2017年江苏省淮安市中考数学试卷-答案
- 格式:pdf
- 大小:849.01 KB
- 文档页数:12
2017江苏中考数学试题及答案一、选择题(每题3分,共30分)1. 下列各数中,最小的数是()A. -3B. 0C. 1D. 2答案:A2. 一个数的平方根是2,那么这个数是()A. 4B. -4C. 2D. -2答案:A3. 一个等腰三角形的两边长分别为3和5,那么这个三角形的周长是()A. 11B. 13C. 14D. 16答案:C4. 下列各数中,是无理数的是()A. 0.5B. πC. √2D. 0.33333答案:C5. 已知一个数列的前三项为1,2,3,那么这个数列的通项公式是()A. nB. n+1C. n^2D. n(n+1)/2答案:D6. 一个圆的半径为3,那么它的面积是()A. 9πB. 18πC. 27πD. 36π答案:C7. 函数y=2x+3的图象与x轴的交点坐标是()A. (-3/2, 0)B. (3/2, 0)C. (-1.5, 0)D. (1.5, 0)答案:B8. 已知一个二次函数的顶点坐标为(1, -2),且开口向上,那么它的解析式是()A. y=(x-1)^2-2B. y=(x+1)^2-2C. y=-(x-1)^2-2D. y=-(x+1)^2-2答案:A9. 一个正方体的体积为8cm³,那么它的表面积是()A. 16cm²B. 24cm²C. 32cm²D. 64cm²答案:B10. 已知一个等差数列的前四项为2,5,8,11,那么它的公差是()A. 3B. 4C. 5D. 6答案:A二、填空题(每题3分,共15分)1. 一个数的立方根是3,那么这个数是______。
答案:272. 一个直角三角形的两条直角边长分别为3和4,那么它的斜边长是______。
答案:53. 一个数的绝对值是5,那么这个数可以是______或______。
答案:5 或 -54. 一个函数的图象经过点(2, 3),那么这个函数的解析式可以是y=kx+b,其中k=______,b=______。
一、选择题(题型注释)1、﹣2的相反数是()A.2 B.﹣2 C. D.﹣来源:2017年中考真题精品解析数学(江苏淮安卷)2、2016年某市用于资助贫困学生的助学金总额是9680000元,将9680000用科学记数法表示为()A.96.8×105 B.9.68×106 C.9.68×107 D.0.968×108来源:2017年中考真题精品解析数学(江苏淮安卷)3、计算a2•a3的结果是()A.5a B.6a C.a6 D.a5来源:2017年中考真题精品解析数学(江苏淮安卷)4、点P(1,﹣2)关于y轴对称的点的坐标是()A.(1,2) B.(﹣1,2) C.(﹣1,﹣2) D.(﹣2,1)来源:2017年中考真题精品解析数学(江苏淮安卷)5、下列式子为最简二次根式的是()A. B. C. D.来源:2017年中考真题精品解析数学(江苏淮安卷)6、九年级(1)班15名男同学进行引体向上测试,每人只测一次,测试结果统计如下:引体向上数/个12345678人数112133211这15名男同学引体向上数的中位数是()A. 2B. 3C. 4D. 5来源:2017年中考真题精品解析数学(江苏淮安卷)7、若一个三角形的两边长分别为5和8,则第三边长可能是()A.14 B.10 C.3 D.2来源:2017年中考真题精品解析数学(江苏淮安卷)8、如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A. B.6 C.4 D.5来源:2017年中考真题精品解析数学(江苏淮安卷)二、填空题(题型注释)9、若反比例函数y=-的图象经过点A(m,3),则m的值是________.来源:2018届人教版九年级数学下册(通用版)检测卷:第二十六章检测卷10、分解因式:ab﹣b2=_____.来源:2017年中考真题精品解析数学(江苏淮安卷)11、计算:2(x﹣y)+3y=_____.来源:2017年中考真题精品解析数学(江苏淮安卷)12、方程=1的解是_____.来源:2017年中考真题精品解析数学(江苏淮安卷)13、一枚质地均匀的骰子的6个面上分别刻有1〜6的点数,抛掷这枚骰子1次,向上一面的点数是4的概率是_____.来源:2017年中考真题精品解析数学(江苏淮安卷)14、若关于x的一元二次方程x2﹣x+k+1=0有两个不相等的实数根,则k的取值范围是_____.来源:2017年中考真题精品解析数学(江苏淮安卷)15、如图,直线a∥b,∠BAC的顶点A在直线a上,且∠BAC=100°.若∠1=34°,则∠2=_________.来源:2017年中考真题精品解析数学(江苏淮安卷)16、如图,在圆内接四边形ABCD中,若∠A,∠B,∠C的度数之比为4:3:5,则∠D的度数是_____°.来源:2017年中考真题精品解析数学(江苏淮安卷)17、如图,在Rt△ABC中,∠ACB=90°,点D,E分别是AB,AC的中点,点F是AD的中点.若AB=8,则EF=_____.来源:2017年中考真题精品解析数学(江苏淮安卷)18、将从1开始的连续自然数按一下规律排列:…则2017在第_____行.来源:2017年中考真题精品解析数学(江苏淮安卷)三、解答题(题型注释)19、某校计划成立学生社团,要求每一位学生都选择一个社团,为了解学生对不同社团的喜爱情况,学校随机抽取了部分学生进行“我最喜爱的一个学生社团”问卷调查,规定每人必须并且只能在“文学社团”“科学社团”“书画社团”“体育社团”和“其他”五项中选择一项,并将统计结果绘制了如下两个不完整的统计图表.请解答下列问题:(1)a=,b=;(2)在扇形统计图中,“书画社团”所对应的扇形圆心角度数为;(3)若该校共有3000名学生,试估计该校学生中选择“文学社团”的人数.来源:2018届华师大版九年级数学下册:第28章检测卷20、计算题(1) |﹣3|﹣(+1)0+(﹣2)2;(2)(1﹣)÷.来源:浙江省乐清市育英寄宿学校2018届九年级上学期期中考试数学试题21、解不等式组:并写出它的整数解.来源:2017年中考真题精品解析数学(江苏淮安卷)22、已知:如图,在平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F.求证:△ADE≌△CBF.来源:2017年中考真题精品解析数学(江苏淮安卷)23、一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球.(1)用树状图或列表等方法列出所有可能出现的结果;(2)求两次摸到的球的颜色不同的概率.来源:2017年中考真题精品解析数学(江苏淮安卷)24、A,B两地被大山阻隔,若要从A地到B地,只能沿着如图所示的公路先从A地到C 地,再由C地到B地.现计划开凿隧道A,B两地直线贯通,经测量得:∠CAB=30°,∠CBA=45°,AC=20km,求隧道开通后与隧道开通前相比,从A地到B地的路程将缩短多少?(结果精确到0.1km,参考数据:≈1.414,≈1.732)来源:2017年中考真题精品解析数学(江苏淮安卷)25、如图,在△ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,OA为半径的圆分别交AB,AC于点E,D,在BC的延长线上取点F,使得BF=EF,EF与AC交于点G.(1)试判断直线EF与⊙O的位置关系,并说明理由;(2)若OA=2,∠A=30°,求图中阴影部分的面积.来源:2017年中考真题精品解析数学(江苏淮安卷)26、某公司组织员工到附近的景点旅游,根据旅行社提供的收费方案,绘制了如图所示的图象,图中折线ABCD表示人均收费y(元)与参加旅游的人数x(人)之间的函数关系.(1)当参加旅游的人数不超过10人时,人均收费为元;(2)如果该公司支付给旅行社3600元,那么参加这次旅游的人数是多少?来源:2017年中考真题精品解析数学(江苏淮安卷)27、【操作发现】如图①,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.(1)请按要求画图:将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B′,点C 的对应点为C′,连接BB′;(2)在(1)所画图形中,∠AB′B=.【问题解决】如图②,在等边三角形ABC中,AC=7,点P在△ABC内,且∠APC=90°,∠BPC=120°,求△APC的面积.小明同学通过观察、分析、思考,对上述问题形成了如下想法:想法一:将△APC绕点A按顺时针方向旋转60°,得到△AP′B,连接PP′,寻找PA,PB,PC三条线段之间的数量关系;想法二:将△APB绕点A按逆时针方向旋转60°,得到△AP′C′,连接PP′,寻找PA,PB,PC三条线段之间的数量关系.…请参考小明同学的想法,完成该问题的解答过程.(一种方法即可)【灵活运用】如图③,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=2,CD=5,AD=kAB(k为常数),求BD的长(用含k的式子表示).来源:2017年中考真题精品解析数学(江苏淮安卷)28、如图①,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A,B,C三点,其中点A的坐标为(﹣3,0),点B的坐标为(4,0),连接AC,BC.动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.连接PQ.(1)填空:b=,c=;(2)在点P,Q运动过程中,△APQ可能是直角三角形吗?请说明理由;(3)在x轴下方,该二次函数的图象上是否存在点M,使△PQM是以点P为直角顶点的等腰直角三角形?