北师大版八年级上册 第二章 2.1 认识无理数第二课时 教案
- 格式:doc
- 大小:86.00 KB
- 文档页数:6
八年级数学上册2.1认识无理数教学设计(新版北师大版)一. 教材分析《八年级数学上册2.1认识无理数》这一节,主要让学生了解无理数的概念,掌握无理数的性质,以及学会用有理数和无理数表示实数。
教材通过生活中的实例引入无理数的概念,接着引导学生通过观察、思考、探究,掌握无理数的性质。
在这一过程中,学生需要理解无理数与有理数的区别,以及无理数在实际生活中的应用。
二. 学情分析八年级的学生已经学习了有理数的概念和性质,具备一定的数学基础。
但是,对于无理数这一概念,学生可能较为陌生,难以理解。
因此,在教学过程中,教师需要结合学生的实际情况,从生活实例出发,引导学生逐步理解无理数的概念,并掌握无理数的性质。
三. 教学目标1.让学生了解无理数的概念,知道无理数是一种实数。
2.让学生掌握无理数的性质,能够辨别一个数是有理数还是无理数。
3.让学生理解无理数在实际生活中的应用,提高学生运用数学知识解决问题的能力。
四. 教学重难点1.重难点:无理数的概念和性质。
2.难点:理解无理数在实际生活中的应用。
五. 教学方法1.情境教学法:通过生活实例引入无理数的概念,让学生在实际情境中感受无理数。
2.启发式教学法:引导学生观察、思考、探究,从而掌握无理数的性质。
3.小组合作学习:让学生在小组讨论中,共同解决问题,提高学生的合作能力。
六. 教学准备1.教学课件:制作课件,展示无理数的定义、性质和实际应用。
2.教学素材:准备一些生活中的实例,用于引入无理数的概念。
3.练习题:准备一些有关无理数的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的实例,如圆的周长、声音的频率等,引导学生思考这些实例与数学的关系。
进而提出问题:“你知道无理数吗?无理数是什么?”让学生分享自己对无理数的理解。
2.呈现(15分钟)教师利用课件,详细讲解无理数的定义、性质和特点。
同时,通过展示一些实际应用的例子,让学生了解无理数在生活中的重要作用。
《认识无理数》教学设计第2课时一、教学目标1.探索无理数的定义,,并从中体会无限逼近的思想;2.能辨别出一个数是无理数还是有理数,训练学生的思维判断能力.3.在探索无理数是无限不循环小数的过程中,培养学生的估算能力,发展学生的抽象概括能力;4.充分调动学生参与数学问题的积极性,同时培养学生的合作精神,提高辨识能力.二、教学重难点重点:比较无理数与有理数的区别,能辨别出一个数是无理数还是有理数.难点:探索无理数是无限不循环小数的过程.三、教学用具多媒体、课件、计算器四、教学过程设计从而归纳出无理数的概念(无限不循环小数).问题:面积为2的正方形的边长a究竟是多少呢?能不能确定一下a的大致范围?预设答案:∵a2=2, 而12=1, 22=4,···∴12<a2<22 , 1< a< 2,而1.52=2.25, 2.25>2∴a的值一定小于1.5∴a的大致范围在1~1.5之间.问题:(1)如下图,三个正方形的边长之间有怎样的大小关系?预设答案:通过对比观察,可以直观得出:3个正方形的边长之间的大小关系为1<a<2.问题:(2)a的整数部分是几?十分位是几?百分位呢?千分位呢?借助计算器探索,用表格的形式整理.预设答案:分析:使用计算器计算a取不同值时的平方值,整理得到表格:预设答案:a的整数部分是1,十分位是4,百分位是1,千分位是4.追问:还可以继续算下去吗?a可能是有限小数吗?通过想一想提出问题来解决该追问.【想一想】边长a会不会算到某一位时,它的平方恰好等于2呢?为什么?a可能是有限小数吗?预设答案:假如a算到某一位时,它的平方恰好等于2,即a是一个有限小数,那么它的平方一定是一个有限小数,而不可能是2,所以边长a不会算到某一位时,它的平方恰好等于2,所以a不可能是有限小数.【做一做】(1)估计面积为5的正方形的边长b的值(结果精确到0.1),并用计算器验证你的估计.