直线的倾斜角与斜率说课稿优质课
- 格式:doc
- 大小:206.00 KB
- 文档页数:3
课题:§3.1.1直线的倾斜角与斜率夏春艳各位老师大家好!我说课的内容是必修2第三章第一节直线的倾斜角与斜率。
下面我分别从教材分析、学情分析与目标设置、教法和学法以及教学过程四个环节谈一谈我对本节课的理解和处理。
(一)教材分析在欧氏几何中,我们用点、线、面的关系研究图形的性质。
解析几何是借助坐标系用代数方法研究几何问题,通过代数运算的结果反馈几何图形的性质。
直线的倾斜角和斜率是解析几何的第一课,担负着为全章开篇的重任。
本节课有两个概念――倾斜角和斜率。
倾斜角是几何概念,把这个几何特征代数化,引出斜率,完成数到形的过渡,为后续的用方程表示直线,并借助方程研究直线的位置关系奠定基础。
也为整个解析几何奠基。
(二)学情分析与目标设置高一学生通过初中的学习,已经具备了直角坐标系的相关知识,也具备一定的数形结合的能力,因此有些问题可以大胆的放手让他们自己去探究。
但概念的形成、发展和应用过程,要过渡自然,让学生感受而不是接受。
结合高中数学课程标准和教材,考虑到学生的认知规律,将制定学习目标及重点和难点如下【知识与技能目标】理解倾斜角和斜率的概念,掌握两点的斜率公式,初步体会用代数方法解决几何问题的思想方法,提高抽象概括能力。
【过程与方法目标】通过经历从具体实例抽象出数学概念的过程,培养学生观察、分析和概括的能力,体会几何问题代数化的思想方法。
【情感态度与价值观目标】通过合作探索,互相交流来感受数学学习的乐趣。
通过斜率的小故事培养学生顺境不盲目乐观,逆境不绝望放弃的意志品质。
【重点】直线的倾斜角和斜率概念的理解,掌握过两点的直线斜率公式。
【难点】两点斜率公式的推导,斜率与倾斜角的关系。
(三)教法和学法【教法】应用多媒体设备和几何画板软件直观演示法,引导发现法,设疑讨论法等教学方法。
【学法】以促进学生发展为出发点,着眼于知识的形成和发展,多给学生操作与思考的空间。
(四)教学过程1.整体思路新课程的基本理念指出,教师应该是教学的引导者。
直线的倾斜角与斜率一、内容分析本节是人教版数学必修2 第三章《直线与方程》第一节直线的倾斜角与斜率的第一课时——3.1.1 倾斜角与斜率. 它是高中平面解析几何内容的开始,起着承上启下的重要作用. 本课时的学习不仅为研究直线方程、两直线的位置关系、点到直线的距离等本章的后续内容打下基础,而且也为以后进一步学习其他数学知识奠定思想和方法的基础. 直线的倾斜角是这一章所有概念的基础,而这一章的概念核心是斜率,理解二者之间的关系将是学此章的关键. 过两点的直线的斜率公式要讲透两点,其一是斜率的表象是一种比值,要让学生理解这种表达式,为两条直线垂直时斜率有何关系、导数的概念作好铺垫;其二是斜率的本质是与所取的点无关.二、目标分析1.知识与技能:使学生正确理解倾斜角与斜率的概念,理解二者之间的关系,会求过两点的直线的斜率;2.过程与方法:通过对倾斜角与斜率的探讨,培养学生分类讨论的思想,体验“坐标法”,感受数形结合思想;3.情感、态度与价值观:在探索倾斜角与斜率的关系过程中,明确倾斜角的变化对斜率的影响,并在其中体验严谨的治学态度.三、学生情况分析学生已经学习了一次函数(直线),对直线的倾斜角会具有直观的认同感;三角函数为解决斜率的引入和斜率公式的推导提供了知识的支持. “直线的倾斜角和斜率” 一节是解析几何的入门课,学生对几何的认识仅仅停留在初中所学的直观图形的感性阶段,因此教学时要从学生最熟悉的图形和事例入手,去研究刻画直线性质的量——倾斜角与斜率,将会让学生学会用代数方法研究几何图形的性质.四、教学重难点分析重点:倾斜角、斜率的概念,过两点的直线斜率公式.难点:倾斜角概念形成,斜率概念的理解.倾斜角概念的形成对学生来说有点困难. 为了突破这个难点,在教学过程中引导学生观察过一点的不同直线的区别,从中形成倾斜角的概念.对斜率概念的理解是本节的难点,为什么要用倾斜角的正切定义斜率对学生来说也有一定困难. 教学中通过日常生活的例子,充分利用学生已有的知识——坡度概念,引导学生把这个同样用来刻画倾斜程度的量与倾斜角联系起来,并通过坡度的计算方法,引入斜率的概念.五、教学条件分析考虑到学生的知识水平和理解能力,借助计算机工具和现实生活中的相关实物图片,从激励学生探究入手,讲解和演示相结合,可以更有效地实现教学目标. 因此教学地点选择多媒体教室.学生在课前要复习一次函数以及正切函数图象与性质等有关知识,并对本节内容进行预习,教师要准备好多媒体课件.六、教学过程设计(一)课题引入在平面直角坐标系内,画出几条相对于x 轴位置关系不同的几条直线,引导学生观察思考,它们有何不同?确定一条直线的位置需要哪些条件呢?【设计意图】学生在教师“问题串”的引导下去思考,引出本节的课题.(二)探究新知1. 倾斜角概念探究1:如图1,对于平面直角坐标系内的一直线I,你认为它的位置由哪些条件确定呢?