若存在,请求出运动时间t;若不存在,请说明理由;(4)如图②,点N的坐标为(﹣,0),线段PQ的中点为H,连接NH,当点Q关于直线NH的对称点Q′恰好落在线段BC上时,请直接写出点Q′的坐标.来源:2017年中考真题精品解析数学(江苏淮安卷)参考答案1、A2、B3、D4、C5、A6、C7、B8、B9、-210、b(a﹣b)11、2x+y12、x=313、14、k<﹣15、46°16、120°17、218、4519、(1)369;(2))90°;(3)300人.20、(1)6;(2)a.21、﹣1<x<3,不等式组的整数解为0、1、2.22、证明见解析.23、(1)详见解析;(2).24、从A地到B地的路程将缩短6.8km.25、(1)EF是⊙O的切线,理由见解析;(2).26、(1)240;(2)20.27、【操作发现】(1)作图见解析;(2)45°;【问题解决】7;【灵活运用】.28、(1)b=,c=4;(2)△APQ不可能是直角三角形,理由见解析;(3)t=;(4)Q′(,).【解析】1、只有符号不同的两个数互为相反数,由此可得﹣2的相反数是2,故选A.2、科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.所以将9680000用科学记数法表示为:9.68×106,故选B.3、根据同底数幂的乘法,可得原式=a2+3=a5,故选D.4、关于y轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P(1,﹣2)关于y轴对称的点的坐标是(﹣1,﹣2),故选C.【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键.关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.5、选项A,被开方数不含分母;被开方数不含能开得尽方的因数或因式, A符合题意;选项B,被开方数含能开得尽方的因数或因式,B不符合题意;选项C,被开方数含能开得尽方的因数或因式, C不符合题意;选项D,被开方数含分母, D不符合题意,故选A.6、根据表格可知,15个数据按从小到大的顺序排列后,第8个数是4,所以中位数为4,故选C.7、设第三边是x,由三角形边的性质,8-5<x<8+5, 3<x<13.所以选B.8、∵将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,∴AF=AB,∠AFE=∠B=90°,∴EF⊥AC,∵∠EAC=∠ECA,∴AE=CE,∴AF=CF,∴AC=2AB=6,故选B.【点睛】本题考查了翻折变换的性质、矩形的性质等,得到EF垂直平分AC是解题的关键.9、∵反比例函数的图象过点A(m,3),∴,解得.10、根据提公因式法进行分解即可,ab﹣b2=b(a﹣b),故答案为:b(a﹣b).11、原式=2x﹣2y+3y=2x+y,故答案为:2x+y.12、去分母得:x﹣1=2,解得:x=3,经检验x=3是分式方程的解,故答案为:3.【点睛】本题主要考查解分式方程,解分式方程的思路是将分式方程化为整式方程,然后求解.去分母后解出的结果须代入最简公分母进行检验,结果为零,则原方程无解;结果不为零,则为原方程的解.13、抛掷一次向上一面的点数有1、2、3、4、5、6共6种可能,向上一面的点数为4是其中的一种,所以由概率公式可得P(向上一面的点数是6)=,故答案为:.14、根据题意得△=(﹣1)2﹣4(k+1)>0,解得k<﹣,故答案为:k<﹣.15、试卷分析:根据平行线的性质和平角的定义即可得到结论.解:∵直线a∥b,∴∠3=∠1=34°,∵∠BAC=100°,∴∠2=180°−34°−100°=46°,故答案为:46°.16、∵∠A,∠B,∠C的度数之比为4:3:5,∴设∠A=4x,则∠B=3x,∠C=5x,∵四边形ABCD是圆内接四边形,∴∠A+∠C=180°,即4x+5x=180°,解得x=20°,∴∠B=3x=60°,∴∠D=180°﹣60°=120°,故答案为:120°.17、在Rt△ABC中,∵AD=BD=4,∴CD=AB=4,∵AF=DF,AE=EC,∴EF=CD=2,故答案为:2.18、观察不难发现,每行的数字个数等于行数,前n行的数字的总个数等于n2,∵442=1936,452=2025,1936<2017<2025,∴2017在第45行,故答案为:45.【点睛】本题是对数字变化规律的考查,观察出前n行的数字的总个数等于n2是解题的关键.19、试题分析:(1)根据体育社团的人数是72人,所占的百分比是40%即可求得调查的总人数,然后利用百分比的意义求得a和b的值;(2)利用360°乘以对应的百分比求解;(3)利用总人数乘以对应的百分比求解.试题解析:(1)调查的总人数是72÷40%=180(人),则a=180×20%=36(人),则b=180−18−45−72−36=9.故答案是:36,9;(2)“书画社团”所对应的扇形圆心角度数是360×=90°;(3)估计该校学生中选择“文学社团”的人数是3000×=300(人).答:估计该校学生中选择“文学社团”的人数约为300人.20、试题分析:(1)根据一个负数得绝对值等于它的相反数,任何非0数的0次幂等于1,负数得偶次方是正数解答即可;(2)考查了分式的混合运算,把括号内通分,并把除转化为乘,然后约分即可.解:(1)原式=3﹣1+4=6;(2)原式=×=a21、试题分析:分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.试题解析:解不等式3x﹣1<x+5,得:x<3,解不等式<x﹣1,得:x>﹣1,则不等式组的解集为﹣1<x<3,∴不等式组的整数解为0、1、2.22、试题分析:根据已知条件易证∠ADE=∠CBF,AD=CB,由AAS证△ADE≌△CBF即可.试题解析:∵四边形ABCD是平行四边形,∴AD=CB,AD∥BC,∴∠ADE=∠CBF,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在△ADE和△CBF中,,∴△ADE≌△CBF(AAS).23、试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)中树状图可求得两次摸到的球的颜色不同的情况有4种,再利用概率公式求解即可求得答案.试题解析:(1)如图:,所有可能的结果为(白1,白2)、(白1,红)、(白2,白1)、(白2,红)、(红,白)、(红,白2);1(2)共有6种情况,两次摸到的球的颜色不同的情况有4种,概率为.24、试题分析:过点C作CD⊥AB与D,根据AC=20km,∠CAB=30°,求出CD、AD,根据∠CBA=45°,求出BD、BC,最后根据AB=AD+BD列式计算即可.试题解析:过点C作CD⊥AB与D,∵AC=10km,∠CAB=30°,∴CD=AC=×20=10km,AD=cos∠CAB•AC=cos∠30°×20=10km,∵∠CBA=45°,∴BD=CD=10km,BC=CD=10≈14.14km,∴AB=AD+BD=10+10≈27.32km,则AC+BC﹣AB≈20+14.14﹣27.32≈6.8km,答:从A地到B地的路程将缩短6.8km.25、试题分析:(1)连接OE,根据等腰三角形的性质得到∠A=∠AEO,∠B=∠BEF,于是得到∠OEG=90°,即可得到结论;(2)由AD是⊙O的直径,得到∠AED=90°,根据三角形的内角和得到∠EOD=60°,求得∠EGO=30°,根据三角形和扇形的面积公式即可得到结论.试题解析:(1)连接OE,∵OA=OE,∴∠A=∠AEO,∵BF=EF,∴∠B=∠BEF,∵∠ACB=90°,∴∠A+∠B=90°,∴∠AEO+∠BEF=90°,∴∠OEG=90°,∴EF是⊙O的切线;(2)∵AD是⊙O的直径,∴∠AED=90°,∵∠A=30°,∴∠EOD=60°,∴∠EGO=30°,∵AO=2,∴OE=2,∴EG=2,∴阴影部分的面积==.【点睛】本题考查了切线的判定、等腰三角形的性质、圆周角定理、扇形的面积的计算等,连接OE是解题的关键.26、试题分析:(1)观察图象即可解决问题;(2)首先判断收费标准在BC段,求出直线BC的解析式,列出方程即可解决问题.试题解析:(1)观察图象可知:当参加旅游的人数不超过10人时,人均收费为240元,故答案为240.(2)∵3600÷240=15,3600÷150=24,∴收费标准在BC段,设直线BC的解析式为y=kx+b,则有,解得,∴y=﹣6x+300,由题意(﹣6x+300)x=3600,解得x=20或30(舍弃),答:参加这次旅游的人数是20人.27、试题分析:【操作发现】(1)根据旋转角,旋转方向画出图形即可;(2)只要证明△ABB′是等腰直角三角形即可;【问题解决】如图②,将△APB绕点A按逆时针方向旋转60°,得到△AP′C′,只要证明∠PP′C=90°,利用勾股定理即可解决问题;【灵活运用】如图③中,由AE⊥BC,BE=EC,推出AB=AC,将△ABD绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,只要证明∠GDC=90°,可得CG=,由此即可解决问题.