预设答案:使用计算器计算a取不同值的平方值,整理得到表格:列表格:从表格观察可知,面积为5的正方形的边长b的值满足:b2=5,经过计算器验证b≈2.2(结果精确到0.1)(2)如果结果精确到0.01呢?预设答案:使用计算器计算a取不同值的平方值,整理得到表格:列表格,在(1)的基础上面积为5的正方形的边长b 的值满足:b 2=5,经过计算器验b ≈2.24(结果精确到0.01) 结论:在等式a 2=2中,a =1.41421…,它是一个无限不循环小数.在等式b 2=5中,b =2.23606…,它是一个无限不循环小数.a ,b 不是整数,也不是分数,是无限不循环小数.【议一议】把下列各式表示成小数,你发现了什么? 4358235894511-,,,,,预设答案: 3 3.0=;40.85=;30.3758=;50.59=;80.1745-=-; 20.18.11=- 发现:有理数总可以用有限小数或无限循环小数表示.反过来,任何有限小数或无限循环小数也都是有理数.0.57,0.1010001000001的个数逐次加0.57是0.57,是有理数.…是无限不循环小数,∴根据无理数的定义,0.10100010000010.57;3.7,-判断下列说法是否正确:3.7,-思维导图的形式呈现本节课的主要内容:。
2.1 认识无理数本节课的教学目标是:1.借助计算器探索无理数是无限不循环小数,借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,并从中体会无限逼近的思想.2.探索无理数的定义,比较无理数与有理数的区别,并能辨别出一个数是无理数还是有理数,训练学生的思维判断能力.3.能够准确地将目前所学习的数按不同角度进行分类,并说明理由,进一步体会分类思想,培养学生解决问题的能力.4.充分调动学生参与数学问题的积极性,培养学生的合作精神,提高他们的辨识能力. 三 、教学过程设计本节课设计六个教学环节:第一环节:新课引入;第二环节:活动与探究;第三环节:知识分类整理;第四环节:知识运用与巩固;第五环节:课堂小结;第六环节:作业布置. 第一环节:新课引入内容:想一想:1. 有理数是如何分类的?整数(如1-,0,2,3,…) 有理数 分数(如31,52-,119,0.5,… ) 2. 除上面的数以外,我们还学习过哪些不同的数? 如圆周率π…上节课又了解到一些数,如22=a ,25=b 中的a ,b 不是整数,能不能转化成分数呢?那么它们究竟是什么数呢?本节课我们就来揭示它们的真面目. 第二个环节:活动与探究1. 探索无理数的小数表示内容:借助计算器以小组讨论的形式对面积为2的正方形的边长a 和面积为5的正方形的边长b进行估计.请看图,判断下面3个正方形的边长之间有怎样的大小关系?边长a的取值X围大致是多少?如何估算的?是否存在一个小数的平方等于2?说说你的理由.边长a面积s1<a<2 1<s<41.4<a1.41<a1.414<a1.4142<a归纳总结:a是介于1和2之间的一个数,既不是整数,也不是分数,则a一定不是有理数.如果写成小数形式,它们是无限不循环小数.请大家用上面的方法估计面积为5的正方形的边长b的值.2. 探索有理数的小数表示,明确无理数的概念请同学们以学习小组的形式活动:一同学举出任意一分数,另一同学将此分数表示成小数,并总结此小数的形式.议一议:分数化成小数,最终此小数的形式有哪几种情况?探究结论:分数只能化成有限小数或无限循环小数.即任何有限小数或无限循环小数都是有理数.强调:像0.585885888588885……,-…等这些数的小数位数都是无限的,并且不是循环的,它们都是无限不循环小数.我们把无限不循环小数叫做无理数.(圆周率π=3.14159265…也是一个无限不循环小数,故π是无理数).第三个环节:知识分类整理 有理数和无理数统称为实数。