师生活动:教师可以固定直线上某一点旋转直线,引导学生发现:经过一点可以作无数条直线,即过一点不能确定一条直线的位置y k/ \/ ■ 0 \ > 0A / 图1/ \ ® 2 【设计意图】明确探究方向:探索确定直线位置的几何要素.探究2:如图2,在平面直角坐标系中,过点 P i 的不同直线的区别在哪里?师生活动:学生思考,必要时教师可以提示学生观察直线相对于 x 轴的倾斜 程度•【设计意图】引导学生发现过定点的不同直线,其倾斜程度不同•从而发现直线上一点和直线的倾斜程度能确定一条直线•探究3:在直角坐标系中,任何一条直线与 x 轴都有一个相对倾斜度,怎么 描述直线的倾斜程度呢?师生活动:教师板书倾斜角的概念,展示几个倾斜角不同的直线,让学生找 出其倾斜角•【设计意图】探索描述直线的倾斜程度的几何要素,由此引出倾斜角的概念.2. 斜率的概念探究4:在日常生活中,我们有没有碰到过表示倾斜程度的量?师生活动:引导学生在生活中举例,比如,山坡,楼梯等,展示图3和图4.图3图4【设计意图】结合学生的生活经验寻找表示直线倾斜程度的量.让学生体会数学概念来自于日常生活.探究5:日常生活中,我们经常能够用“升高量与前进量的比”表示倾斜面的“坡度” •如果使用“倾斜角”的概念,你认为“坡度”和“倾斜角”有什么关系?由此你认为还可以用怎样的量来刻画直线的倾斜程度?师生活动:教师展示图5,学生思考讨论,教师引导总结并板书斜率概念.【设计意图】探索描述直线的倾斜程度的代数表示,由此引出斜率概念.探究6:是否每条直线都有斜率?倾斜角不同,斜率是否相同?由此可以得到怎样结论?师生活动:根据斜率和倾斜角的关系式,结合图6探究用斜率表示直线的倾斜程度时应该注意的地方•比如:倾斜角为90°的直线没有斜率;倾斜角不是90°的直线都有斜率,倾斜角不同,斜率也不同•【设计意图】沟通数形关系,加深概念理解,明确可以用斜率表示直线的倾斜程度•3.倾斜角和斜率的变化关系探究7:结合图7所示的“几何画板”课件,探究直线的倾斜角和斜率的变化关系.师生活动:教师或学生操作演示“几何画板”课件,观察直线的倾斜角和斜率的变化情况,完成相关问题.探究1:直线的斜率、倾斜角的变化关系点击“点B 运动”的动画按钮,观察直线 00的位置,以及它的斜率和倾斜角的变化。
人教A版必修二《3.1.1直线的倾斜角与斜率》说课稿各位老师大家好!我说课的内容是人教A版必修2第三章第一节直线的倾斜角与斜率第一课时。
我将根据新课标的理念,高二学生的认知特点设计本节课的教学。
下面我将从教材分析、学情分析、教法和学法以及教学过程四个环节谈一谈我对本节课的理解和处理。
(一)教材分析直线的倾斜角和斜率是解析几何的入门课,担负着开启全章的重任。
本节课涉及了两个概念――倾斜角和斜率。
倾斜角是几何概念,它主要起过渡作用,是联系新旧知识的纽带,后续研究斜率、直线平行垂直都要用到这个概念;斜率不但是本节课的核心内容,更是整个解析几何的重要概念之一,也为后续微积分的学习奠定了基础。
一个值得我们思考的问题是新教材为什么改变了旧教材的授课顺序,换以本节课作为解析几何的入门课?我个人认为,教材是为了更突出解析几何的本质――几何问题代数化。
而最简单的几何图形就是直线。
教材正是想通过让学生首先经历把直线的几何特征代数化这一过程,初步体会用解析法研究几何问题的思想。
因此在本课时的教学中不但要落实显性知识――倾斜角与斜率,更要落实隐性知识――几何问题代数化。
(二)学情分析高二学生经历了函数的学习,初步形成了数形结合的能力,另外通过初中的学习,已经具备了直角坐标系的相关知识,这些都为本节课知识的生长点奠定了基础。
但根据高二提高班学生的认知规律,还没有形成自觉地把数学问题抽象化的能力。
所以在教学设计时如何找到学生的最近发展区进行探究学习,尽量让不同层次的学生都经历概念的形成、发展和应用过程,就成为教学的一个重要问题。
针对上述分析,结合高中数学课程标准和教材,同时考虑到高二学生的认知规律,将制定如下教学目标,教学重点和难点。
知识与技能目标理解倾斜角和斜率的概念,掌握两点的斜率公式,初步感悟用代数方法解决几何问题的思想方法,提高抽象概括能力。
过程与方法目标通过经历从具体实例抽象出数学概念的过程,培养学生观察、分析和概括的能力。
《直线的倾斜角和斜率》说课稿一、教材分析1、教材分析本节课是人教版数学必修第一节直线的倾斜角和斜率的第一课时,是高中解析几何内容的开始。
直线倾斜角和斜率是解析几何的重要概念之一,是刻画直线倾斜程度的几何要素与代数表示,是平面直角坐标系内以坐标法(解析法)的方式来研究直线及其几何性质(如直线位置关系、交点坐标、点到直线距离等)的基础。
通过该内容的学习,帮助学生初步了解直角坐标平面内几何要素代数化的过程,初步渗透解析几何的基本思想和基本研究方法。
直线倾斜角是描述直线倾斜程度的几何要素,课本结合具体图形,在探索确定直线位置的几何要素中给出直线倾斜角概念。
直线的倾斜角和斜率都描述了直线的倾斜程度,倾斜角用几何位置关系刻画,斜率从数量关系刻画,二者的联系桥梁是正切函数值,并且可以用直线上两个点的坐标表示。