试题解析:【操作发现】(1)如图所示,△AB′C′即为所求;(2)连接BB′,将△ABC绕点A按顺时针方向旋转90°,∴AB=AB′,∠B′AB=90°,∴∠AB′B=45°,故答案为:45°;【问题解决】如图②,∵将△APB绕点A按逆时针方向旋转60°,得到△AP′C′,∴△APP′是等边三角形,∠AP′C=∠APB=360°﹣90°﹣120°=150°,∴PP′=AP,∠AP′P=∠APP′=60°,∴∠PP′C=90°,∠P′PC=30°,∴PP′=PC,即AP=PC,∵∠APC=90°,∴AP2+PC2=AC2,即(PC)2+PC2=72,∴PC=2,∴AP=,∴S△APC=AP•PC=7;【灵活运用】如图③中,∵AE⊥BC,BE=EC,∴AB=AC,将△ABD绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,∵∠BAD=∠CAG,∴∠BAC=∠DAG,∵AB=AC,AD=AG,∴∠ABC=∠ACB=∠ADG=∠AGD,∴△ABC∽△ADG,∵AD=kAB,∴DG=kBC=4k,∵∠BAE+∠ABC=90°,∠BAE=∠ADC,∴∠ADG+∠ADC=90°,∴∠GDC=90°,∴CG==.∴BD=CG=.28、试题分析:(1)设抛物线的解析式为y=a(x+3)(x﹣4).将a=﹣代入可得到抛物线的解析式,从而可确定出b、c的值;(2)连结QC.先求得点C的坐标,则PC=5﹣t,依据勾股定理可求得AC=5,CQ2=t2+16,接下来,依据CQ2﹣CP2=AQ2﹣AP2列方程求解即可;(3)过点P作DE∥x轴,分别过点M、Q作MD⊥DE、QE⊥DE,垂足分别为D、E,MD交x轴与点F,过点P作PG⊥x轴,垂足为点G,首先证明△PAG∽△ACO,依据相似三角形的性质可得到PG=t,AG=t,然后可求得PE、DF的长,然后再证明△MDP≌PEQ,从而得到PD=EQ=t,MD=PE=3+t,然后可求得FM和OF的长,从而可得到点M的坐标,然后将点M的坐标代入抛物线的解析式求解即可;(4)连结OP,取OP的中点R,连结RH,NR,延长NR交线段BC与点Q′.首先依据三角形的中位线定理得到EH=QO=t,RH∥OQ,NR=AP=t,则RH=NR,接下来,依据等腰三角形的性质和平行线的性质证明NH是∠QNQ′的平分线,然后求得直线NR和BC的解析式,最后求得直线NR和BC的交点坐标即可.试题解析:(1)设抛物线的解析式为y=a(x+3)(x﹣4),将a=﹣代入得:y=﹣x2+x+4,∴b=,c=4.(2)在点P、Q运动过程中,△APQ不可能是直角三角形.理由如下:连结QC.∵在点P、Q运动过程中,∠PAQ、∠PQA始终为锐角,∴当△APQ是直角三角形时,则∠APQ=90°.将x=0代入抛物线的解析式得:y=4,∴C(0,4).∵AP=OQ=t,∴PC=5﹣t,∵在Rt△AOC中,依据勾股定理得:AC=5,在Rt△COQ中,依据勾股定理可知:CQ2=t2+16,在Rt△CPQ中依据勾股定理可知:PQ2=CQ2﹣CP2,在Rt△APQ中,AQ2﹣AP2=PQ2,∴CQ2﹣CP2=AQ2﹣AP2,即(3+t)2﹣t2=t2+16﹣(5﹣t)2,解得:t=4.5.∵由题意可知:0≤t≤4,∴t=4.5不和题意,即△APQ不可能是直角三角形.(3)如图所示:过点P作DE∥x轴,分别过点M、Q作MD⊥DE、QE⊥DE,垂足分别为D、E,MD交x 轴与点F,过点P作PG⊥x轴,垂足为点G,则PG∥y轴,∠E=∠D=90°.∵PG∥y轴,∴△PAG∽△ACO,∴,即,∴PG=t,AG=t,∴PE=GQ=GO+OQ=AO﹣AG+OQ=3﹣t+t=3+t,DF=GP=t.∵∠MPQ=90°,∠D=90°,∴∠DMP+∠DPM=∠EPQ+∠DPM=90°,∴∠DMP=∠EPQ.又∵∠D=∠E,PM=PQ,∴△MDP≌PEQ,∴PD=EQ=t,MD=PE=3+t,∴FM=MD﹣DF=3+t﹣t=3﹣t,OF=FG+GO=PD+OA﹣AG=3+t﹣t=3+t,∴M(﹣3﹣t,﹣3+t).∵点M在x轴下方的抛物线上,∴﹣3+t=﹣×(﹣3﹣t)2+×(﹣3﹣t)+4,解得:t=.∵0≤t≤4,∴t=.(4)如图所示:连结OP,取OP的中点R,连结RH,NR,延长NR交线段BC与点Q′.∵点H为PQ的中点,点R为OP的中点,∴EH=QO=t,RH∥OQ.∵A(﹣3,0),N(﹣,0),∴点N为OA的中点.又∵R为OP的中点,∴NR=AP=t,∴RH=NR,∴∠RNH=∠RHN.∵RH∥OQ,∴∠RHN=∠HNO,∴∠RNH=∠HNO,即NH是∠QNQ′的平分线.设直线AC的解析式为y=mx+n,把点A(﹣3,0)、C(0,4)代入得:,解得:m=,n=4,∴直线AC的表示为y=x+4.同理可得直线BC的表达式为y=﹣x+4.设直线NR的函数表达式为y=x+s,将点N的坐标代入得:×(﹣)+s=0,解得:s=2,∴直线NR的表述表达式为y=x+2.将直线NR和直线BC的表达式联立得:,解得:x=,y=,∴Q′(,).【点睛】本题考查了二次函数的综合题,能结合图形运用全等三角形的判定与性质、相似三角形的判定与性质、勾股定理等进行解题是关键.。
2017年江苏省淮安市中考数学试卷一、选择题:本大题共8个小题,每题3分,共24分.在每题给出的四个选项中,只有一项是符合题目要求的.1.〔3分〕﹣2的相反数是〔〕A.2 B.﹣2 C.D.﹣2.〔3分〕2016年某市用于资助贫困学生的助学金总额是9680000元,将9680000用科学记数法表示为〔〕×105×106×107×1083.〔3分〕计算a2•a3的结果是〔〕A.5a B.6a C.a6D.a54.〔3分〕点P〔1,﹣2〕关于y轴对称的点的坐标是〔〕A.〔1,2〕 B.〔﹣1,2〕C.〔﹣1,﹣2〕D.〔﹣2,1〕5.〔3分〕以下式子为最简二次根式的是〔〕A.B. C. D.6.〔3分〕九年级〔1〕班15名男同学进行引体向上测试,每人只测一次,测试结果统计如下:引体向上数/个012345678人数112133211这15名男同学引体向上数的中位数是〔〕A.2 B.3 C.4 D.57.〔3分〕假设一个三角形的两边长分别为5和8,则第三边长可能是〔〕A.14 B.10 C.3 D.28.〔3分〕如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,假设∠EAC=∠ECA,则AC的长是〔〕A.B.6 C.4 D.5二、填空题〔每题3分,总分值30分,将答案填在答题纸上〕9.〔3分〕分解因式:ab﹣b2=.10.〔3分〕计算:2〔x﹣y〕+3y=.11.〔3分〕假设反比例函数y=﹣的图象经过点A〔m,3〕,则m的值是.12.〔3分〕方程=1的解是.13.〔3分〕一枚质地均匀的骰子的6个面上分别刻有1〜6的点数,抛掷这枚骰子1次,向上一面的点数是4的概率是.14.〔3分〕假设关于x的一元二次方程x2﹣x+k+1=0有两个不相等的实数根,则k的取值范围是.15.〔3分〕如图,直线a∥b,∠BAC的顶点A在直线a上,且∠BAC=100°.假设∠1=34°,则∠2=°.16.〔3分〕如图,在圆内接四边形ABCD中,假设∠A,∠B,∠C的度数之比为4:3:5,则∠D的度数是°.17.〔3分〕如图,在Rt△ABC中,∠ACB=90°,点D,E分别是AB,AC的中点,点F是AD的中点.假设AB=8,则EF=.18.〔3分〕将从1开始的连续自然数按以下规律排列:第1行1第2行234第3行98765第4行10111213141516第5行252423222120191817…则2017在第行.三、解答题〔本大题共10小题,共70分.解答应写出文字说明、证明过程或演算步骤.〕19.〔12分〕〔1〕|﹣3|﹣〔+1〕0+〔﹣2〕2;〔2〕〔1﹣〕÷.20.〔8分〕解不等式组:并写出它的整数解.21.〔8分〕已知:如图,在平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F.求证:△ADE≌△CBF.22.〔8分〕一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球〔不放回〕,再从余下的2个球中任意摸出1个球.〔1〕用树状图或列表等方法列出所有可能出现的结果;〔2〕求两次摸到的球的颜色不同的概率.23.〔8分〕某校计划成立学生社团,要求每一位学生都选择一个社团,为了了解学生对不同社团的喜爱情况,学校随机抽取了部分学生进行“我最喜爱的一个学生社团”问卷调查,规定每人必须并且只能在“文学社团”、“科学社团”、“书画社团”、“体育社团”和“其他”五项中选择一项,并将统计结果绘制了如下两个不完整的统计图表.社团名称人数文学社团18科技社团a书画社团45体育社团72其他b请解答以下问题:〔1〕a=,b=;〔2〕在扇形统计图中,“书画社团”所对应的扇形圆心角度数为;〔3〕假设该校共有3000名学生,试估计该校学生中选择“文学社团”的人数.24.〔8分〕A,B两地被大山阻隔,假设要从A地到B地,只能沿着如下图的公路先从A地到C地,再由C地到B地.现计划开凿隧道A,B两地直线贯穿,经测量得:∠CAB=30°,∠CBA=45°,AC=20km,求隧道开通后与隧道开通前相比,从A地到B地的路程将缩短多少?〔结果精确到0.1km,参考数据:≈1.414,≈1.732〕25.〔8分〕如图,在△ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,OA为半径的圆分别交AB,AC于点E,D,在BC的延长线上取点F,使得BF=EF,EF与AC交于点G.〔1〕试判断直线EF与⊙O的位置关系,并说明理由;〔2〕假设OA=2,∠A=30°,求图中阴影部分的面积.26.〔10分〕某公司组织职工到附近的景点旅游,根据旅行社提供的收费方案,绘制了如下图的图象,图中折线ABCD表示人均收费y〔元〕与参加旅游的人数x〔人〕之间的函数关系.〔1〕当参加旅游的人数不超过10人时,人均收费为元;〔2〕如果该公司支付给旅行社3600元,那么参加这次旅游的人数是多少?27.〔12分〕【操作发现】如图①,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.