入后,若电路已谐振,求品质因数及流过各元件的电流。

图10.16 习题6 图10.17 习题7

7.电路如图10.17所示,输入u s(t)为非正弦波,其中含有ω=3及7的谐波分量。如果要求在输出电压中不含这两个谐波分量,问L和C应为多少?

8.某谐振电路如图10.18所示。已知回路本身的品质因数Q0=105, L=588μH, C=200pf, Is=0.8 mA, Rs=22.5kΩ, R L=3.6 kΩ,接入系数m1 =0.25, m2 =0.1 。

求:(1)谐振频率f 0, 有载品质因数Q L。

(2)若电路对电源频率谐振,求此时电阻R L吸收的功率。

(f0 =465 kHz, Q L=52, P R L=56.3mW)

9.如图所示电路中,u s1 , u s2两个感应信号。若r, L确定,C为可变电容。当C调到Cmax

时接收u s1信号;C调到Cmin时接收u s2信号。

问:(1)u s1, u s2哪个频率高?

(2)C 调谐的频率范围,是否为电路的通频带?

(3)在接收u s1, u s2两信号时,电路的通频带是否相同?

图10.18 习题8 图10.19 习题9

10如图10.20所示电路,已知电源Is= 4mA, ω=107rad/s, Rs =100kΩ,L1=100μH, L2 =10μH ,M=10μH,调节C使电路达到谐振,求C的值和负载Z L吸收的功率。

图10.20 习题10

第十一章电路的频率响应 习题答案

第十一章电路的频率响应 习题 一、选择题 串联谐振电路的 Q 值越高,则 (D ) (A) 电路的选择性越差,电路的通频带越窄 (B) 电路的选择性越差,电路的通频带越宽 (C) 电路的选择性越好,电路的通频带越宽 (D ) 电路的选择性越好,电路的通频带越窄 串联电路谐振时,L 、C 储存能量的总和为 (D ) (A) W = W L + W C = 0 (B) 22 1 LI W W W C L =+= (C) 2 2 1C C L CU W W W =+= (D ) 2C C L CU W W W =+= 3.R L C 串联电路发生串联谐振时,下列说法不. 正确的是: (D ) A .端电压一定的情况下,电流为最大值 B .谐振角频率LC 10= ω C .电阻吸收有功功率最大 D .阻抗的模值为最大 4. RLC 串联电路在0f 时发生谐振。当电源频率增加到02f 时,电路性质呈 (B ) A. 电阻性 B . 电感性 C. 电容性 D. 视电路元件参数而定 5.下面关于RLC 串联谐振电路品质因数的说法中,不正确的是 (D ) A. 品质因数越高,电路的选择性越好 B. 品质因数高的电路对非谐振频率的电流具有较强的抵制能力 C. 品质因数等于谐振频率与带宽之比 D . 品质因数等于特性感抗电压有效值与特性容抗电压有效值之比 串联谐振电路品质因数Q=100,若U R =10V ,则电源电压Us 、电容两端电压U C 分别为 ( A ) 、1000V B. 1000V 、10V C. 100V 、1000V D. 1000V 、100V 二、判断题

1.图示电路,R << 0L,保持U S 一定,当发生谐振时,电流表的读数最小。 (×) 串联电路发生谐振时,电源输出的有功功率与无功功率均为最大。(×) 3.图示RLC串联电路,S闭合前的谐振频率与品质因数为f0与Q, S闭合后 的谐振频率与品质因数为f 0'与Q ',则 f f' =,Q < Q '。(×) 并联的交流电路中,当改变电路频率出现谐振时,则此时电路端口的阻抗值最小。(×) 4.若RLC串联谐振电路的电感增加至原来的4倍(R、C不变),则谐振角频率应变为原来的2倍。(×) 三填空题 1.图示电路,当发生串联谐振时,其谐振频率f 0= ( C M L L) 2 ( 2 1 2 1 + + π )。 2.电感L= 50mH与电容C= 20F并联,其谐振角频率 = ( 1000rad/s );其并联谐振时的阻抗Z = ( )。 串联电路如下图所示,则电路的谐振角频率 = ( 500rad/s ),电路的品质因数Q = ( 100 )。

谐振电路

谐振编辑词条 B添加义项 ? 谐振电路(英语:Resonant circuit),泛指在交流RLC电路中,电压或电流为最大值时, 称之为谐振。即电感与电容各自的电抗互相抵消,电源所提供的功率都落在电阻上。谐振电 路常应用在无线电与无线通信。谐振频率 10 本词条正文缺少必要目录和内容, 欢迎各位编辑词条,额外获取10个积分。 基本信息 ? 中文名称 ? 谐振 ? ? 全称 ? 简谐振动 ? ? 表达式 ? F=-kx ? ? 应用 ? 收音机 ? ? 特点

? 容抗等于感抗 ? ? 条件 ? 由电感L和电容C串联 ? 目录1基本概念 2谐振解析 3电路谐振 4其他资料

基本概念折叠编辑本段 定义折叠 在物理学里,有一个概念叫共振:当策动力的频率和系统的固有频率相等时,系统受迫振动的振幅最大,这种现象叫共振。电路里的谐振其实也是这个意思:当电路中激励的频率等于电路的固有频率时,电路的电磁振荡的振幅也将达到峰值。实际上,共振和谐振表达的是同样一种现象。这种具有相同实质的现象在不同的领域里有不同的叫法而已。 应用折叠 收音机利用的就是谐振现象。转动收音机的旋钮时,就是在变动里边的电路的固有频率。忽然,在某一点,电路的频率和空气中原来不可见的电磁波的频率相等起来,于是,它们发生了谐振。远方的声音从收音机中传出来。这声音是谐振的产物。 谐振电路折叠 由电感L和电容C组成的,可以在一个或若干个频率上发生谐振现象的电路,统称为谐振电路。在电子和无线电工程中,经常要从许多电信号中选取出我们所需要的电信号,而同时把我们不需要的电信号加以抑制或滤出,为此就需要有一个选择电路,即谐振电路。另一方面,在电力工程中,有可能由于电路中出现谐振而产生某些危害,例如过电压或过电流。所以,对谐振电路的研究,无论是从利用方面,或是从限制其危害方面来看,都有重要意义。 §9.1 串联谐振的电路 一.谐振与谐振条件 二.电路的固有谐振频率