新北师大版八年级上册《2.1.认识无理数》教案第二章实数2.1. 理解无理数教学目标(一)教学知识点1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.2.能判断给出的数是否为有理数;并能说出理由.(二)能力培训要求1.让学生亲自动手做拼图活动,感受无理数存在的必要性和合理性,培养大家的动手能力和合作精神.2.通过回顾有理数的有关知识,能正确地进行推理和判断,识别某些数是否为有理数,训练他们的思维判断能力.(三)情感和价值要求1.激励学生积极参与教学活动,提高大家学习数学的热情.2.引导学生充分开展交流、讨论、探究等教学活动,培养学生的合作与研究精神3.了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋斗的献身精神.教学重点1.让学生经历无理数发现的过程.感知生活中确实存在着不同于有理数的数.2.会判断一个数是否为有理数.教学困难1.把两个边长为1的正方形拼成一个大正方形的动手操作过程.2.判断一个数是否为有理数.教具有两个边长为1的正方形,剪刀.投影片两张:第一页:动手(记录为§2.1.1a);表2:补充练习(记录为§2.1.1b)教学过程ⅰ. 创造问题情境,介绍新课程:[师]同学们,我们上了好多年的学,学过不计其数的数,概括起来我们都学过哪些数呢?[生]在小学我们学过自然数、小数、分数.[生]在初一我们还学过负数.是的,我们在小学学过非负数。
在初中的第一天,我们发现数字是不够的。
我们引入了负数,也就是说,我们把小学里学到的正数和零扩展到了有理数的范围。
有理数包括整数和分数。
有理数的范围能满足我们实际生活的需要吗?现在让我们一起研究这个问题ⅱ. 教授新课程1.问题的提出[师]请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形,好吗?[生]好.(学生非常高兴地投入活动中).【老师】通过大家的共同努力,每个小组都完成了任务。
第二章实数2.1 认识无理数第一环节:质疑内容:【想一想】⑴一个整数的平方一定是整数吗?⑵一个分数的平方一定是分数吗?目的:作必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理.效果:为后续环节的进行起了很好的铺垫的作用第二环节:课题引入内容:1.【算一算】已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长x的平方,并提出问题:x是整数(或分数)吗?2.【剪剪拼拼】把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形,你会吗?目的:选取客观存在的“无理数“实例,让学生深刻感受“数不够用了”.效果:巧设问题背景,顺利引入本节课题.第三环节:获取新知内容:【议一议】→【释一释】→【忆一忆】→【找一找】a=,请问:①a可能是整数吗?②a可能是分数吗?【议一议】:已知22a=的a为什么不是整数?【释一释】:释1.满足22a=的a为什么不是分数?释2.满足22【忆一忆】:让学生回顾“有理数”概念,既然a不是整数也不是分数,那么a一定不是有理数,这表明:有理数不够用了,为“新数”(无理数)的学习奠定了基础【找一找】:在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段目的:创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存在,从而激发学习新知的兴趣效果:学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,产生了学习新数的必要性.第四环节:应用与巩固内容:【画一画1】→【画一画2】→【仿一仿】→【赛一赛】【画一画1】:在右1的正方形网格中,画出两条线段:1.长度是有理数的线段 2.长度不是有理数的线段【画一画2】:在右2的正方形网格中画出四个三角形 (右1)2.三边长都是有理数 2.只有两边长是有理数3.只有一边长是有理数 4.三边长都不是有理数【仿一仿】:例:在数轴上表示满足()220x x =>的x解: (右2)仿:在数轴上表示满足()250x x =>的x【赛一赛】:右3是由五个单位正方形组成的纸片,请你把它剪成三块,然后拼成一个正方形,你会吗?试试看! (右3)目的:进一步感受“新数”的存在,而且能把“新数”表示在数轴上 效果:加深了对“新知”的理解,巩固了本课所学知识.