〔1〕请按要求画图:将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B′,点C的对应点为C′,连接BB′;〔2〕在〔1〕所画图形中,∠AB′B=.【问题解决】如图②,在等边三角形ABC中,AC=7,点P在△ABC内,且∠APC=90°,∠BPC=120°,求△APC的面积.小明同学通过观察、分析、思考,对上述问题形成了如下想法:想法一:将△APC绕点A按顺时针方向旋转60°,得到△AP′B,连接PP′,寻找PA,PB,PC三条线段之间的数量关系;想法二:将△APB绕点A按逆时针方向旋转60°,得到△AP′C′,连接PP′,寻找PA,PB,PC三条线段之间的数量关系.…请参考小明同学的想法,完成该问题的解答过程.〔一种方法即可〕【灵活运用】如图③,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=2,CD=5,AD=kAB〔k为常数〕,求BD的长〔用含k的式子表示〕.28.〔14分〕如图①,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A,B,C三点,其中点A的坐标为〔﹣3,0〕,点B的坐标为〔4,0〕,连接AC,BC.动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.连接PQ.〔1〕填空:b=,c=;〔2〕在点P,Q运动过程中,△APQ可能是直角三角形吗?请说明理由;〔3〕在x轴下方,该二次函数的图象上是否存在点M,使△PQM是以点P为直角顶点的等腰直角三角形?假设存在,请求出运动时间t;假设不存在,请说明理由;〔4〕如图②,点N的坐标为〔﹣,0〕,线段PQ的中点为H,连接NH,当点Q关于直线NH的对称点Q′恰好落在线段BC上时,请直接写出点Q′的坐标.2017年江苏省淮安市中考数学试卷参考答案与试题解析一、选择题:本大题共8个小题,每题3分,共24分.在每题给出的四个选项中,只有一项是符合题目要求的.1.〔3分〕﹣2的相反数是〔〕A.2 B.﹣2 C.D.﹣【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A.【点评】此题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.2.〔3分〕2016年某市用于资助贫困学生的助学金总额是9680000元,将9680000用科学记数法表示为〔〕×105×106×107×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】×106.故选B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.〔3分〕计算a2•a3的结果是〔〕A.5a B.6a C.a6D.a5【分析】根据同底数幂的乘法,可得答案.【解答】解:原式=a2+3=a5,故选:D.【点评】此题考查了同底数幂的乘法,熟记法则并根据法则计算是解题关键.4.〔3分〕点P〔1,﹣2〕关于y轴对称的点的坐标是〔〕A.〔1,2〕 B.〔﹣1,2〕C.〔﹣1,﹣2〕D.〔﹣2,1〕【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【解答】解:P〔1,﹣2〕关于y轴对称的点的坐标是〔﹣1,﹣2〕,故选:C.【点评】此题考查了关于y轴对称的点的坐标,解决此题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.5.〔3分〕以下式子为最简二次根式的是〔〕A.B. C. D.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A符合题意;B、被开方数含能开得尽方的因数或因式,故B不符合题意;C、被开方数含能开得尽方的因数或因式,故C不符合题意;D、被开方数含分母,故D不符合题意;故选:A.【点评】此题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.6.〔3分〕九年级〔1〕班15名男同学进行引体向上测试,每人只测一次,测试结果统计如下:引体向上数/个012345678人数112133211这15名男同学引体向上数的中位数是〔〕A.2 B.3 C.4 D.5【分析】根据中位数的定义,将15个数据从小到大排列后,中位数是第8个数.【解答】解:根据表格可知,15个数据按从小到大的顺序排列后,第8个数是4,所以中位数为4;故选C.【点评】此题主要考查中位数的定义,中位数是将一组数据从小到大〔或从大到小〕重新排列后,最中间的那个数〔最中间两个数的平均数〕,叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.7.〔3分〕假设一个三角形的两边长分别为5和8,则第三边长可能是〔〕A.14 B.10 C.3 D.2【分析】根据三角形三边关系,两边之和大于第三边,两边之差小于第三边即可判断.【解答】解:设第三边为x,则8﹣5<x<5+8,即3<x<13,所以符合条件的整数为10,故选B.【点评】此题考查三角形三边关系定理,记住两边之和大于第三边,两边之差小于第三边,属于基础题,中考常考题型.8.〔3分〕如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,假设∠EAC=∠ECA,则AC的长是〔〕A.B.6 C.4 D.5【分析】根据折叠的性质得到AF=AB,∠AFE=∠B=90°,根据等腰三角形的性质得到AF=CF,于是得到结论.【解答】解:∵将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,∴AF=AB,∠AFE=∠B=90°,∴EF⊥AC,∵∠EAC=∠ECA,∴AE=CE,∴AF=CF,∴AC=2AB=6,故选B.【点评】此题考查了翻折变换的性质,矩形的性质,熟练掌握折叠的性质是解题的关键.二、填空题〔每题3分,总分值30分,将答案填在答题纸上〕9.〔3分〕分解因式:ab﹣b2=b〔a﹣b〕.【分析】根据提公因式法,可得答案.【解答】解:原式=b〔a﹣b〕,故答案为:b〔a﹣b〕.【点评】此题考查了因式分解,利用提公因式法是解题关键.10.〔3分〕计算:2〔x﹣y〕+3y=2x+y.【分析】原式去括号合并即可得到结果.【解答】解:原式=2x﹣2y+3y=2x+y,故答案为:2x+y【点评】此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解此题的关键.11.〔3分〕假设反比例函数y=﹣的图象经过点A〔m,3〕,则m的值是﹣2.【分析】直接把A〔m,3〕代入反比例函数y=﹣,求出m的值即可.【解答】解:∵反比例函数y=﹣的图象经过点A〔m,3〕,∴3=﹣,解得m=﹣2.故答案为:﹣2.【点评】此题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.12.〔3分〕方程=1的解是x=3.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x﹣1=2,解得:x=3,经检验x=3是分式方程的解,故答案为:x=3【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.13.〔3分〕一枚质地均匀的骰子的6个面上分别刻有1〜6的点数,抛掷这枚骰子1次,向上一面的点数是4的概率是.【分析】弄清骰子六个面上分别刻的点数,再根据概率公式解答就可求出向上一面的点数是4的概率.【解答】解:由概率公式P〔向上一面的点数是6〕=.故答案为:.【点评】考查了概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.14.〔3分〕假设关于x的一元二次方程x2﹣x+k+1=0有两个不相等的实数根,则k的取值范围是k<﹣.【分析】根据判别式的意义得到△=〔﹣1〕2﹣4〔k+1〕>0,然后解不等式即可.【解答】解:根据题意得△=〔﹣1〕2﹣4〔k+1〕>0,解得k<﹣.故答案为k<﹣.【点评】此题考查了根的判别式:一元二次方程ax2+bx+c=0〔a≠0〕的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.15.〔3分〕如图,直线a∥b,∠BAC的顶点A在直线a上,且∠BAC=100°.假设∠1=34°,则∠2=46°.【分析】根据平行线的性质和平角的定义即可得到结论.【解答】解:∵直线a∥b,∴∠3=∠1=34°,∵∠BAC=100°,∴∠2=180°﹣34°﹣100°=46°,故答案为:46.【点评】此题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键.16.〔3分〕如图,在圆内接四边形ABCD中,假设∠A,∠B,∠C的度数之比为4:3:5,则∠D的度数是120°.【分析】设∠A=4x,∠B=3x,∠C=5x,根据圆内接四边形的性质求出x的值,进而可得出结论.【解答】解:∵∠A,∠B,∠C的度数之比为4:3:5,∴设∠A=4x,则∠B=3x,∠C=5x.∵四边形ABCD是圆内接四边形,∴∠A+∠C=180°,即4x+5x=180°,解得x=20°,∴∠B=3x=60°,∴∠D=180°﹣60°=120°.故答案为:120.【点评】此题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.17.