电工学电路中的谐振电子教案

教案首页第()次课授课时间(30分钟)

授课内容

由相量图可知:当电容电压和电感电压相等时,由于它们方向相反,电路中的总电压就等于电阻上的电压,总电压与总电流的相位相同,电路呈现电阻性,发生串联谐振。 C L U U = 两边同时除以电流可得: (二)串联谐振的特点 1. L 和C 串联部分相当于短路; 2. U L 和U C 将远远大于U 和U R ,串联谐振又称为电压谐振。 I U R U L U C =U 1 =谐振条件:ωn C ωn L X L = X C ? =谐振频率:? 1LC n =ωLC f n π21

例1、串联谐振在电力工程中的应用: 对MOA 避雷器作的高压实验——几十万伏工频电压 例2、下图为收音机的接收电路,各地电台所发射的无线电电波在天 线线圈中分别产生各自频率的微弱的感应电动势 e 1 、e 2 、e 3 、…调节可变电容器,使某一频率的信号发生串联谐振,从而使该频率的电台信号在输出端产生较大的输出电压,以起到选择收听该电台广播的目的。 三、并联谐振 (一) 谐振的条件及谐振频率 由并联电路的特点可知:电阻、电容和电感两端的电压与电源总电压的大小是相等的,而电压、电流又都是相量,所以先画出并联交流电路的相量图。我们以电压为参考相量: e R L C 1e 2e 3u o + -+ -+ -- +

由相量图可知:当电容电流和电感电流相等时,由于它们方向相反, 电路中的总电流就等于电阻上的电流,总电压与总电流的相位相同,电路呈现电阻性,发生并联谐振。 C L I I = 由于并联电路两端的电压相等,可得: I L I C I R I ++= U I C I L I R = I 谐振条件:ωn C 1 ωn L =X L = X C ? 1 谐振频率:? LC n 1=ωLC f n π2=

电阻对理想RLC串联谐振电路频率特性的影响

姓名班级学号 实验日期 5.28 节次7.8 教师签字成绩 电阻对理想RLC串联谐振电路频率特性的影响 1.实验目的 1.测量分析由于信号源内阻、电容及电感电阻存在所导致的实验常用简单无源滤波器滤波性能变化。 2.分析电阻值大小会对无源滤波器的滤波影响变化趋势并尝试提出实际缩小误差的方案。 2.总体设计方案或技术路线 1. 在实际中由于电源内阻、电感电阻、电容阻值的影响,谐振电路的频率特性会受到 各种各样的的影响,本实验期望通过对于带通滤波器仿真及实际实验测量分析电阻在各个元件中以及电源中的存在对于频率特性的影响。 2.在仿真实验中,由于各元件都是理想状态,因而可以直接将相应原件与一适宜大小的 电阻进行串联 3.实验电路图 4.仪器设备名称、型号 交直流实验箱 示波器 数字万用表 函数信号发生器 直流稳压电源、各型号电感电容以及导线等

5. 电感内阻 电容内阻 Frequency V(R2:1)+ V(C1:1) Frequency V(R2:1)+ V(L1:1)

3.0V 2.0V 1.0V 0V 1.0Hz 3.0Hz10Hz30Hz100Hz300Hz 1.0KHz 3.0KHz10KHz30KHz100KHz V(R1:1)+ V(R2:1) Frequency 电阻增加 V(R1:1) Frequency 电源内阻 其中所有电阻变化在图线下标中均为从左向右依次增加,第一个为1nΩ,模拟0内阻的时候,其余四个为10Ω,100Ω,1kΩ,10kΩ

6.详细实验步骤及实验结果数据记录(包括各仪器、仪表量程及内阻的记录) 测量电源内阻影响 1.按照电路图连接电路,并检查个部分工作是否正常。 2.对电源进行串连一个电阻箱,并调节相应电阻值。 3.调节信号源频率,使获得最大信号强度,记录此时频率f0。 4.在此频率基础上测量获得两个截止频率,并在其中选取相应频率值记数。 5.改变电阻值,再次测量。 信号源频率 /Hz 10 80 149 180 210 f0 223 输出电压/mv 30.9 266 582 726 810 821 信号源频率 /Hz 260 310 340 400 1k 电阻值Ω 输出电压/mv 777 652 581 469 160 0 信号源频率 /Hz 10 40 144 170 210 f0 223 输出电压/v 30.9 126 536 645 750 758 信号源频率 /Hz 270 290 352 500 2k 电阻值Ω 输出电压/v 705 663 535 349 77.1 100 信号源频率 /Hz 20 80 110 150 190 f0 223 输出电压/v 61.8 239 316 394 437 446 信号源频率 /Hz 280 340 464 600 1k 电阻值Ω 输出电压/v 430 392 315 251 155 1k 相应修正:信号源电压Vrms=1v,C=5uF,L=1H,Rl=146Ω 测量电感内阻影响 1.按照电路图连接电路,并检查个部分工作是否正常。