第五环节:课堂小结内容: 1.通过本课学习,感受有理数又不够用了, 请问你有什么收获与体会?2.客观世界中,的确存在不是有理数的数,你能列举几个吗?3.除了本课所认识的非有理数的数以外,你还能找到吗?目的:引导学生自己小结本节课的知识要点及数学方法,使知识系统化.效果:学生总结、相互补充,学会进行概括总结.第六环节:布置作业习题2.1教学设计反思(一)生活是数学的源泉,兴趣是学习的动力大量事实都证明一点,与生活贴得越近的东西最容易引起学习者的浓厚兴趣,才能激发学习者的学习积极性,学习才可能是主动的.本节课中教师首先用拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验呈现出来,然后进行大胆置疑,生活中的数并不都是有理数,那它们究竟是什么数呢?从而引发了学生的好奇心,为获取新知,创设了积极的氛围.在教学中,不要盲目的抢时间,让学生能够充分的思考与操作.(二)化抽象为具体常言道:“数学是锻炼思维的体操”,数学教师应通过一系列数学活动开启学生的思维,因此对新数的学习不能仅仅停留于感性认识,还应要求学生充分理解,并能用恰当数学语言进行解释.正是基于这个原因,在教学过程中,刻意安排了一些环节,加深对新数的理解,充分感受新数的客观存在,让学生觉得新数并不抽象.(三)强化知识间联系,注意纠错既然称之为“新数”,那它当然不是有理数,亦即不是整数,也不是分数,所以“新数”不可以用分数来表示,这为进一步学习“新数”,即第二课时教学埋下了伏笔,在教学中,要着重强调这一点:“新数”不能表示成分数,为无理数的教学奠好基.。
2.1认识无理数
(第二课时)
一、教学目标叙写
1.学生通过预习教材22-23页,初步感知无理数的估算过程. 2.学生通过合作探究“活动1”部分,让学生有充分的时间进行思考和交流,逐渐地缩小范围,借助计算器探索出a =1.41421356…,b =2.2360679…,是无限不循环小数的过程,体会无限逼近的思想,通过学生的活动2并探究得出无理数的概念.
3.学生通过交流知识点、易错点和思想方法,培养学生归纳能力和有条理的表达能力.
4.学生通过完成“五、当堂评价”,能正确地对给出的数进行分类,加深对有理数和无理数的理解.
二、教学重难点
1.重点:了解无理数与有理数的区别并能正确判断.
2.难点:无理数概念的建立及估算,会判断一个数是无理数还是有理数.
三、教学过程
(一)、复习引入
1. 有理数是如何分类的?
整数(如1-,0,2,3,…)
有理数
分数(如31,52-,119,0.5,… )
2. 除上面的数以外,我们还学习过哪些不同的数? 如圆周率π,
0.020190002…上节课又了解到一些数,如22=a ,25=b 中的a ,b 不
是整数,能不能转化成分数呢?那么它们究竟是什么数呢?本节课我们就来揭示它们的真面目.
(二)、自主探究
1.探索无理数的小数表示
请看图,判断下面3个正方形的边长之间有怎样的大小关系?边长a的取值范围大致是多少?如何估算的?是否存在一个小数的平方等于2?说说你的理由.
(归纳总结:a是介于1和2之间的一个数,既不是整数,也不是分数,则a一定不是有理数.如果写成小数形式,它们是无限不循环小数).
[生]因为3个正方形的面积分别为1,2,4,而面积又等于边长的平方,所以面积大的正方形边长就大.
[师]大家能不能判断一下面积为2的正方形的边长a的大致范围呢?
[生]因为a2大于1且a2小于4,所以a大致为1点几.
[师]很好.a肯定比1大而比2小,可以表示为1<a<2.那么a 究竟是1点几呢?请大家用计算器进行探索,首先确定十分位,十分位究竟是几呢?如 1.12=1.21,1.22=1.44,1.32=1.69,1.42=1.96,1.52=2.25,而a2=2,故a应比1.4大且比1.5小,可以写成1.4<a<1.5,所以a是1点4几,即十分位上是4,请大家用同样的方法确定百分位、千分位上的数字.
[生]因为1.412=1.9881,1.422=2.0164,所以a应比1.41大且比1.42小,所以百分位上数字为1.