建立斜率公式的过程,体现了坐标法的基本思想:把几何问题代数化,通过代数运算研究几何图形的性质。
本课涉及两个概念——倾斜角和斜率。
倾斜角是几何概念,它主要起过渡作用,是联系新旧知识的纽带,研究斜率、直线的平行、垂直的解析表示等问题时都要用这个概念;斜率概念,不仅其建立过程很好地体现了解析法,而且它在建立直线方程、通过直线方程研究几何问题时也起核心作用,这是因为在直角坐标系下,确定直线的最本质条件是直线上的一个点及其斜率,其他形式都可以化归到这两个条件上来。
2、教学的目标定位在此之前,学生已经对直线有了直观的认识,如:两点确定一条直线,它具有平直性,并向两方无限延伸等。
但是这只是定性的研究,用这种方法,并不能具体刻画或描述一条直线。
在初中阶段,学生也认识了一次函数的图象是一条直线,但研究途径是先有数量关系(一次函数表达式),后建立其直观表示:直线。
在解析几何中,我们是先有图形(或曲线),然后根据图形(或曲线)的几何特征确定图形(或曲线)的代数表达式——方程。
因此,本节课的主要目的就是让学生在已有知识的基础上,将直线放入平面直角系,利用代数方法对它进行研究,从中体会解析几何的一些重要的数学思想。
高二上册《直线的倾斜角和斜率》说课稿我说的课是中学其次册〔上〕第七章直线和圆的方程第一大节直线的倾斜角和斜率的第一节课。
一、关于教学目标的确定1、教材的地位及作用直线和圆的方程属于解析几何学的根底学问,直线的方程是探究两条直线位置关系的根底,同时也是探讨圆的方程及其它圆锥曲线方程的根底。
为进一步探究直线,建立了直线倾斜角的概念,进而建立直线斜率的概念。
而作为直线方程的一个简洁应用,介绍了简洁的线性规划问题。
故本节课是学好这一章内容的关键。
2、教学目的的相识依据教学大纲的目的和要求规定及新课程标准要求,并结合学生的认知根底,我认为本节课的教学目标:〔1〕学问目标:了解“直线的方程”和“方程的直线”的概念;理解直线的倾斜角和斜率的定义;驾驭斜率公式,并会求直线的倾斜角和斜率。
〔2〕实力目标:通过直线倾斜角概念的引入和直线倾斜角与斜率关系的提示,以提高学生分析、比拟、概括、化归的数学实力,使学生初步了解用代数方程探究几何问题的思路,造就学生综合运用学问解决问题的实力。
〔3〕情感目标:帮助学生进一步了解分类思想、数形结合思想,在教学中充分提示“数”与“形”的内在联系,表达数、形的统一美,激发学生学习数学的爱好,对学生进展对立统一的辩证唯物主义观点的教化,造就学生勇于探究、勇于创新的精神。
二、重点、难点分析1、本节的重点是直线的倾斜角和斜率概念,及斜率公式.直线的斜率是后继内容绽开的主线,无论是建立直线的方程,还是探究两条直线的位置关系,以及探讨直线与二次曲线的位置关系,直线的斜率都发挥着重要作用.因此,正确理解斜率概念,娴熟驾驭斜率公式是学好这一章的关键。
2、本节的难点是对“直线的方程”和“方程的直线”的概念以及对斜率概念的理解.学生对于用直线的倾斜角来刻画直线的方向并不难承受,但是,为什么要定义直线的斜率,为什么把斜率定义为倾斜角的正切这两个问题却并不简洁承受。
三、教法、学法指导1、学法辅导:〔1〕学情介绍:本课的教学对象是高二年学生,考虑到我校学生的数学根底较好,思维较为活泼,并针对本节课的教学任务,在教学中我通过创设问题情境。
直线的倾斜角与斜率说课稿优质课一、引言直线是几何中的基本概念之一,在数学教学中也是一个重要的内容。
对于直线的倾斜角和斜率的理解是学习直线性质的前提。
本节课将围绕着直线的倾斜角和斜率展开,旨在帮助学生深入理解这两个概念,并将它们应用到实际问题中。
二、学习目标通过本节课的学习,学生将达到以下目标:- 了解直线的倾斜角和斜率的定义;- 能够计算直线的倾斜角和斜率; - 掌握直线的倾斜角和斜率的性质; - 能够应用直线的倾斜角和斜率解决实际问题。
三、教学重点•直线的倾斜角和斜率的定义;•直线的倾斜角和斜率的计算方法;•直线的倾斜角和斜率的性质。
四、教学准备为了保证教学的顺利进行,老师需要准备以下教学资源: - 笔记本电脑和投影仪; - 黑板、白板或幻灯片; - 活动策略和案例; - 学生练习题和参考答案。
五、教学过程1. 导入与启发(1)引入直线的倾斜角和斜率的概念,通过一些图示例子来激发学生的兴趣,使他们了解这两个概念的重要性和应用场景。
(2)提出一个问题,如:两条线段的倾斜角相同,是否意味着它们的斜率相等?让学生思考并给出回答。
2. 理论讲解(1)介绍直线的倾斜角的定义:直线与x轴的夹角叫做直线的倾斜角。
讲解如何计算倾斜角的方法,强调倾斜角的范围。
(2)介绍直线的斜率的定义:直线上任意两点的纵坐标差值与横坐标差值的比值叫做直线的斜率。
讲解斜率的计算方法。
3. 案例分析给出一些图示案例,引导学生根据所学知识计算直线的倾斜角和斜率。
鼓励学生积极参与,解答问题,同时进行思维导图的绘制。
4. 性质和应用讲解(1)介绍一些直线的倾斜角和斜率的性质,如相等直线的倾斜角相等,斜率为正的直线上升,斜率为负的直线下降等。