交流电路的谐振

交流电路的谐振 【实验目的】 1. 测量交流电路串联与并联的幅频特性; 2. 观测与分析交流电路的谐振现象; 3.学习并掌握交流电路谐振参数Q 值特性。 【实验原理】 1. 串联谐振电路: 如下所示电路图,取电流矢量方向为正向,可得如下矢量图: 由此,可看出在垂直方向电压矢量的分量为C L U -U ,水平分量为R U ,故总电压为: ()2 C L 2R U -U U U += (1) 总阻抗: 22 R C 1-L Z +??? ? ?=ωω (2) 总电压与电流矢量的位相差为: R C 1 -L arctan ωωψ= (3) 从以上各式可看出,阻抗Z 和相位差φ都是角频率ω的函数,所以有如下几条结论: 谐振频率:当LC 10==ωω时,Z 取最小值,这是电路发生共振,即谐振频率πω 20=f , 电路呈现电阻性; 电压谐振:串联谐振电路中电感上电压超前电流 2π,而电容上电压比电流滞后2 π ,两者相

位差为π,故对于总电压来说相互抵消,并且此时两者大小是相等的。定义电路的品质因数: RC R L U U U U Q C L 001 ωω==== (4) 可见,串联谐振电路中电容和电感上的电压总是总电压的Q 倍,所以串联谐振又叫做电压谐振。 并联谐振电路: 如右图所示电路图,可以计算得L 和C 并联电路的总阻抗: 2 222 2)()1()(L L CR LC L R Z ωωω+-+= (5) L 和C 并联电路总电压和电流的相位差为: () [ ]L L R L R C L 22 arctan ωωωψ+-= (6) 由以上两式可看出: 谐振频率:使φ=0,计算出谐振频率: 2 01?? ? ??-= L R LC L ω (7) 当忽略电感元件的直流电阻时,并联谐振频率公式和串联谐振频率公式是一样的; 电流谐振:在并联电路谐振的情况下,将谐振频率代入(5)、(6)两式,可算出并联电路的两支路电流:L C U I I all L C == (8) 和总电流: C R L U I L all = (9) 可见,并联谐振时两支路电流大小相等,位相相反,定义品质因数: C R I I I I Q L C L 01 ω=== (10) 并联谐振时各支路电流为总电流的Q 倍,所以并联谐振又叫做电流谐振。 【实验仪器】 信号发生器,频率计,交流毫伏表,电阻箱,标准电感,十进电容箱,单刀双掷开关等。 【实验内容】 1. 测绘串联电路的谐振曲线(I-f 曲线): 按上图接线,U=3v ,R=100Ω,L=0.1H ,C=0.5μF ,改变f (从200Hz 到1400Hz )每100Hz 测量电阻R 俩端的电压U R ,并

RLC串、并联谐振回路的基本特性

RLC串、并联谐振回路的基本特性 老师网 https://www.doczj.com/doc/783307152.html, 时间:2008-09-22 15:57:24 LC 串并联谐振回路特性实验 一、实验目的 1、掌握LC 振荡回路的谐振原理。 2、掌握LC 串并联谐振回路的谐振特性。 3、掌握LC 串并联谐振回路的选频特性。 二、实验内容 测量LC 串并联谐振回路的电压增益和通频带,判断选择性优劣。 三、实验仪器 1、扫频仪一台 2、20MHz 模拟示波器一台 3、数字万用表一块 4、调试工具一套 四、实验原理 (一)基本原理 在高频电子线路中,用选频网络选出我们所需的频率和滤除不需要的频率成分。通 常,在高频电子线路中应用的选频网络分为两类。第一类是由电感和电容元件组成的振 荡回路(也称谐振回路),它又可以分为单振荡回路以及耦合振荡回路;第二类是各种 滤波器,如LC 滤波器,石英晶体滤波器、陶瓷滤波器和声表面滤波器等。本实验主要 介绍第一类振荡回路。 1、串联谐振回路 信号源与电容和电感串联,就构成串联振荡回路。电感的感抗值( wL )随信号频 率的升高而增大,电容的容抗值( wC 1 )则随信号频率的升高而减小。与感抗或容抗的 变化规律不同,串联振荡回路的阻抗在某一特定频率上具有最小值,而偏离特定频率时 的阻抗将迅速增大,单振荡回路的这种特性为谐振特性,这特定的频率称为谐振频率。 图2-1 所示为电感L、电容C 和外加电压Vs 组成的串联谐振回路。图中R 通常是 电感线圈损耗的等效电阻,电容损耗很小,一般可以忽略。

图2-1 串联振荡回路 保持电路参数R、L、C 值不变,改变外加电压Vs 的频率,或保持Vs 的频率不变, 而改变L 或C 的数值,都能使电路发生谐振(回路中的电流的幅度达到最大值)。在某一特定角频率 w0 时,若回路电抗满足如下条件: (2-1) 则电流为最大值,回路发生谐振。上式称为串联谐振回路的谐振条件。 回路发生串联谐振的角频率w0 和频率f0 分别为: (2-2) 将式(2-2)代入式(2-1)得 (2-3) 我们把谐振时的回路感抗值(或容抗值)与回路电阻R 的比值称为回路的品质因数, 以Q 表示,简称Q 值,则得 (2-4) 若考虑信号源内阻Rs 和负载RL 后,串联回路的电路如图2-2 所示。由于Rs 和RL 的接入使回路Q 值下降,串联回路谐振时的等效品质因数 QL 为