〔3分〕如图,在Rt△ABC中,∠ACB=90°,点D,E分别是AB,AC的中点,点F是AD的中点.假设AB=8,则EF=2.【分析】利用直角三角形斜边中线定理以及三角形的中位线定理即可解决问题.【解答】解:在Rt△ABC中,∵AD=BD=4,∴CD=AB=4,∵AF=DF,AE=EC,∴EF=CD=2.故答案为2【点评】此题考查三角形的中位线定理、直角三角形斜边上的中线的性质等知识,解题的关键是熟练掌握三角形的中位线定理以及直角三角形斜边上的中线的性质解决问题,属于中考常考题型.18.〔3分〕将从1开始的连续自然数按以下规律排列:第1行1第2行234第3行98765第4行10111213141516第5行252423222120191817…则2017在第45行.【分析】通过观察可得第n行最大一个数为n2,由此估算2017所在的行数,进一步推算得出答案即可.【解答】解:∵442=1936,452=2025,∴2017在第45行.故答案为:45.【点评】此题考查了数字的变化规律,解题的关键是通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题.三、解答题〔本大题共10小题,共70分.解答应写出文字说明、证明过程或演算步骤.〕19.〔12分〕〔1〕|﹣3|﹣〔+1〕0+〔﹣2〕2;〔2〕〔1﹣〕÷.【分析】〔1〕根据绝对值的意义,零指数幂的意义即可求出答案;〔2〕根据分式的运算法则即可求出答案.【解答】解:〔1〕原式=3﹣1+4=6〔2〕原式=×=a【点评】此题考查学生的运算能力,解题的关键是熟练运用运算法则,此题属于基础题型.20.〔8分〕解不等式组:并写出它的整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3x﹣1<x+5,得:x<3,解不等式<x﹣1,得:x>﹣1,则不等式组的解集为﹣1<x<3,∴不等式组的整数解为0、1、2.【点评】此题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.〔8分〕已知:如图,在平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F.求证:△ADE≌△CBF.【分析】证出∠ADE=∠CBF,AD=CB,由AAS证△ADE≌△CBF即可.【解答】证明:∵四边形ABCD是平行四边形,∴AD=CB,AD∥BC,∴∠ADE=∠CBF,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在△ADE和△CBF中,,∴△ADE≌△CBF〔AAS〕.【点评】此题考查了平行四边形的性质、全等三角形的判定.熟练掌握平行四边形的性质是解决问题的关键.22.〔8分〕一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球〔不放回〕,再从余下的2个球中任意摸出1个球.〔1〕用树状图或列表等方法列出所有可能出现的结果;〔2〕求两次摸到的球的颜色不同的概率.【分析】〔1〕首先根据题意画出树状图,然后由树状图求得所有等可能的结果;〔2〕由〔1〕中树状图可求得两次摸到的球的颜色不同的情况有4种,再利用概率公式求解即可求得答案.【解答】解:〔1〕如图:;〔2〕共有6种情况,两次摸到的球的颜色不同的情况有4种,概率为=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.〔8分〕某校计划成立学生社团,要求每一位学生都选择一个社团,为了了解学生对不同社团的喜爱情况,学校随机抽取了部分学生进行“我最喜爱的一个学生社团”问卷调查,规定每人必须并且只能在“文学社团”、“科学社团”、“书画社团”、“体育社团”和“其他”五项中选择一项,并将统计结果绘制了如下两个不完整的统计图表.社团名称人数文学社团18科技社团a书画社团45体育社团72其他b请解答以下问题:〔1〕a=36,b=9;〔2〕在扇形统计图中,“书画社团”所对应的扇形圆心角度数为90°;〔3〕假设该校共有3000名学生,试估计该校学生中选择“文学社团”的人数.【分析】〔1〕根据体育社团的人数是72人,所占的百分比是40%即可求得调查的总人数,然后利用百分比的意义求得a和b的值;〔2〕利用360°乘以对应的百分比求解;〔3〕利用总人数乘以对应的百分比求解.【解答】解:〔1〕调查的总人数是72÷40%=180〔人〕,则a=180×20%=36〔人〕,则b=180﹣18﹣45﹣72﹣36=9.故答案是:36,9;〔2〕“书画社团”所对应的扇形圆心角度数是360×=90°;〔3〕估计该校学生中选择“文学社团”的人数是3000×=300〔人〕.【点评】此题考查的是统计表和扇形统计图的综合运用.读懂统计图,从不同的统计表和统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.24.〔8分〕A,B两地被大山阻隔,假设要从A地到B地,只能沿着如下图的公路先从A地到C地,再由C地到B地.现计划开凿隧道A,B两地直线贯穿,经测量得:∠CAB=30°,∠CBA=45°,AC=20km,求隧道开通后与隧道开通前相比,从A地到B地的路程将缩短多少?〔结果精确到0.1km,参考数据:≈1.414,≈1.732〕【分析】过点C作CD⊥AB与D,根据AC=20km,∠CAB=30°,求出CD、AD,根据∠CBA=45°,求出BD、BC,最后根据AB=AD+BD列式计算即可.【解答】解:过点C作CD⊥AB与D,∵AC=20km,∠CAB=30°,∴CD=AC=×20=10km,AD=cos∠CAB•AC=cos∠30°×20=10km,∵∠CBA=45°,∴BD=CD=10km,BC=CD=10≈∴AB=AD+BD=10+10≈27.32km.则AC+BC﹣AB≈20+≈6.8km.答:从A地到B地的路程将缩短6.8km.【点评】此题考查了解直角三角形的应用,用到的知识点是三角函数、特殊角的三角函数值,关键是作出辅助线,构造直角三角形,求出有关线段的长.25.〔8分〕如图,在△ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,OA为半径的圆分别交AB,AC于点E,D,在BC的延长线上取点F,使得BF=EF,EF与AC交于点G.〔1〕试判断直线EF与⊙O的位置关系,并说明理由;〔2〕假设OA=2,∠A=30°,求图中阴影部分的面积.【分析】〔1〕连接OE,根据等腰三角形的性质得到∠A=∠AEO,∠B=∠BEF,于是得到∠OEG=90°,即可得到结论;〔2〕由AD是⊙O的直径,得到∠AED=90°,根据三角形的内角和得到∠EOD=60°,求得∠EGO=30°,根据三角形和扇形的面积公式即可得到结论.【解答】解:〔1〕连接OE,∵OA=OE,∴∠A=∠AEO,∵BF=EF,∴∠B=∠BEF,∵∠ACB=90°,∴∠A+∠B=90°,∴∠AEO+∠BEF=90°,∴∠OEG=90°,∴EF是⊙O的切线;〔2〕∵AD是⊙O的直径,∴∠AED=90°,∵∠A=30°,∴∠EOD=60°,∴∠EGO=30°,∵AO=2,∴OE=2,∴EG=2,∴阴影部分的面积=2×2﹣=2﹣π.【点评】此题考查了切线的判定,等腰三角形的性质,圆周角定理,扇形的面积的计算,正确的作出辅助线是解题的关键.26.〔10分〕某公司组织职工到附近的景点旅游,根据旅行社提供的收费方案,绘制了如下图的图象,图中折线ABCD表示人均收费y〔元〕与参加旅游的人数x〔人〕之间的函数关系.〔1〕当参加旅游的人数不超过10人时,人均收费为240元;〔2〕如果该公司支付给旅行社3600元,那么参加这次旅游的人数是多少?【分析】〔1〕观察图象即可解决问题;〔2〕首先判断收费标准在BC段,求出直线BC的解析式,列出方程即可解决问题.【解答】解:〔1〕观察图象可知:当参加旅游的人数不超过10人时,人均收费为240元.故答案为240.〔2〕∵3600÷240=15,3600÷150=24,∴收费标准在BC段,设直线BC的解析式为y=kx+b,则有,解得,∴y=﹣6x+300,由题意〔﹣6x+300〕x=3600,解得x=20或30〔舍弃〕答:参加这次旅游的人数是20人.【点评】此题考查一次函数的应用、一元二次方程的应用等知识,解题的关键是理解题意,读懂图象信息,用数形结合的思想思考问题,属于中考常考题型.27.〔12分〕【操作发现】如图①,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.〔1〕请按要求画图:将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B′,点C的对应点为C′,连接BB′;〔2〕在〔1〕所画图形中,∠AB′B=45°.【问题解决】如图②,在等边三角形ABC中,AC=7,点P在△ABC内,且∠APC=90°,∠BPC=120°,求△APC的面积.小明同学通过观察、分析、思考,对上述问题形成了如下想法:想法一:将△APC绕点A按顺时针方向旋转60°,得到△AP′B,连接PP′,寻找PA,PB,PC三条线段之间的数量关系;想法二:将△APB绕点A按逆时针方向旋转60°,得到△AP′C′,连接PP′,寻找PA,PB,PC三条线段之间的数量关系.…请参考小明同学的想法,完成该问题的解答过程.〔一种方法即可〕【灵活运用】如图③,在四边形ABCD中,AE⊥BC,垂足为E,∠BAE=∠ADC,BE=CE=2,CD=5,AD=kAB〔k为常数〕,求BD的长〔用含k的式子表示〕.