(2)引导学生思考直线的倾斜角和斜率在实际生活中的应用,如建筑斜坡的设计、道路坡度的计算等。
5. 练习与巩固(1)布置一些练习题,让学生自主完成,然后展示答案并进行讲解。
确保学生对直线的倾斜角和斜率的计算和性质有一定的掌握程度。
大家好我今天讲的课题是:直线的倾斜家与斜率,它是必修2第三章第一节,直线的倾斜角与斜率【点击PPT2】我将从以下六个方面来分析。
【点击PPT3】首先来谈谈教材。
首先来看一下教材的地位与作用。
【点击PPT3】直线与方程是平面解析几何的第一章,从倾斜角到斜率实现了解析几何代数化的过程,初步渗透“坐标法”与数形结合思想方法,用坐标法研究平面上最简单的图形—直线,对数学2中平面解析几何初步内容起到了关键的作用【点击PPT3】。
而且突出用代数方面解决几何问题的过程,强调代数关系的几何意义。
它既能为进一步学习做好知识上的必要准备,又能为今后灵活的应用解析几何的基本思想和方法打好坚实的基础。
【点击PPT4】接下来看一看学情分析,【点击PPT4】。
因为对象是重点中学的普通班的高一同学,所以比较比较活泼,求知欲强,而且已具备了直角坐标系、必修四三角函数的知识,都具备了情感保证和认知基础。
【点击PPT5】接着先对第一节即直线的倾斜角与斜率得内容作简要的分析【点击5】本节分为两个部分组成,倾斜角与斜率,斜率公式。
教材中首先结合具体图形提出确定直线位置几何要素,可以是一个点与直线的方向,从而导出倾斜角的概念。
进而建立直线斜率的概念,从而实现了直线的方向也可以说是直线的斜率这一几何的属性进而向斜率这一代数的属性的转化,最后推导出经过两点的斜率公式,这些内容都充分体现解析几何的思想和方法【点击PPT6】于是我确定了本节的教学重点和难点,重点是斜率的概念,用代数方法刻画直线斜率的过程,过两点的直线斜率的计算公式。
难点是直线的倾斜角概念形成,斜率公式的建构。
其次谈谈本节教学目标的确定和分析【点击PPT7】:在平面直角坐标系中,结合具体图形探索确定直线位置的几何要素;理解直线的斜率和倾斜角的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式。
课程标准为本节的教学目标制定了如下三点【点击PPT8】:对课表要求的细化分为两个部分:1、基本要求;2、发展要求【点击PPT9】基本要求:1、理解直线的倾斜角的定义,知道直线倾斜角的范围;2、理解直线的斜率,掌握直线的斜率,掌握过两点直线的斜率公式;3、掌握直线的斜率和倾斜角之间的关系,能由直线的斜率求出直线的倾斜角,也能由直线的倾斜角求出直线的斜率(斜率存在的条件下);【点击PPT10】发展要求:1、掌握直线斜率和倾斜角之间的关系;2、让学生初步体验解析几何研究问题的方法和特点。
直线的倾斜角与斜率●三维目标1.知识与技能(1)理解直线的倾斜角和斜率概念.(2)经历用代数方法刻画直线斜率的过程,掌握过两点的直线的斜率公式.2.过程与方法(1)探索确定直线位置的几何要素,感受倾斜角这个反映倾斜程度的几何量的形成过程.(2)通过教学,使学生从生活中坡度的概念自然迁移到数学中直线的斜率,感受数学概念来源于生活实际,数学概念的形成是自然的,从而渗透辩证唯物主义思想.(3)充分利用倾斜角和斜率是从数与形两方面刻画直线相对于x轴倾斜程度的两个量这一事实,渗透数形结合思想.3.情感、态度与价值观(1)通过对直线倾斜角的概念的引入和直线倾斜角与斜率关系的揭示,培养学生观察、探索能力,运用数学语言表达能力,数学交流与评价能力.(2)通过斜率概念的建立和斜率公式的推导,帮助学生进一步理解数形结合的思想,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.●重点难点重点:直线的倾斜角、斜率的概念和公式.难点:倾斜角与斜率的关系及斜率公式的导出过程.重难点突破:以确定直线位置的几何要素为切入点,通过让学生“实验——猜想——操作——定义”四个环节,给出直线倾斜角的概念,重点之一得以解决;然后从学生熟知的概念“坡角”入手,充分利用学生已有的知识,引导学生把这个同样用来刻画倾斜程度的量与倾斜角联系起来,并通过坡度的计算方法,引入斜率的概念,难点之一得以解决;对于斜率公式的导出过程,教学时可采用数形结合及分类讨论思想,化几何问题为代数运算,从而化难为易,突破难点.●教学建议鉴于本节知识概念抽象、疑难点较多的特点,教学时,可采用观察发现、启发引导、探索实验相结合的教学方法,把概念化抽象为直观,突出概念的形成过程,另在直线斜率公式教学的导出过程中,应渗透几何问题代数化的解析几何研究思想.引导学生将直线的位置问题(几何问题)转化为倾斜角问题,进而转化为倾斜角的正切即斜率问题(代数问题)进行解决,使学生进一步体会“数形结合”的思想方法.●教学流程创设问题情境,引出问题:确定直线位置的几何要素是什么?⇒引导学生通过实验、观察、思考形成倾斜角的概念教学,进而得出确定直线位置的几何要素.⇒通过引导学生回答所提问题理解斜率的概念及斜率与倾斜角的关系,导出斜率公式.⇒通过例1及其变式训练,使学生理解直线的倾斜角的概念.