大学物理实验报告系列之RLC电路的谐振

【实验名称】 RLC 电路的谐振 【实验目的】 1、研究和测量RLC 串、并联电路的幅频特性; 2、掌握幅频特性的测量方法; 3、进一步理解回路Q 值的物理意义。 【实验仪器】 音频信号发生器、交流毫伏表、标准电阻箱、标准电感、标准电容箱。 【实验原理】 一、RLC 串联电路 1.回路中的电流与频率的关系(幅频特性) RLC 交流回路中阻抗Z 的大小为: () 2 2 '1??? ? ? -++= ωωC L R R Z (32-1) ???? ? ??????? +-=R R C L arctg '1ωω? (32-3) 回路中电流I 为: )1()'(2ω ωC L R R U Z U I - ++== (32-4) 当01 =- ω ωC L 时, = 0,电流I 最大。 令即振频率并称为谐振角频率与谐的角频率与频率分别表示与,,000=?ωf : LC f LC πω21100= = (32-5) 如果取横坐标为ω,纵坐标为I ,可得图32-2所示电流频率特性曲线。 2.串联谐振电路的品质因数Q C R R L Q 2)'(+= (32-7) QU U U C L == (32-8) Q 称为串联谐振电路的品质因数。当Q >>1时,U L 和U C 都远大于信号源输出电 压,这种现象称为LRC 串联电路的电压谐振。 Q 的第一个意义是:电压谐振时,纯电感和理想电容器两端电压均为信号源电 压的Q 倍。 1 20 1 20f f f Q -= -= ωωω (32-12) 显然(f 2-f 1)越小,曲线就越尖锐。 Q 的第二个意义是:它标志曲线尖锐程度,即电路对频率的选择性,称 f (= f 0 / Q )为通频带宽度。 3.Q 值的测量法

交流谐振电路-实验报告

University of Science and Technology of China 96 Jinzhai Road, Hefei Anhui 230026,The People ’s Republic of China 交流谐振电路 李方勇 PB05210284 0510 第29组2号(周五下午) 实验题目 交流谐振电路 实验目的 研究RLC 串联电路的交流谐振现象,学习测量谐振曲线的方法,学习并掌握电路品质因素Q 的测量 方法及其物理意义。 实验仪器 电阻箱,电容器,电感,低频信号发生器以及双踪示波器。 实验原理 1. RLC 交流电路 由交流电源S ,电阻R ,电容C 和电感L 等组成 交流电物理量的三角函数表述和复数表述 ()() φ?φ?+=+=t j Ee t E e cos 式中的e 可以是电动势、电压、电流、阻抗等交流电物理量,?为圆频率,φ 为初始相角。电阻R 、电容C 和电感串联电路 电路中的电流与电阻两端的电压是同相位的,但超前于电容C 两端的电压2π ,落后于电感两端的电压2π 。 电阻阻抗的复数表达式为 R Z R = 模R Z =

电容阻抗的复数表达式为 C j e C Z j C? ? π1 1 2= =- 模C Z C? 1 = 电感阻抗的复数表达式为 L j Le Z j L ? ? π = =2 模 L Z L ? = 电路总阻抗为三者的矢量和。由图,电容阻抗与电路总阻抗方向相反,如果满足 L c ? ? = 1 , 则电路总阻抗为R,达到最小值。这时电流最大,形成所谓“电流谐振”。调节交流电源(函数发生器)的频率,用示波器观察电阻上的电压,当它达到最大时的频率即为谐振频率。电路如下图。 电路参数–电动势电压,电流,功率,频率 元件参数–电阻,电容,电感 实验内容 1.观测RLC串联谐振电路的特性 (1)按照上图连接线路,注意保持信号源的电压峰峰值不变,蒋Vi和Vr接入双踪示波器的CH1和CH2(注意共地) (2)测量I-f曲线,计算Q值 (3)对测得的实验数据,作如下分析处理: 1)作谐振曲线I-f,由曲线测出通频带宽 2)由公式计算除fo的理论值,并与测得的值进行比较,求出相对误差。

RLC串联电路谐振练习题

一、选择题 1、RLC 并联电路在f 0时发生谐振,当频率增加到2f 0时,电路性质呈( ) A 、电阻性 B 、电感性 C 、电容性 2、处于谐振状态的RLC 串联电路,当电源频率升高时,电路将呈现出( ) A 、电阻性 B 、电感性 C 、电容性 3、下列说法中,( )是正确的。 A 、串谐时阻抗最小 B 、并谐时阻抗最小 C 、电路谐振时阻抗最小 4、发生串联谐振的电路条件是( ) A 、R L 0ω B 、LC f 1 0= C 、LC 1 0=ω 5、在RLC 串联正弦交流电路,已知XL=XC=20欧,R=20欧,总电压有效值为220V ,电感上的电压为( )V 。 A 、0 B 、220 C 、 6、正弦交流电路如图所示,已知电源电压为220V ,频率f=50HZ 时,电路发生谐振。现将电源的频率增加,电压有效值不变,这时灯泡的亮度( )。 A 、比原来亮 B 、比原来暗 C 、和原来一样亮 7、正弦交流电路如图所示,已知开关S 打开时,电路发生谐振。当把开关合上时,电路呈 现( )。 A 、阻性 B 、感性 C 、容性 二、计算题 1、在RLC 串联电路中,已知L=100mH,R=Ω,电路在输入信号频率为400Hz 时发生谐振,求电容C 的电容量和回路的品质因数. 2、 一个串联谐振电路的特性阻抗为100Ω,品质因数为100,谐振时的角频率为1000rad/s,试求R,L 和C 的值. 3、一个线圈与电容串联后加1V 的正弦交流电压,当电容为100pF 时,电容两端的电压为100V 且最大,此时信号源的频率为100kHz,求线圈的品质因数和电感量。 4、已知一串联谐振电路的参数Ω=10R ,mH 13.0=L ,pF 558=C , 外加电压5=U mV 。