【分析】【操作发现】〔1〕根据旋转角,旋转方向画出图形即可;〔2〕只要证明△ABB′是等腰直角三角形即可;【问题解决】如图②,将△APB绕点A按逆时针方向旋转60°,得到△AP′C′,只要证明∠PP′C=90°,利用勾股定理即可解决问题;【灵活运用】如图③中,由AE⊥BC,BE=EC,推出AB=AC,将△ABD绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,只要证明∠GDC=90°,可得CG=,由此即可解决问题.【解答】解:【操作发现】〔1〕如下图,△AB′C′即为所求;〔2〕连接BB′,将△ABC绕点A按顺时针方向旋转90°,∴AB=AB′,∠B′AB=90°,∴∠AB′B=45°,故答案为:45°;【问题解决】如图②,∵将△APB绕点A按逆时针方向旋转60°,得到△AP′C′,∴△APP′是等边三角形,∠AP′C=∠APB=360°﹣90°﹣120°=150°,∴PP′=AP,∠AP′P=∠APP′=60°,∴∠PP′C=90°,∠P′PC=30°,∴PP′=PC,即AP=PC,∵∠APC=90°,∴AP2+PC2=AC2,即〔PC〕2+PC2=72,∴PC=2,∴AP=,=AP•PC=7;∴S△APC【灵活运用】如图③中,∵AE⊥BC,BE=EC,∴AB=AC,将△ABD绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,∵∠BAD=∠CAG,∴∠BAC=∠DAG,∵AB=AC,AD=AG,∴∠ABC=∠ACB=∠ADG=∠AGD,∴△ABC∽△ADG,∵AD=kAB,∴DG=kBC=4k,∵∠BAE+∠ABC=90°,∠BAE=∠ADC,∴∠ADG+∠ADC=90°,∴∠GDC=90°,∴CG==.∴BD=CG=.【点评】此题考查相似形综合题、等边三角形的判定和性质、等腰三角形的判定和性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会用旋转法添加辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.28.〔14分〕如图①,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A,B,C三点,其中点A的坐标为〔﹣3,0〕,点B的坐标为〔4,0〕,连接AC,BC.动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.连接PQ.〔1〕填空:b=,c=4;〔2〕在点P,Q运动过程中,△APQ可能是直角三角形吗?请说明理由;〔3〕在x轴下方,该二次函数的图象上是否存在点M,使△PQM是以点P为直角顶点的等腰直角三角形?假设存在,请求出运动时间t;假设不存在,请说明理由;〔4〕如图②,点N的坐标为〔﹣,0〕,线段PQ的中点为H,连接NH,当点Q关于直线NH的对称点Q′恰好落在线段BC上时,请直接写出点Q′的坐标.【分析】〔1〕设抛物线的解析式为y=a〔x+3〕〔x﹣4〕.将a=﹣代入可得到抛物线的解析式,从而可确定出b、c的值;〔2〕连结QC.先求得点C的坐标,则PC=5﹣t,依据勾股定理可求得AC=5,CQ2=t2+16,接下来,依据CQ2﹣CP2=AQ2﹣AP2列方程求解即可;〔3〕过点P作DE∥x轴,分别过点M、Q作MD⊥DE、QE⊥DE,垂足分别为D、E,MD交x轴与点F,过点P作PG⊥x轴,垂足为点G,首先证明△PAG∽△ACO,依据相似三角形的性质可得到PG=t,AG=t,然后可求得PE、DF的长,然后再证明△MDP≌PEQ,从而得到PD=EQ=t,MD=PE=3+t,然后可求得FM和OF的长,从而可得到点M的坐标,然后将点M的坐标代入抛物线的解析式求解即可;〔4〕连结:OP,取OP的中点R,连结RH,NR,延长NR交线段BC与点Q′.首先依据三角形的中位线定理得到RH=QO=t,RH∥OQ,NR=AP=t,则RH=NR,接下来,依据等腰三角形的性质和平行线的性质证明NH是∠QNQ′的平分线,然后求得直线NR和BC的解析式,最后求得直线NR和BC的交点坐标即可.【解答】解:〔1〕设抛物线的解析式为y=a〔x+3〕〔x﹣4〕.将a=﹣代入得:y=﹣x2+x+4,∴b=,c=4.〔2〕在点P、Q运动过程中,△APQ不可能是直角三角形.理由如下:连结QC.∵在点P、Q运动过程中,∠PAQ、∠PQA始终为锐角,∴当△APQ是直角三角形时,则∠APQ=90°.将x=0代入抛物线的解析式得:y=4,∴C〔0,4〕.∵AP=OQ=t,∴PC=5﹣t,∵在Rt△AOC中,依据勾股定理得:AC=5,在Rt△COQ中,依据勾股定理可知:CQ2=t2+16,在Rt△CPQ中依据勾股定理可知:PQ2=CQ2﹣CP2,在Rt△APQ中,AQ2﹣AP2=PQ2,∴CQ2﹣CP2=AQ2﹣AP2,即〔3+t〕2﹣t2=t2+16﹣〔5﹣t〕2,解得:t=4.5.∵由题意可知:0≤t≤4,∴t=4.5不合题意,即△APQ不可能是直角三角形.〔3〕如下图:过点P作DE∥x轴,分别过点M、Q作MD⊥DE、QE⊥DE,垂足分别为D、E,MD交x轴与点F,过点P作PG⊥x轴,垂足为点G,则PG∥y轴,∠E=∠D=90°.∵PG∥y轴,∴△PAG∽△ACO,∴==,即==,∴PG=t,AG=t,∴PE=GQ=GO+OQ=AO﹣AG+OQ=3﹣t+t=3+t,DF=GP=t.∵∠MPQ=90°,∠D=90°,∴∠DMP+∠DPM=∠EPQ+∠DPM=90°,∴∠DMP=∠EPQ.又∵∠D=∠E,PM=PQ,∴△MDP≌PEQ,∴PD=EQ=t,MD=PE=3+t,∴FM=MD﹣DF=3+t﹣t=3﹣t,OF=FG+GO=PD+OA﹣AG=3+t﹣t=3+t,∴M〔﹣3﹣t,﹣3+t〕.∵点M在x轴下方的抛物线上,∴﹣3+t=﹣×〔﹣3﹣t〕2+×〔﹣3﹣t〕+4,解得:t=.∵0≤t≤4,∴t=.〔4〕如下图:连结OP,取OP的中点R,连结RH,NR,延长NR交线段BC与点Q′.∵点H为PQ的中点,点R为OP的中点,∴RH=QO=t,RH∥OQ.∵A〔﹣3,0〕,N〔﹣,0〕,∴点N为OA的中点.又∵R为OP的中点,∴NR=AP=t,∴RH=NR,∴∠RNH=∠RHN.∵RH∥OQ,∴∠RHN=∠HNO,∴∠RNH=∠HNO,即NH是∠QNQ′的平分线.设直线AC的解析式为y=mx+n,把点A〔﹣3,0〕、C〔0,4〕代入得:,解得:m=,n=4,∴直线AC的表示为y=x+4.同理可得直线BC的表达式为y=﹣x+4.设直线NR的函数表达式为y=x+s,将点N的坐标代入得:×〔﹣〕+s=0,解得:s=2,∴直线NR的表述表达式为y=x+2.将直线NR和直线BC的表达式联立得:,解得:x=,y=,∴Q′〔,〕.【点评】此题主要考查的是二次函数的综合应用,解答此题主要应用了待定系数法求二次函数的解析式、相似三角形的性质和判定、全等三角形的性质和判定,依据勾股定理列出关于t的方程是解答问题〔2〕的关键;求得点M的坐标〔用含t的式子表示〕是解答问题〔3〕的关键;证得NH为∠QHQ′的平分线是解答问题〔4〕的关键.。
2017江苏中考数学试题及答案2017年江苏中考数学试题及答案一、选择题(本题共10小题,每小题3分,共30分)1. 以下哪个数是无理数?A. 2B. √2C. 0.33333…D. π答案:B2. 已知函数y=x^2+2x+1,该函数的顶点坐标为:A. (-1, 0)B. (1, 0)C. (-1, 2)D. (1, 2)答案:C3. 若一个三角形的三边长分别为3、4、5,则该三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形答案:B4. 已知一个圆的半径为5,那么它的面积是:A. 25πB. 50πC. 75πD. 100π答案:C5. 以下哪个选项不是单项式?A. 3x^2B. 5xC. -2D. x/y答案:D6. 计算(3x^2-2x+1)-(2x^2-x+3)的结果是:A. x^2+x-2B. x^2-3x-2C. x^2-x-2D. x^2+x+2答案:C7. 若方程2x+3=7的解是x=2,则方程4x+6=14的解是:A. x=1B. x=2C. x=3D. x=4答案:C8. 已知一个扇形的圆心角为60°,半径为4,则该扇形的面积是:A. 4πB. 8πC. 12πD. 16π答案:A9. 以下哪个选项是二次函数?A. y=3x+2B. y=x^2+2x+1C. y=x^3-2x+3D. y=1/x答案:B10. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 1答案:A二、填空题(本题共5小题,每小题4分,共20分)11. 计算√16的结果是______。
答案:412. 已知一个正比例函数y=kx,当x=2时,y=4,则k的值是______。
答案:213. 一个等腰三角形的底角为45°,那么顶角的度数是______。
答案:90°14. 计算(2x+3)(x-1)的结果是______。
答案:2x^2+x-315. 一个数的绝对值是5,那么这个数可以是______。