⇒通过例2及其变式训练,使学生掌握直线的斜率公式.⇒借助直线的斜率公式及倾斜角的内在联系,完成例3及其变式训练,使学生的知识进一步深化.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.课标解读1.理解直线的倾斜角与斜率的概念.(重点) 2.掌握倾斜角与斜率的对应关系.(难点、易错点) 3.掌握过两点的直线的斜率公式.(重点)直线的倾斜角【问题导思】1.在平面直角坐标系中,只知道直线上的一点,能不能确定一条直线呢?【提示】不能.2.在平面直角坐标系中,过定点P(2,2)的四条直线如图所示,每条直线与x轴的相对倾斜程度是否相同?【提示】不同.1.倾斜角的定义(1)当直线l与x轴相交时,取x轴作为基准,x轴正方向与直线l向上方向之间所成的角α叫做直线l的倾斜角.(2)当直线l 与x 轴平行或重合时,规定它的倾斜角为0°. 2.倾斜角的范围直线的倾斜角α的取值范围为0°≤α<180°.3.确定平面直角坐标系中一条直线位置的几何要素是:直线上的一个定点及它的倾斜角.直线的斜率与倾斜角的关系【问题导思】如图(1)(2),在日常生活中,我们常用“升高量与前进量的比”表示“坡度”.1.上图(1)(2)中的坡度相同吗? 【提示】 不同,因为32≠22.2.上图中的“坡度”与角α,β存在等量关系吗?【提示】 存在,图(1)中,坡度=tan α,图(2)中坡度=tan β. 1.直线的斜率把一条直线的倾斜角α的正切值叫做这条直线的斜率.斜率常用小写字母k 表示,即k =tan_α.2.斜率与倾斜角的对应关系图示倾斜角 (范围) α=0°0°<α<90°α=90°90°<α<180°斜率 (范围) 0k >0不存在 k <0过两点的直线的斜率公式直线过两点P 1(x 1,y 1),P 2(x 2,y 2),其斜率k =y 2-y 1x 2-x 1(x 1≠x 2).直线的倾斜角的理解设直线l过坐标原点,它的倾斜角为α,如果将l绕坐标原点按逆时针方向旋转45°,得到直线l1,那么l1的倾斜角为()A.α+45°B.α-135°C.135°-αD.当0°≤α<135°时,倾斜角为α+45°;当135°≤α<180°时,倾角为α-135°【思路探究】画出图象辅助理解,由于条件中未指明α的范围,所以需综合考虑α的可能取值,以使旋转后的直线的倾斜角在大于或等于0°而小于180°的范围内.【自主解答】根据题意,画出图形,如图所示:因为0°≤α<180°,显然A,B,C未分类讨论,均不全面,不合题意.通过画图(如图所示)可知:当0°≤α<135°,l1的倾斜角为α+45°;当135°≤α<180°时,l1的倾斜角为45°+α-180°=α-135°.故选D.【答案】 D1.解答本题要注意根据倾斜角的概念及倾斜角的取值范围解答.2.求直线的倾斜角主要根据定义来求,其关键是根据题意画出图形,找准倾斜角,有时要根据情况分类讨论.求直线的斜率求经过下列两点直线的斜率,并根据斜率指出其倾斜角.(1)(-3,0),(-2,3);(2)(1,-2),(5,-2);(3)(3,4),(-2,9);(4)(3,0);(3,3).【思路探究】依据直线的斜率公式求解,注意公式使用的条件.【自主解答】(1)直线的斜率k=3-0-2-(-3)=3=tan 60°,此直线的斜率为3,倾斜角为60°.(2)直线的斜率k =-2+25-1=0,此直线的斜率为0,故倾斜角为0°.(3)直线的斜率k =9-4-2-3=-1=tan 135°,此直线的斜率为-1,倾斜角为135°.(4)因为两点的横坐标都为3,故直线斜率不存在,倾斜角为90°.已知A (x 1,y 1),B (x 2,y 2)两点,求直线AB 斜率和倾斜角的步骤: (1)当x 1=x 2时,直线斜率不存在,其倾斜角为90°;(2)当x 1≠x 2时,直线的斜率k =y 2-y 1x 2-x 1,倾斜角α利用k =tan α求得.斜率与倾斜角的应用已知某直线l 的倾斜角α=45°,又P 1(2,y 1),P 2(x 2,5),P 3(3,1)是此直线上的三点,求x 2,y 1的值.【思路探究】 直线l 的倾斜角已知可以求出其斜率且P 1、P 2、P 3均在直线l 上,故任两点的斜率均等于直线l 的斜率,从而可以解出x 2,y 1的值.【自主解答】 ∵α=45°, ∴直线l 的斜率k =tan 45°=1, ∵P 1,P 2,P 3都在直线l 上, ∴kP 1P 2=kP 2P 3=k . ∴5-y 1x 2-2=1-53-x 2=1, 解之得:x 2=7,y 1=0.用斜率公式可解决三点共线问题:如果三点A (2,1),B (-2,m ),C (6,8)在同一条直线上,求m 的值. 【解】 k AB =m -1-2-2=1-m 4,k AC =8-16-2=74.∵A 、B 、C 三点共线,∴k AB =k AC .即1-m 4=74,∴m =-6.因忽略直线斜率不存在的情况致误求经过A (m,3),B (1,2)两点的直线的斜率,并指出倾斜角α的取值范围. 