交流谐振电路

交流谐振电路 实验报告 4 原始数据: ⑴400R =Ω时: 4.914f KHz = 41L V V = 39.5C V V = ⑵ 时: 4.911f KHz = 31L V V = 29.5C V V = 注:⑴由于10号机器无法调试,因此与[PB05007101 吴尧]合作,试验用9号机器。 ⑵0.2L H =,0.005C F μ=,80L R =Ω 数据处理: ⒈由公式0γ= 0γ的理论值: 由已知数据0.2L H =,0.005C F μ=,带入公式0f = 0 5.03f kHz = =√ ⒉作谐振曲线I v -如下:

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 Y A x i s T i t l e X Axis Title √ ⑴400R =Ω时: U /V f/kHz 通过上图可得出: 5.13 4.710.42f kHz =-= 4.914f KHz = 0 5.03 4.92 2.19%5.03 f -= =√ ⑵600R =Ω时:

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 Y A x i s T i t l e X Axis Title 通过上图可得出: 20630.57f kHz =5.-4.= 4.911f KHz = 0 5.03 4.91 2.39%5.03 f -= =√ ⒊品质因数Q 的计算: ⑴400R =Ω时: ①302 4.92100.2 12.8840080 L L Q R R ωπ???===++√ ②39.514.412.74 C i V Q V = ==╳ ③4114.962.74 L i V Q V = ==╳ ④00 4.9211.70.42 f Q f = ==√ ⑵600R =Ω时: ①02 4.910.2 9.0760080 L L Q R R ωπ??= = =++√

大学物理实验报告系列之RLC电路的谐振

大学物理实验报告系列之 R L C电路的谐振 Prepared on 22 November 2020

【实验名称】 RLC 电路的谐振 【实验目的】 1、研究和测量RLC 串、并联电路的 幅频特性; 2、掌握幅频特性的测量方法; 3、进一步理解回路Q 值的物理意 义。 【实验仪器】 音频信号发生器、交流毫伏表、标准电阻 箱、标准电感、标准电容箱。 【实验原理】 一、RLC 串联电路 1.回路中的电流与频率的关系(幅 频特性) RLC 交流回路中阻抗Z 的大小为: () 2 2 '1??? ? ? -++= ωωC L R R Z (32-1) ?? ?? ? ???????+-=R R C L arctg '1ωω? (32-3) 回路中电流I 为: ) 1 ()'(2ω ωC L R R U Z U I -++== (32-4) 当01 =- ω ωC L 时, = 0,电流I 最大。 令 振频 并称为谐振角频率与谐的角频率与频率分别表示与,000=?ωf : LC f LC πω21100= = (32-5) 如果取横坐标为ω,纵坐标为I ,可得图 32-2所示电流频率特性曲线。 2.串联谐振电路的品质因数Q C R R L Q 2)'(+= (3 2-7) QU U U C L == (3 2-8) Q 称为串联谐振电路的品质因数。当Q >>1时,U L 和U C 都远大于信号源输 出电压,这种现象称为LRC 串联电路的电压谐振。

Q 的第一个意义是:电压谐振时,纯电感和理想电容器两端电压均为信号源 电压的Q 倍。 1 20 120 f f f Q -= -=ωωω (32-12) 显然(f 2-f 1)越小,曲线就越尖锐。 Q 的第二个意义是:它标志曲线尖锐程度,即电路对频率的选择性,称 f (= f 0 / Q )为通频带宽度。 3.Q 值的测量法 (1)(电压)谐振法 (2)频带宽度法 二、LRC 串并混联电路——LR 和C 并联电路 图32-3 LRC 串并混联电路 当交流电的角频率满足关系式: 2)(1L R LC -= ω时,信号源的输出电压也与输出电流相同。同样,令P p f )()(00与ω分 别表示 = 0的角频率与频率,或者称为谐 振角频率和谐振频率,a ,b 两点的阻抗为|Z P |,则: 20)(1)(L R LC p -= ω (32-14) 2)(121)(L R LC f p o -= π (32-15) 当 2)(1L R LC >>时,LR 和C 并联电路的谐振频率与LRC 串联电路的谐振频率近似相等。式(32-14)可改写成为: 2 001 1)(Q p - =ωω (32-16) 【实验内容】 1、测量RLC 串联电路的谐振特性 2.用电压谐振法确定Q 值。 【数据表格与数据记录】 f U R -变化曲线图: 由图示可知,电压为的频率为 Hz f 791.41= Hz f 272.52= 【小结与讨论】

串联谐振电路分析

外施耐压串联谐振电路分析 已知:串联谐振装置电抗器组合方式为两串三并(即三条并联支路上各有两个电抗器串联起来),单个电抗器电感值为L ,单个电抗器电阻值为r ,所有电抗器的铭牌参数均一致。被试品电容值为C ,试验中被试品加压到U ,励磁变选用的高低压抽头电压变比为K ,励磁变视在功率S ,励磁变额定电压U o ,励磁变额定电流为I o ,被试品加压到U 时励磁变的损耗为P 损耗。 一.需计算量如下: 1.画出串联谐振时整个电路的基本电路图。 2.画出谐振时高压侧的向量图。 3.串联谐振频率f 的计算公式。 f= LC 21 π(本题装置串联谐振频率f=LC 832 π) 4.串谐高压侧电路电流I 高压侧的计算公式,并且算出分配到单个电抗器的电 流,电压时多少? I 高压侧=U jC f 2 π;谐振时:分配到单个电抗器电流L I = LC UC 6;