[生]因为1.4112=1.990921,1.4122=1.993744,1.4132=1.996569,1.4142=1.999396,1.4152=2.002225,所以a应比1.414大而比1.415小,即千分位上的数字为4.
[生]因为1.41422=1.99996164,1.41432=2.00024449,所以a应
比1.4142大且比1.4143小,即万分位上的数字为2.
[师]大家非常聪明,请一位同学把自己的探索过程整理一下,用表格的形式反映出来.
[生]我的探索过程如下.
[师]还可以继续下去吗?
[生]可以.
[师]请大家继续探索,并判断a是有限小数吗?
[生]a=1.41421356…,还可以再继续进行,且a是一个无限不循环小数.
[师]请大家用上面的方法估计面积为5的正方形的边长b的值.边长b会不会算到某一位时,它的平方恰好等于5?请大家分组合作后回答.(约4分钟)
[生]b=2.236067978…,还可以再继续进行,b也是一个无限不循环小数.
[生]边长b不会算到某一位时,它的平方恰好等于5,但我不知道为什么.
[师]好.这位同学很坦诚,不会就要大胆地提出来,而不要冒充会,这样才能把知识学扎实,学透,大家应该向这位同学学习.这个问题我来回答.如果b 算到某一位时,它的平方恰好等于5,即b 是一个有限小数,那么它的平方一定是一个有限小数,而不可能是5,所以b 不可能是有限小数.
2.探索有理数的小数表示,明确无理数的概念
思考:分数化成小数,最终此小数的形式有哪几种情况?——分数只
能化成有限小数或无限循环小数,即任何有限小数或无限循环小数都是有理数.
3,11
2,458,95,54,并看它们是有限小数还是无限小数,是循环小数还是不循环小数.大家可以每个小组计算一个数,这样可以节省时间.
[生]3=3.0,54=0.8,9
5=•5.0, [生]3,54是有限小数,11
2,458,95是无限循环小数. [师]上面这些数都是有理数,所以有理数总可以用有限小数或无限循环小数表示.反过来,任何有限小数或无限循环小数都是有理数.
像上面研究过的a 2=2,b 2=5中的a ,b 是无限不循环小数.
无限不循环小数叫无理数(irrational number).
除上面的a ,b 外,圆周率π=3.14159265…也是一个无限不循环小数,0.5858858885…(相邻两个5之间8的个数逐次加1)也是一个无限不循环小数,它们都是无理数.
3.有理数与无理数的主要区别
(1)无理数是无限不循环小数,有理数是有限小数或无限循环小数.
(2)任何一个有理数都可以化为分数的形式,而无理数则不能.
(三)、合学应用
例1:填空:
0.351, 4.96••
-,0.4583,•7.3,-π,-7
1,18. 3.14159, 6, -5.2323332…,1234567891011…(由相继的正整数组成).
例2 :判断下列说法是否正确:
(1)有限小数是有理数; ( )
(2)无限小数都是无理数; ( )
(3)无理数都是无限小数; ( )
(4)有理数是有限数. ( )
(四)、整理反思
1.无理数的定义.
2.你是怎样判断一个数是无理数还是有理数的?
3.请把已学过的数怎样分类?
易错点: .
(五)、当堂评价
1、以下各正方形的边长是无理数的是( )
(A)面积为25的正方形; (B)面积为25
4 的正方形; (C)面积为8的正方形; (D)面积为1.44的正方形.
2.已知:在下数中254 ,5, 1.42••
-,π,3.1416,32,0,24,2n (1)- ,-1.424224222…,
(1)写出所有有理数;
(2)写出所有无理数;
(3)把这些数按由小到大的顺序排列起来,并用符号“<”连接.
(六)、变练拓展
有理数集合 无理数集合
1. 设面积为5π的圆的半径为a.
(1)a是有理数吗?说说你的理由.
(2)估计a的值(精确到十分位,并利用计算器验证你的估计).
(3)如果精确到百分位呢?
解:∵πa2=5π
∴a2=5
(1)a不是有理数,因为a既不是整数,也不是分数,而是无限不循环小数.
(2)估计a≈2.2.
(3)a≈2.24.。