【错解】 由斜率公式可得k =3-2m -1=1m -1.①当m >1时,k =1m -1>0,所以直线的倾斜角α的取值范围是0°<α<90°. ②当m <1时,k =1m -1<0,所以直线的倾斜角α的取值范围是90°<α<180°.【错因分析】 在上述解题过程中遗漏了m =1的情况,当m =1时,斜率不存在. 【防范措施】 斜率公式k =y 2-y 1x 2-x 1的适用前提条件为x 1≠x 2,因此在含字母的点的坐标中,需计算直线的斜率时,要保证斜率公式有意义.【正解】 当m =1时,直线的斜率不存在,此时直线的倾斜角α=90°. 当m ≠1时,由斜率公式可得k =3-2m -1=1m -1.①当m >1时,k =1m -1>0,所以直线的倾斜角α的取值范围是0°<α<90°. ②当m <1时,k =1m -1<0,所以直线的倾斜角α的取值范围是90°<α<180°.1.倾斜角是一个几何概念,它直观地描述并表现了直线对于x 轴正方向的倾斜程度. 2.直线的斜率是直线倾斜角的正切值,但两者并不是一一对应关系.学会用数形结合的思想分析和理解直线的斜率同其倾斜角的关系.3.运用两点P 1(x 1,y 1),P 2(x 2,y 2)求直线斜率k =y 2-y 1x 2-x 1应注意的问题:(1)斜率公式与P 1,P 2两点的位置无关,而与两点横、纵坐标之差的顺序有关(即x 2-x 1,y 2-y 1中x 2与y 2对应,x 1与y 1对应).(2)运用斜率公式的前提条件是“x 1≠x 2”,也就是直线不与x 轴垂直,而当直线与x 轴垂直时,直线的倾斜角为90°,斜率不存在.。
直线的倾斜角与斜率课题说明:本节课是新人教A版数学必修2的3.1.1节的内容.内容分析:本节课的主要内容有两个概念(直线的倾斜角、直线的斜率)及一个公式(斜率计算公式).直线的倾斜角是反映直线倾斜方向的量,它也是确定直线位置的一个重要的几何要素,它实质上能从“形”的角度刻画直线的倾斜程度.直线的斜率指倾斜角不是90 的直线,其倾斜角的正切值叫做这条直线的斜率.教材是从生活中斜坡的坡度迁移到直线的斜率概念的.直线的斜率可看作是比值,实质上是数值,所以直线的斜率从本质上可看成是从“数”的角度刻画直线的倾斜程度.华罗庚先生说过:“数缺形时少直观,形少数时难入微”.显然,与倾斜角相比,用斜率刻画倾斜程度会更细致.关于过已知两点的直线斜率公式:因为过两点的直线是唯一确定的,所以其倾斜程度也就确定(即直线的斜率也是确定的).从而在直角坐标系中,直线的斜率与直线上两点的坐标就有密不可分的联系.斜率不仅反映了这种联系,并用代数方法表示了出来,而且在公式的推导中蕴涵了分类讨论、数形结合、化归等重要数学思想.学情分析:本节课是高中解析几何部分的起始课,学生具备的知识基础是在直角坐标系中会用坐标表示点,明确了坐标平面上的点与有序数对可建立一一对应的关系.这节课的教学内容,不仅能反映出数学概念离不开生活,数学概念的形成是自然的,而且蕴涵了几何问题代数化的思想,从知识点及研究方法上,为后继判断两条直线的位置关系以及建立直线的方程等内容起着关键性的铺垫作用.教学目标分析:1.探索确定直线位置的几何要素,感受倾斜角这个反映倾斜程度的几何量的形成过程.2.通过教学,使学生从生活中的坡度,自然迁移到数学中直线的斜率,感受数学概念来源于生活实际,数学概念的形成是自然的,从而渗透辩证唯物主义思想.3.充分利用倾斜角和斜率是从数与形两方面,刻画直线相对于x轴倾斜程度的两个量这一事实,渗透数形结合思想.4.经历用代数方法刻画直线斜率的过程,初步掌握过已知两点的直线的斜率计算公式,渗透几何问题代数化的解析几何研究思想.教学重点与难点:重点:1.感悟并形成倾斜角与斜率两个概念;2.推导并初步掌握过两点的直线斜率公式;3.体会数形结合及分类讨论思想在概念形成及公式推导中的作用.难点:用代数方法推导斜率的过程.教学方法:计算机辅助教学与发现法相结合.即在多媒体课件支持下,让学生在教师引导下,积极探索,亲身经历概念的发现与形成过程,体验公式的推导过程,主动建构自己的认知结构.教学过程:一、创设情境,揭示课题问题1:(出示幻灯片)给出的两点P、Q相同吗?如何区分这两个点?从形的角度看,它们有位置之分,但无大小与形状之分.从数的角度看,如何区分两个点?(用坐标区分)问题2:过这两点可作什么图形?(唯一吗?)只经过其中一点(如点P)可作多少条直线?若只想定出其中的一条直线,除了再用一点外,还有其他方法吗?可以增加一个什么样的几何量?(估计不少学生能意识到需要有一个角)由此引导学生归纳,确定直线位置可有两种方式:(1)已知直线上两点;(2)已知直线上一点和直线的倾斜程度.【设计意图】引导学生归纳确定直线位置的几何要素.问题3:角的形成还需一条线,也就是说要有刻画倾斜程度的角,就必须还有一条形成角的参照的直线.在平面直角坐标系下,以哪条轴线为基准形成刻画倾斜程度的角?(学生可能回答x轴或y轴)以x轴或y轴为基准都可以,习惯上我们用x轴.