分配到单个电抗器电压L U =2 U -。 5.串谐低压侧电路电流I 低压侧的计算公式。 I 低压侧=U jC f 2 **πK 6.电路品质因数Q (放大倍数)的计算公式。 Q= wCR 1或R wL (本题装置串联谐振品质因数Q=C 232 r L ) 7.被试品或电抗器组合的无功功率Q 无功计算公式。 Q 无功=2U jC f 2 *π 或L 2233U C f j8- *π (=L 32L,本题Q 无功= 3 L U C f j16-2233 *π ) 8.串联谐振高压侧有功功率P 计算公式。 P=R 2222U C f 4 - *π (=R 32r 本题P=3 r U C f 8-2222 *π) 9.串联谐振高压侧电路总功率P 总计算公式。 P 总=2U jC f 2 *πL 2233U C f j8- *πR 2222U C f 4- *π 化简 P 总 = ()jCR f 2-CL f 4-1U jC f 22***πππ (= L 32L ;=R 32r 本题P 总=?? ? ??***3jCr f 4-3CL f 8-1U jC f 22πππ ; 谐振时P 总=R 2 2 2 2U C f 4- *π=3 r U C f 8-2 222 *π) 10.励磁变输出高压U 输出,I 输出,P 输出计算公式。 I 输出=U jC f 2 *π U 输出=U jC f 2 *π(C L R j f 21 j f 2*+*+ππ) (= L 32L ;=R 32r 本题U 输出=U jC f 2 *π(C j f 213jL f 43r 2*+*+ππ))

串联谐振电路和并联谐振电路的特性

串联谐振电路和并联谐振电路的特性 一..并;联谐振电路:当外来频率加于一并联谐振电路时,它有以下特性: 1.当外加频率等于其谐振频率时其电路阻抗呈纯电阻性,且有最大值,它这个特性在实际应用中叫做选频 电路. 2.当外加频率高于其谐振频率时,电路阻抗呈容性,相当于一个电容. 3.当外加频率低于其谐振频率时,这时电路呈感性,相当于一个电感线圈. 所以当串联或并联谐振电路不是调节在信号频率点时,信号通过它将会产生相移.(即相位失真) 二.串联谐振电路:当外来频率加于一串联谐振电路时,它有以下特性: 1.当外加频率等于其谐振频率时其电路阻抗呈纯电阻性,且有最少值,它这个特性在实际应用中叫做陷波 器. 2.当外加频率高于其谐振频率时,电路阻抗呈感性,相当于一个电感线圈. 3.当外加频率低于其谐振频率时,这时电路呈容性,相当于一个电容. 并联谐振与串联谐振 2010-03-03 15:49:30| 分类:电子电路| 标签:|字号大中小订阅 1、对于理想的L、C元件,串联谐振发生时,L、C元件上的电压大小相等、方向相反,总电压等于0(谐振阻抗为零)。而并联谐振发生时,L、C元件中的电流大小相等、方向相反,总电流等于0(谐振阻抗为 无穷大)。故有如题的称呼。 2、无论是串联还是并联谐振,在谐振发生时,L、C之间都实现了完全的能量交换。即释放的磁能完全转 换成电场能储存进电容;而在另一时刻电容放电,又转换成磁能由电感储存。 3、在串联谐振电路中,由于串联——L、C流过同一个电流,因此能量的交换以电压极性的变化进行;在 并联电路中,L、C两端是同一个电压,故能量的转换表现为两个元件电流相位相反。 4、谐振时电感和电容还是两个元件,否则不能进行能量交换;但从等效阻抗的角度,是变成了一个元件: 数值为零或无穷大的电阻。 5、串联谐振是电流谐振,一般起电流放大作用。如老式收音机通过串联谐振将微弱电流信号放大。并联谐 振是起电压放大作作。

(完整版)第十一章电路的频率响应

第十一章 电路的频率响应 11-1 网络函数 11-2 RLC 串联电路的谐振 11-3 RLC 串联电路的频率响应 11-4 RLC 并联谐振电路 11-5 波特图 11-6 滤波器简介 重点 1. 网络函数 2. 串、并联谐振的概念 11-1 网络函数 当电路中激励源的频率变化时,电路中的感抗、容抗将跟随频率变化,从而导致电路的工作状态亦跟随频率变化。因此,分析研究电路和系统的频率特性就显得格外重要。 频率特性 电路和系统的工作状态跟随频率而变化的现象,称为电路和系统的频率特性,又称频率响应。 1. 网络函数H (j ω)的定义 在线性正弦稳态网络中,当只有一个独立激励源作用时,网络中某一处的响应(电压或电流)与网络输入之比,称为该响应的网络函数。 def (j )(j )(j ) R H E ωωω=

2. 网络函数H(j ω)的物理意义 ⑴ 驱动点函数 激励是电流源,响应是电压 策动点阻抗 激励是电压源,响应是电流 策动点导纳 ⑵ 转移函数(传递函数) 激励是电压源 转移导纳 转移电压比 (j ) I ω(j U 1(U 1(j )I ω(j )(j )(j ) U H I ωωω= (j )(j )(j ) I H U ωωω= 21(j )(j )(j )I H U ωωω= 21(j ) (j )(j ) U H U ωωω=

激励是电流源 转移阻抗 转移电流比 注意 ①H(j ω)与网络的结构、参数值有关,与输入、输出变量的类型以及端口对的相互位置有关,与输入、输出幅值无关。因此网络函数是网络性质的一种体现。 ②H(j ω) 是一个复数,它的频率特性分为两个部分: 幅频特性 :模与频率的关系 ()H j ωω - 相频特性:幅角与频率的关系 ()j ?ωω - ③网络函数可以用相量法中任一分析求解方法获得。 例1-1 求图示电路的网络函数 2 S I U ? ? 和 L S U U ? ? 解:列网孔方程解电流 _ 2 I 1 I 21(j ) (j )(j ) U H I ωωω= 21(j ) (j )(j ) I H I ωωω= 12s 12(2j )22(4j )0 I I U I I ωω?+-=??-++=??s 2224(j )j6U I ωω = ++