江苏省淮安市2017年中考数学试题试卷名称第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.-2的相反数是( ) A .2 B .-2 C .12 D .-122. 2016年某市用于资助贫困学生的助学金总额是9680000元,将9680000用科学记数法表示为( ) A .596.810⨯ B .69.6810⨯ C .79.6810⨯ D .80.96810⨯ 3. 计算23a a ⋅的结果是 ( )A .5aB .6aC .6a D . 5a 4. 点P (1,-2)关于y 轴对称的点的坐标是( )A .(1,2)B .(-1,2) C. (-1,-2) D .(-2,1) 5. 下列式子为最简二次根式的是 ( )A 6. 九年级(1)班15名男同学进行引体向上测试,每人只测一次,测试结果统计如下: 这15名男同学引体向上数的中位数是( ) A .2B .3 C. 4 D .57. 若—个三角形的两边长分别为5和8,则第三边长可能是( ) A .14 B . 10 C. 3 D .28. 如图,在矩形纸片ABCD 中,3AB =,点E 在边BC 上,将ABE ∆沿直线AE 折叠,点B 恰好落在对角线AC 上的点F 处,若EAC ECA ∠=∠,则AC 的长是( )A .. 6 C. 4 D .5第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)9.分解因式:2ab b -= . 10.计算:()23=x y y -+ . 11. 若反比例函数6y x=-的图像经过点(),3A m ,则m 的值是 . 12. 方程211x =-的解是 . 13. —枚质地均匀的骰子的6个面上分别刻有1〜6的点数,抛掷这枚骰子1次,向上一面的点数是4的概率是4的概率是 .14. 若关于x 的一元二次方程210x x k -++=有两个不相等的实数根,则k 的取值范围是 . 15. 如图,直线//,a b BAC ∠的顶点A 在直线a 上,且100BAC ∠=︒.若134∠=︒,则2∠= ︒.16. 如图,在圆内接四边形ABCD 中,若,,A B C ∠∠∠的度数之比为4:3:5,则D ∠的度数是︒.17. 如图,在Rt ABC ∆中,90ACB ∠=︒,点,D E 分别是,AB AC 的中点,点F 是AD 的中点,若8AB =,则EF = .18.将从1开始的连续自然数按一下规律排列:第1行 1 第二行 2 3 4 第三行98765第四行10 11 12 13 14 15 16第五行 25 24 23 22 21 20 19 18 17……………………则2017在第 行.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)19. (1))()02112--+-;(2)2331a a a-⎛⎫-÷ ⎪⎝⎭. 20. 解不等式组:315,31,2x x x x -<+⎧⎪⎨-<-⎪⎩并写出它的整数解.21. 已知:如图,在ABCD 中,,AE BD CF BD ⊥⊥,垂足分别为,E F . 求证:ADE CBF ∆∆≌.22. 一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球. (1)用树状图或列表等方法列出所有可能出现的结果;(2)求两次摸到的球的颜色不同的概率.23.某校计划成立学生社团,要求每一位学生都选择一个社团,为了了解学生对不同社团的喜爱情况,学校随机抽取了部分学生进行“我最喜爱的一个学生社团”问卷调查,规定每人必须并且只能在“文学社团”、“科学社团”、“书画社团”、“体育社团”和“其他”五项中选择一项,并将统计结果绘制了如下两个不完整的统计图表.请解答下列问题:(1)a = ,b = ;(2)在扇形统计图中,“书画社团”所对应的扇形圆心角度数为 ; (3)若该校共有3000名学生,试估计该校学生中选择“文学社团”的人数.24.,A B 两地被大山阻隔,若要从A 地到B 地,只能沿着如图所示的公路先从A 地到C 地,再由C 地到B 地.现计划开凿隧道,A B 两地直线贯通,经测量得:30,45,20CAB CBA AC km ∠=︒∠=︒=,求隧道开通后与隧道开通前相比,从A 地到B 地的路程将缩短多少?(结果精确到0.1km ,参考数据:1.732≈≈)25.如图,在ABC ∆中,90ACB ∠=︒,O 是边AC 上一点,以O 为圆心,OA 为半径的圆分别交,AB AC于点,E D ,在BC 的延长线上取点F ,使得,BF EF EF =与AC 交于点C . (1)试判断直线EF 与⊙O 的位置关系,并说明理由; (2)若2,30OA A =∠=︒,求图中阴影部分的面积.26. 某公司组织员工到附近的景点旅游,根据旅行社提供的收费方案,绘制了如图所示的图像,图中折线ABCD 表示人均收费y (元)与参加旅游的人数x (人)之间的函数关系.(1)当参加旅游的人数不超过10人时,人均收费为 元; (2)如果该公司支付给旅行社3600元,導么参加这次旅游的人数是多少? 27. 【操作发现】如图①,在边长为1个单位长度的小正方形组成的网格中,ABC ∆的三个顶点均在格点上.(1)请按要求画图:将ABC ∆绕点A 按顺时针方向旋转90︒,点B 的对应点为B ',点C 的对应点为C ',连接BB ';(2)在(1)所画图形中,AB B ∠'= . 【问题解决】如图②,在等边三角形ABC 中,7AC =,点P 在ABC ∆内,且90,120APC BPC ∠=︒∠=︒,求APC ∆的面积.小明同学通过观察、分析、思考,对上述问题形成了如下想法:想法一:将APC ∆绕点A 按顺时针方向旋转60︒,得到AP B ∆',连接PP ',寻找,,PA PB PC 三条线段之间的数量关系;想法二:将APB ∆绕点A 按逆时针方向旋转60︒,得到AP C ∆'',连接PP ',寻找,,PA PB PC 三条线段之间的数量关系. ……请参考小明同学的想法,完成该问题的解答过程.(―种方法即可) 【灵活运用】如图③,在四边形ABCD 中,AE BC ⊥,垂足为,,2,5,E BAE ADC BE CE CD AD kAB ∠=∠====(k 为常数),求BD 的长(用含k 的式子表示).28. 如图①,在平面直角坐标系中,二次函数的图像与坐标轴交于,,A B C 三点,其中点A 的坐标为(-3,0),点B 的坐标为(4,0),连接,AC BC .动点P 从点A 出发,在线段AC 上以每秒1个单位长度的速度向点C 作匀速运动;同时,动点Q 从点O 出发,在线段OB 上以每秒1个单位长度的速度向点B 作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t 秒.连接PQ . (1)填空:b =▲,a =▲;(2)在点,P Q 运动过程中,APQ ∆可能是直角三角形吗?请说明理由;(3)在x 轴下方,该二次函数的图像上是否存在点M ,使PQ M ∆是以点P 为直角顶点的等腰直角三角形?若存在,请求出运动时间t ;若不存在,请说明理由;(4)如图②,点N的坐标为(-32,0),线段PQ的中点为H,连接NH,当点Q关于直线NH的对称点Q'恰好落在线段BC上时,请直接写出点Q'的坐标.。
江苏省淮安市2017年中考试卷数学答案解析一、选择题 1.【答案】A【解析】解:根据相反数的定义,﹣2的相反数是2. 故选:A .【提示】根据相反数的意义,只有符号不同的数为相反数. 【考点】相反数的概念 2.【答案】B【解析】解:将9680000用科学记数法表示为:69.6810⨯ 故选B .【提示】科学记数法的表示形式为10n a ⨯的形式,其中1|10|a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数 【考点】科学计数法 3.【答案】D【解析】解:原式235a a +== 故选:D .【提示】根据同底数幂的乘法,可得答案. 【考点】同底数幂的乘法法则 4.【答案】C【解析】解:(1,2)P -关于y 轴对称的点的坐标是(1,2)- 故选:C .【提示】关于y 轴对称的点,纵坐标相同,横坐标互为相反数,可得答案. 【考点】直角坐标系中对称点的规则 5.【答案】A【解析】解:A .被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A 符合题意; B .被开方数含能开得尽方的因数或因式,故B 不符合题意; C .被开方数含能开得尽方的因数或因式,故C 不符合题意; D .被开方数含分母,故D 不符合题意;故答案为:46故答案为222.【答案】(1)如图:42【解析】解:(1)如图:4223.【答案】(1)369(2)90︒(3)300【解析】解:(1)调查的总人数是7240%180÷=(人),则18020%36a=⨯=(人),则180184572369b=----=答:从A地到B地的路程将缩短6.8km.(2)阴影部分的面积2π260π22360⨯=【提示】(1)连接OE ,根据等腰三角形的性质得到A AEO ∠=∠,B BEF ∠=∠,于是得到90OEG ︒∠=,即可得到结论;(2)由AD 是O e 的直径,得到90AED ︒∠=,根据三角形的内角和得到60EOD ︒∠=,求得30EGO ︒∠=,根据三角形和扇形的面积公式即可得到结论.【考点】切线的判定定理,直角三角形的性质,扇形的面积公式,割补法. 26.【答案】(1)240 (2)20【解析】解:(1)观察图像可知:当参加旅游的人数不超过10人时,人均收费为240元. 故答案为240.(2)∵360024015÷=,360015024÷=,∴收费标准在BC 段,设直线BC 的解析式为y kx b =+,则有1024025150k b k b +=⎧⎨+=⎩,解得6300k b =-⎧⎨=⎩,∴6300y x =-+,由题意(6300)3600x x -+=,解得20x =或30(舍弃) 答:参加这次旅游的人数是20人. 【提示】(1)观察图像即可解决问题;(2)首先判断收费标准在BC 段,求出直线BC 的解析式,列出方程即可解决问题.【考点】一次函数的实际运用,一次函数的图像,系数法求一次函数表达式,列一元二次方程解决实际问题27.【答案】【操作发现】(1)如图所示,AB C ''△即为所求;(2)45︒【问题解决】如图②,△即为所求;【解析】解:【操作发现】(1)如图所示,AB C''【问题解决】如图②,=,连接DG.则BD CG理由如下:连结QC.(3)如图所示:11。