问题4:过点P与x轴形成45 角的直线有几条?(学生可能答一条或两条,投影演示结果)如何区分清楚这两条直线呢?估计学生能想到还需要确定方向.选择哪个角来描述直线的倾斜程度,就能保证坐标系下的任何一条直线都有唯一的角与它对应呢?(教师引导学生选取不同的方向来描述角,并区分L1与L2)数学概念来刻画事物时,讲求统一美与简洁美,如何用数学语言准确描述这个角呢?(揭示课题)倾斜角的定义:在平面直角坐标系下,以x轴为基准,当直线l与x轴相交时,x轴正向与直线l向上方向之间所成的角α,叫做直线l的倾斜角.学生练习画出过点P的各种倾斜角的直线.学生容易忽略与x轴平行的直线,补出图(4),问倾斜角在哪儿?如何规定?规定:当直线l与x轴平行或重合时,它的倾斜角为0 .自然有倾斜角的范围是[0 ,180 ).这样平面直角坐标系中每条直线都有唯一一个确定的倾斜角α与它对应.倾斜程度相同的直线,其倾斜角相等,倾斜程度不同的直线,其倾斜角不相等.以上定义了一个从“形”的角度用倾斜角刻画平面直角坐标系内一条直线的倾斜程度.【设计意图】倾斜角的形成离不开“基准”与“直线方向”的规定,同时让学生感受数学概念是自然的以及数学定义的统一美与简洁美,从而提示本节课的课题.二、巩固旧知,同化新知生活中,我们都有过爬山、爬坡的体验,对于斜坡的倾斜程度,可以用什么量来反映?(坡角与坡度)初中对坡度是如何定义的?升高量坡度(比)=前进量(即坡角α的正切值). 当坡角α增大时,坡度如何变化?当坡角α=90 与0 时,升高量、前进量分别是什么?坡度又分别是什么? 坡角、坡度都能反映倾斜程度,迁移到数学中,坡角相当于直线的倾斜角,而坡度则对应于直线的斜率.斜率:倾斜角不是90 的直线,其倾斜角的正切值叫做这条直线的斜率,即tan (90)k αα=≠.问题5:生活中坡角没钝角,当α为钝角时,直线的斜率如何求?(转化到其补角θ上)180()αθθ=-是锐角,tan tan(180)tan k αθθ∴==-=- .如:倾斜角120α= ,则斜率k =【设计意图】使学生会用转化思想求α为钝角时的斜率,明确课本脚注的用法.问题6:当α在[0 ,180 )内变化时,斜率k 如何变化?【设计意图】更条理、更全面地认识斜率与倾斜角的变化关系.问题7:倾斜角与斜率都能刻画直线的倾斜程度,哪个量更优越呢?倾斜角能从形的角度刻画倾斜程度,而斜率是比值,实质是数值,它能从数的角度反映倾斜的程度,显然用斜率更细致入微些.【设计意图】突出斜率刻画倾斜程度的优越性是更细致入微,使用方便简洁.三、尝试推导,深化认识两点确定一条直线,可见由两点也就确定了直线的倾斜程度,即倾斜角与斜率.由此看来,直线上两点与直线的斜率有着密不可分的联系.问题8:在平面直角坐标系中,已知直线上两点P 1(x 1,y 1),P 2(x 2,y 2)且x 1≠x 2,能否用P 1 、P 2的坐标来表示直线斜率k ?学生活动:随意在坐标系下画两点P 1 、P 2及直线P 1P 2,探究各种图形并尝试推导,可以先特殊再一般,也可先一般再特殊地去分析.教师可适当引导其将斜坡截面图迁移到坐标系中,类似升高量、前进量,用点的坐标表示线段长,并请学生叙述各个图的推导过程与结果.解:设直线P 1 P 2倾斜角为α(≠α90 ),当直线P 1P 2方向向上时,过点P 1作x 轴的平行线,过点P 2作y 轴的平行线,两线交于点Q ,则点Q 为(x 2,y 1).(1)当α为锐角时,21P QP ∠=α,21x x <,21y y <,在Q P P 21ΔRt 中,12121221tan tan x x y y Q P QP P QP --==∠=α. (2)当α为钝角时,θα-= 180(设21P QP ∠=θ),21x x <,21y y <, αtan =θθtan )180tan(-=- ,在Q P P 21ΔRt 中,1212121212tan x x y y x x y y QP QP ---=--==θ, 1212tan x x y y --=∴α(可让学生分组推导). 同理,当直线P 2P 1方向向上时,无论α为锐角或钝角,也有1212tan x x y y --=α, 即1212x x y y k --=.【设计意图】给学生提供充分的自主探索的时间与空间,克服公式推导中不易把握的两点(①两点坐标与αtan 的联系;②图形分析不全面),培养数形结合与分类讨论的思想,促进思维的独立性、全面性,逻辑性.思考:①各种一般情形得出的结论一致吗?与P 1、P 2这两点坐标顺序有关系吗?②当直线垂直于x 轴或y 轴时,上述结论适用吗?③斜率公式使用时应注意什么问题?【设计意图】熟悉公式的结构特征及适用范围.巩固练习:求经过下列两点直线的斜率,并判断倾斜角是锐角还是钝角.(1)A (3,2),B (-4,1).(71=AB k ) (2)A (3,2),B (4,1).(1AB k =-)(3)A (3,2),B (3,-1).(不存在)(4)A (3,2),B (-4,2).(0=AB k )四、反思小结,概括提炼(同学们这节课有何收获?)1.明确了确定直线位置的几何要素.2.理解了刻画倾斜程度的量(倾斜角与斜率),知道了求斜率的两种方法(定义法、坐标法),21tan 21y y k x x α-==-. 3.经历了代数方法刻画斜率的过程,感受了数形结合与分类讨论的数学思想.五、板书设计六、作业:①自学课本P.85:例1、例2;②作业本:P.89:1、2、3.预期效果分析:1.两个概念的形成,估计通过问题情境的设置,学生能达到预期的教学目标,而且这样设计之后,概念得出是自然的,不是强加于人的.2.斜率公式的推导可能存在学生对图形考虑不全面的问题,需要教师适当进行引导.。