谐振电路的设计及分析

谐振电路的设计及分析 谐振电路 1.实验目的: 1. 掌握谐振电路、相量法的相关知识 2. 掌握利用Mulstim软件分析验证相关的原理 3. 加深对谐振的理解。 2.实验原理: 在具有电阻R、电感L和电容C元件的交流电路中,电路两端的电压与其中电流位相一般是不同的。如果我们调节电路元件(L或C)的参数或电源频率,可以使它们位相相同,整个电路呈现为纯电阻性。电路达到这种状态称之为谐振。 串联: 1)条件:ω=ω0=1/√LC f=f0=1/2π√LC 2)当在谐振时的感抗和容抗在量值上相等,其值称为谐振电路的特性阻抗,其值为ω0L= 3)品质因数:Q== 并联: 1)条件:ω=ω0=1/√LC f=fo=1/2π√LC 2)品质因数:Q==R 3.实验步骤: 1)画出电路 2)算出理论值 3)利用Mulstim软件分析验证 4)得出结论

理论值: 串联 ?Im =C j L j R Usm ωω1 ++?=A A j j ?∠=-+∠0110010010010 i(t)=1cos105t A V j C j Ucm V V j L j Ulm V V R Urm ?-∠=?∠?-==?∠=?∠?==?∠=?∠?==? ?????9010001100Im 9010001100Im 0100110Im ωω u R (t)=10cos105t V u L (t)=100cos(105t+90°) V u C (t)=100cos(105t-90°) V Q==R =10=0.1 0= 并联

?Im =C j L j R Usm ωω1 1 ++?=A A j j ?∠=-+∠01.01001 i(t)=0.1cos103t A ?Irm =R ?Usm =A A ?∠=∠01.01001Ω i(t)=0.1cos103t A ?Ilm =L j Usm ω?=A A j ?-∠=∠90101 i(t)= 1cos (103t-90°) A ?Icm =C j Usm ω1 ?=A A j ?∠=-∠90101 i(t)=1cos (103t+90°) A Q==R =10=10 0= I I R I L I C

LC振荡电路的工作原理及特点

简单介绍LC振荡电路的工作原理及特点 LC振荡电路,顾名思义就是用电感L和电容C组成的一个选频网络的振荡电路,这个振荡电路用来产生一种高频正弦波信号。常见的LC振荡电路有好多种,比如变压器反馈式、电感三点式及电容三点式,它们的选频网络一般都采用LC并联谐振回路。这种振荡电路的辐射功率跟振荡频率的四次方成正比,如果要想让这种电路向外辐射足够大的电磁波的话,就必须提高其振荡频率,而且还必须是电路具备开放的形式。 LC振荡电路之所以有振荡,是因为该电路通过运用电容跟电感的储能特性,使得电磁这两种能量在交替转化,简而言之,由于电能和磁能都有最大和最小值,所以才有了振荡。当然,这只是一个理想情况,现实中,所有的电子元件都有一些损耗,能量在电容和电感之间转化是会被损耗或者泄露到外部,导致能量不断减小。所以LC 振荡电路必须要有放大元件,这个放大元件可以是三极管,也可以是集成运放或者其他的东西。有了这个放大元件,这个不断被消耗的振荡信号就会被反馈放大,从而我们会得到一个幅值跟频率都比较稳定的信号。 开机瞬间产生的电扰动经三极管V组成的放大器放大,然后由LC选频回路从众多的频率中选出谐振频率F0。并通过线圈L1和L2之间的互感耦合把信号反馈至三极管基极。设基极的瞬间电压极性为正。经倒相集电压瞬时极性为负,按变压器同名端的符号可以看出,L2的上端电压极性为负,反馈回基极的电压极性为正,满足相位平衡条件,偏离F0的其它频率的信号因为附加相移而不满足相位平衡条件,只要三极管电流放大系数B和L1与L2的匝数比合适,满足振幅条件,就能产生频率F0的振荡信号。 LC振荡电路物理模型的满足条件 ①整个电路的电阻R=0(包括线圈、导线),从能量角度看没有其它形式的能向内能转化,即热损耗为零。 ②电感线圈L集中了全部电路的电感,电容器C集中了全部电路的电容,无潜布电容存在。 ③LC振荡电路在发生电磁振荡时不向外界空间辐射电磁波,是严格意义上的闭合电路,LC电路内部只发生线圈磁场能与电容器电场能之间的相互转化,即便是电容器内产生的变化电场,线圈内产生的变化磁场也没有按麦克斯韦的电磁场理论激发相应的磁场和电场,向周围空间辐射电磁波。 能产生大小和方向都随周期发生变化的电流叫振荡电流。能产生振荡电流的电路叫振荡电路。其中最简单的振荡电路叫LC回路。 振荡电流是一种交变电流,是一种频率很高的交变电流,它无法用线圈在磁场中转动产生,只能是由振荡电路产生。 充电完毕(放电开始):电场能达到最大,磁场能为零,回路中感应电流i=0。 放电完毕(充电开始):电场能为零,磁场能达到最大,回路中感应电流达到最大。 充电过程:电场能在增加,磁场能在减小,回路中电流在减小,电容器上电量在增加。从能量看:磁场能在向电场能转化。 放电过程:电场能在减少,磁场能在增加,回路中电流在增加,电容器上的电量在减少。从能量看:电场能在向磁场能转化。 在振荡电路中产生振荡电流的过程中,电容器极板上的电荷,通过线圈的电流,以及跟电流和电荷相联系的

5交流电路_单选(65)

一、单项选择题(65小题) 1.某正弦电流的有效值为7.07A,频率f=100Hz,初相角?=-60?,则该电流的瞬时表达式为( )。 (a)i=5s i n(100πt-60?)A (b)i=7.07s i n(100πt+30?)A (c)i=10s i n(200πt-60?)A 2.用幅值(最大值)相量表示正弦电压u=537s i n(ωt-90?)V时,可写作( )。 (a) (b) (c) 3.用有效值相量来表示正弦电压u=380s i n(314t-90?)V时可写作=( )。 (a)22090?V (b)-j268.7V (c)j380V 4.若正弦电压u=U m s i n(ωt+?),则下列各相量表示式中,正确的是( )。 (a)u=m U e j(ωt+?) (b)=m e jωt (c)u=I m(e jωt)(取虚部) 5.如相量图所示的正弦电压施加于容抗X C=5Ω的电容元件上,则通过该元件的电流相量 =( )。 (a)2∠120?A (b)50∠120?A (c)2∠-60?A 6.已知两正弦交流电流i1=5s i n(314t+60?)A,i2=5s i n(314t-60?)A,则二者的相位关系是( )。 (a)同相 (b)反相 (c)相差120? 7.已知正弦交流电压u=100s i n(2πt+60?)V,其频率为( )。 (a)50Hz (b)2πHz (c)1Hz 8.已知某正弦电压的频率f=50Hz,初相角?=30?,在t=0.02s时瞬时值u(0.02)=100V,则其瞬时表达式可为( )。 (a)u=100s i n(50t+30?)V (b)u=141.4s i n(50πt+30?)V (c)u=200s i n(100πt+30?)V 9.在电感与电容并联的正弦交流电路中,当X C>X L时,电路呈现为( )。 (a)电感性 (b)电容性 (c)不可确定属性

串联谐振电路实验的心得体会

串联谐振电路实验的心得体会 篇一:实验九串联谐振电路实验 实验九 串联谐振电路实验 一、实验目的 1.测量RLC串联电路的谐振曲线,通过实验进一步掌握串联谐振的条件和特点。 2.研究电路参数对谐振特性的影响。 二、原理 1.RLC串联电路在图9-1所示的,RLC串联电路中,若取电阻R两端的电压为输出电压,则该电路输出电压与输入电压之比为: U2R ??U1R?j(?L?1) ?C ?L tg?1 R 1 图9-1 图9-2

2.幅频特性 电路网络输出电压与输入电压的振幅比随ω变化的性质,称为该网络的幅频特性,如图9-2所示。 3.谐振条件二阶带通网络的幅频特性出现尖峰的频率f0称为中心频率或谐振频率。此时,电路的电抗为零,阻抗值最小,等于电路中的电阻,电路成为纯电阻性电路,串联电路中的电流达到最大值。 电流与输入电压同相位。我们把电路的这种工作状态称为串联谐振状态。电路达到谐振状态的条件是: 1 ?0L=或 ?0 ?0C4.通频带宽 改变角频率ω时,振幅比随之变化,当振幅比下降到最大值的1/角频率ω1、ω2叫做3分贝角频率,相应的频率两个f1和f2称为3分贝频率。两个角频率之 差称为该网络的通频带宽: R BW??2-?1= L RLC串联电路幅频特性可以用品质因数Q来描述: ??L1Q?0?0 BWR?0CR

三、实验仪器和器材 1.函数信号发生器 2.示波器 3.电阻 4.电感5.电容 6.实验电路板 7.短接线 8.导线 四、实验内容及步骤 1.连接实验电路 按图9-3所示连接电路。其中,电感L= 33mH,电容C=μF,电阻R分别取620Ω和Ω,图中r为电感线圈本身的电阻。 图9-3 2.测绘谐振曲线 测量结果填入表9-1中。 表9-1 R=620Ω的谐振特性 3.研究电路参数对谐振曲线的影响 将图9-3中电阻改为Ω,重复2中步骤,结果填入表9-2中。 表9-2 R=Ω的谐振特性 4.计算通频带宽BW和品质因数Q 将计算结果填入表9-3中。 表9-3 通频带宽BW和品质因数Q 五、思考题 1. 实验中怎么样判断电路已经处于谐振状态?

06谐振电路分析解析

谐振电路分析 一、是非题 2.由R、L、C组成的串联电路,当其外加正弦电压源的角频率变为时,电路中的电流最大。 3.RLC串联电路谐振时,。 4.RLC串联电路谐振时,电路中的电流最大,因此L、C上的电压也一定大于电源电压。 5.RLC串联电路的通频带?f随着电阻R的增大而增大。 6.电感元件和电容元件组成并联谐振电路时,其电路的品质因数为无穷大;谐振时电路的等效阻抗也为无穷大。 7.图示电路,当发生电流谐振时,U C =0。 8.图示RLC串联电路,S闭合前的谐振频率与品质因数为f0与Q,S闭合后的谐振频率与品质因数为与Q',则,Q

10.图示RLC串联电路,未并联C2时,谐振角频率与品质因数分别为ω0与Q,并联C2后,谐振角频率与品质因数为ω0'与Q',则ω0>ω0',Q >Q'。 12.图示电路,当LC并联谐振时,U R =0。 2.答案(+) 3.答案(+) 4.答案(-) 5.答案(+) 6.答案(+) 7.答案(-)8.答案(+)9.答案(-)10.答案(+)12.答案(+)

二、单项选择题 1.RLC串联电路的串联谐振频率为。当fZ C (D)Z L=-Z C 3.图示相量模型,当其发生谐振时,输入阻抗为 (A)R (B)Z L (C)Z C (D)∞ 4.一个等效参数为R、L的线圈与电容器C串联接于36V正弦电源上。当发生电压谐振时,测得电容器两端电压为48V,线圈两端电压为 (A)36V (B)48V (C)60V (D)84V 5.图示电路处于谐振状态时,电压表与电流表的读数分别为: (A)5V与0.5A (B)10V与0A (C)0V与1A

相关主题
文本预览
相关文档 最新文档