直线的倾斜角与斜率说课稿优
质课(总2页)
-CAL-FENGHAI.-(YICAI)-Company One1
-CAL-本页仅作为文档封面,使用请直接删除
《直线的倾斜角与斜率》教学设计
赵元超
尊敬的各位评委各位老师,大家好,今天我说课的题目是《直线的倾斜角与斜率》,我主要从以下六个方面进行分析,希望大家喜欢。
一:教材分析:
本节课是新人教版高一数学必修(2)的第三章第一节的内容,根据实际教学的安排,这是第一课时的内容。
1.内容分析:本节课主要有两个概念(直线的倾斜角、直线的斜率)及一个公式(斜率计算公式)。
直线的倾斜角是从形的角度描述直线的倾斜程度,而斜率从数的角度描述直线的倾斜程度。
这也是数形结合思想的体现。
我们都知道两点一线的事实,那么,如何用坐标法来描述这一过程呢?因此,斜率公式的推出就是很自然的一件事情了。
这也体现了我们的数学具有自然美这一特性。
2.作用分析
通过本节课的学习,初步渗透解析几何的基本思想和基本研究方法,培养学生对数形结合、分类讨论思想的应用知识,为后继判断两条直线的位置关系以及建立直线的方程等内容起着铺垫的作用。
二:学情分析
1.学生在初中阶段已经学习过了平面直角坐标系,学习过了一次函数、二次函数、反
比例函数等。
2.同学们已经知道了两点可以确定一条直线的基本事实。
3.同学们刚刚学完立体几何,对空间点线面的关系已经有了比较深入的了解。
三:目标分析
1.知识与技能
探索确定直线位置的几何要素,感受倾斜角这个几何量的形成过程,体会由生活中的坡度的概念抽象成数学中的斜率的过程经历直线斜率公式的推导过程,并会用斜率公式解决简单的问题。
2.方法与过程
本节课设计3个大问题23个小问题,层层深入,环环相扣,步步紧逼、使学生学会用探究式的方法来研究数学问题。
3.情感态度与价值观
通过斜率概念的构建和斜率公式的探究渗透数形结合、分类讨论的思想方法,体会数学的自然之美,和谐之美,有用之美;通过学生之间师生之间的交流合作,实现共同探究的目标,培养学生的合作意识。
同时也是响应国家社会主义核心价值观进课堂的重要体现。
四:重难点分析
重点:直线的倾斜角和斜率概念,过两点的直线的斜率公式
难点:倾斜角为钝角时,斜率公式的推导。
五:教学过程分析:
1.故事引入,激发兴趣
本环节讲一个讲关于法国数学家、解析几何创始人笛卡尔的一个爱情故事。
笛卡尔穷困潦倒之际与一个瑞典的公主相爱了,就像所有的爱情故事一样,他不被丈母娘看好,所以只能以悲剧结束,或许,唯有如此才能流传千古吧。
但是,故事的亮点并不在此,而是他在弥留之际写给心爱姑娘的最后一封情书竟然是一个数学公式。
P=a(1-sinb)。
大家想知道这封情书的含义吗?那么就学好解析几何吧。
今天我们就来学习解析几何的初始内容,直线的倾斜角与斜率。
设计意图:以故事吸引学生,激发学生兴趣,引爆学习数学的小宇宙。
2.设计问题层层探究
本环节我设计了三个大问题,23个小问题,把本节课的所有内容串了起来。
思考1 在平面直角坐标系内如何确定一条直线?
设计意图:通过前3个问题,引出倾斜角的概念,再用后五个问题,加深同学们对倾斜角概念的理解。
让学生体会到几何问题的本质就是用代数的方法来研究几何问题。
思考2 生活中,还有没有其它表示倾斜程度的量?
设计意图:本环节通过前两个问题生成斜率的概念,再用后面的6个问题加深对概念的理解。
本环节通过把生活中的坡度转化为数学中的斜率,让学生体会数学源于生活,高于生活,数学是自然而然产生的。
思考3:已知直线上两点的坐标如何计算直线的斜率?
设计意图:本环节设计7个子问题,引导学生自己探索,指导学生注意分类讨论时思维的严谨性,培养学生思维的严谨性,完备性。
就这样通过以上23个如此简单的问题在悄无声息中完成了知识的生成,思想的渗透,以及合作意识的培养。
3.例题分析加深理解
设计意图:通过对课本上两道例题的分析,加深学生对倾斜角、斜率的概念的理解。
4.当堂检测学以致用
设计意图:考查学生对概念的理解情况,重视课本知识,达到举一反三的效果。
5.归纳总结知识升华
设计意图:知识性的内容由学生自己总结,把课堂的内容内化为学生的能力。
6.布置作业查漏补缺
设计意图:梯度作业,既巩固课堂,又延伸拓展,为第二课时的内容做一铺垫。
六:板书设计
设计意图:板书内容并不是对ppt内容的简单重复,而是相辅相成混为一体的。