数学试卷 第1页(共6页) 数学试卷 第2页(共6页)绝密★启用前江苏省淮安市2017年中考试卷数 学本试卷满分120分,考试时间120分钟.一、选择题(每小题3分,共24分) 1.-2的相反数是( ) A .2B .-2C .12D .12-2.2016年某市用于资助贫困学生的助学金总额是9 680 000元,将9 680 000用科学记数法表示为( )A .596.810⨯B .69.6810⨯C .79.6810⨯D .80.96810⨯3.计算23a a 的结果是( ) A .5a B .6a C .6a D .5a4.点P (1,2)-关于y 轴对称的点的坐标是 ( ) A .(1,2)B .(-1,2)C .(-1,-2)D .(-2,1) 5.下列式子为最简二次根式的是( )ABCD6.这15名男同学引体向上数的中位数是( ) A .2 B .3 C .4D .5 7.若—个三角形的两边长分别为5和8,则第三边长可能是( )A .14B .10C .3D .28.如图,在矩形纸片ABCD 中,3AB =,点E 在边BC 上,将ABE △沿直线AE 折叠,点B 恰好落在对角线AC 上的点F 处,若EAC ECA ∠=∠,则AC 的长是( )A .B .6C .4D .5二、填空题(每小题3分,共30分)9.分解因式:2ab b -= . 10.计算:2()3=x y y -+ . 11.若反比例函数6y x=-的图像经过点(,3)A m ,则m 的值是 . 12.方程211x =-的解是 . 13.—枚质地均匀的骰子的6个面上分别刻有1~6的点数,抛掷这枚骰子1次,向上一面的点数是4的概率是 .14.若关于x 的一元二次方程210x x k -++=有两个不相等的实数根,则k 的取值范围是 .15.如图,直线a b ∥,BAC ∠的顶点A 在直线a 上,且100BAC ∠=︒.若134∠=︒,则2∠ ° .(第15题) (第16题) (第17题)16.如图,在圆内接四边形ABCD 中,若A ∠,B ∠,C ∠的度数之比为4:3:5,则D ∠的度数是 ︒.17.如图,在Rt ABC △中,90ACB ∠=︒,点,D E 分别是AB ,AC 的中点,点F 是AD 的中点,若8AB =,则EF = .18.将从1开始的连续自然数按一下规律排列:第1行 1 第2行2 3 4 第3行98765第4行10 11 12 13 14 15 16第5行 25 24 23 22 21 20 19 18 17……………………则2017在第 行.三、解答题(本大题共10小题,共96分) 19.(12分)计算:(1)0231)(2)--+-;(2)233(1)a a a--÷.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第3页(共6页) 数学试卷 第4页(共6页)20.(8分)解不等式组:315,31,2x x x x -+⎧⎪⎨--⎪⎩<<并写出它的整数解.21.(8分)已知:如图,在□ABCD 中,AE BD ⊥,CF BD ⊥,垂足分别为E ,F .求证:ADE CBF ≌△△.22.(8分)一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球. (1)用树状图或列表等方法列出所有可能出现的结果; (2)求两次摸到的球的颜色不同的概率.23.(8分)某校计划成立学生社团,要求每一位学生都选择一个社团,为了了解学生对不同社团的喜爱情况,学校随机抽取了部分学生进行“我最喜爱的一个学生社团”问卷调查,规定每人必须并且只能在“文学社团”、“科学社团”、“书画社团”、“体育社团”和“其他”五项中选择一项,并将统计结果绘制了如下两个不完整的统计图表.请解答下列问题:(1)a = ,b = ;(2)在扇形统计图中,“书画社团”所对应的扇形圆心角度数为 ; (3)若该校共有3 000名学生,试估计该校学生中选择“文学社团”的人数.24.(8分),A B两地被大山阻隔,若要从A 地到B 地,只能沿着如图所示的公路先从A 地到C 地,再由C 地到B 地.现计划开凿隧道,A B 两地直线贯通,经测量得:30CAB ∠=︒,45CBA ∠=︒,20km AC =,求隧道开通后与隧道开通前相比,从A 地到B 地的路程将缩短多少?(结果精确到0.1km , 1.414≈ 1.732)25.(8分)如图,在ABC △中,90ACB ∠=,O 是边AC 上一点,以O 为圆心,OA 为半径的圆分别交AB ,AC 于点,E D ,在BC 的延长线上取点F ,使得BF EF =,EF 与AC 交于点C .(1)试判断直线EF 与O的位置关系,并说明理由;(2)若2OA =,30A ∠=︒,求图中阴影部分的面积.26.(10分)某公司组织员工到附近的景点旅游,根据旅行社提供的收费方案,绘制了如图所示的图像,图中折线ABCD 表示人均收费y (元)与参加旅游的人数x (人)之间的函数关系.(1)当参加旅游的人数不超过10人时,人均收费为 元;(2)如果该公司支付给旅行社3 600元,那么参加这次旅游的人数是多少?数学试卷 第5页(共6页) 数学试卷 第6页(共6页)27.(12分)【操作发现】如图①,在边长为1个单位长度的小正方形组成的网格中,ABC △的三个顶点均在格点上.(1)请按要求画图:将ABC △绕点A 按顺时针方向旋转90︒,点B 的对应点为B ',点C 的对应点为C ',连接BB ';(2)在(1)所画图形中,AB B ∠'= . 【问题解决】如图②,在等边三角形ABC 中,7AC =,点P 在ABC △内,且90APC ∠=︒,120BPC ∠=︒,求APC △的面积.小明同学通过观察、分析、思考,对上述问题形成了如下想法: 想法一:将APC △绕点A 按顺时针方向旋转60︒,得到AP B '△,连接PP ',寻找PA ,PB ,PC 三条线段之间的数量关系;想法二:将APB △绕点A 按逆时针方向旋转60︒,得到A P C '△,连接PP ',寻找PA ,PB ,PC 三条线段之间的数量关系. ……请参考小明同学的想法,完成该问题的解答过程.(―种方法即可) 【灵活运用】如图③,在四边形ABCD 中,AE BC ⊥,垂足为E ,BAE ADC ∠=∠,2BE CE ==,5CD =,AD kAB =(k 为常数),求BD 的长(用含k 的式子表示).28.(14分)如图①,在平面直角坐标系中,二次函数213y x bx c =-++的图像与坐标轴交于A ,B ,C 三点,其中点A 的坐标为()3,0-,点B 的坐标为(4,0),连接AC ,BC .动点P 从点A 出发,在线段AC 上以每秒1个单位长度的速度向点C 作匀速运动;同时,动点Q 从点O 出发,在线段上以每秒1个单位长度的速度向点B 作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t 秒.连接PQ .(1)填空:b = ,c = ;(2)在点P ,Q 运动过程中,APQ △可能是直角三角形吗?请说明理由;(3)在x 轴下方,该二次函数的图像上是否存在点M ,使PQM △是以点P 为直角顶点的等腰直角三角形?若存在,请求出运动时间;若不存在,请说明理由;(4)如图②,点N 的坐标为(32-,0),线段PQ 的中点为H ,连接NH ,当点Q 关于直线NH 的对称点Q '恰好落在线段BC 上时,请直接写出点Q '的坐标.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________。
2017年江苏淮安中考数学试卷及答案一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.﹣2的相反数是()A.2 B.﹣2 C.D.﹣【答案】A.2.2016年某市用于资助贫困学生的助学金总额是9680000元,将9680000用科学记数法表示为()A.96.8×105B.9.68×106C.9.68×107D.0.968×108【答案】B.3.计算a2•a3的结果是()A.5a B.6a C.a6D.a5【答案】D.4.点P(1,﹣2)关于y轴对称的点的坐标是()A.(1,2)B.(﹣1,2)C.(﹣1,﹣2)D.(﹣2,1)【答案】C.5.下列式子为最简二次根式的是()A5B12C2a D 1 a【答案】A.6.九年级(1)班15名男同学进行引体向上测试,每人只测一次,测试结果统计如下:引体向上数/个0 1 2 3 4 5 6 7 8人数 1 1 2 1 3 3 2 1 1这15名男同学引体向上数的中位数是()A.2 B.3 C.4 D.5【答案】C.7.若一个三角形的两边长分别为5和8,则第三边长可能是()A.14 B.10 C.3 D.2【答案】B.8.如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A.33B.6 C.4 D.5【答案】B.二、填空题(每题3分,满分30分,将答案填在答题纸上)9.分解因式:ab﹣b2= .【答案】b(a﹣b).10.计算:2(x﹣y)+3y= .【答案】2x+y .11.若反比例函数y=﹣6x的图象经过点A(m,3),则m的值是.【答案】﹣2.12.方程21x=1的解是.【答案】x=3.13.一枚质地均匀的骰子的6个面上分别刻有1〜6的点数,抛掷这枚骰子1次,向上一面的点数是4的概率是.【答案】16.14.若关于x的一元二次方程x2﹣x+k+1=0有两个不相等的实数根,则k的取值范围是.【答案】k<﹣34.15.如图,直线a∥b,∠BAC的顶点A在直线a上,且∠BAC=100°.若∠1=34°,则∠2= °.【答案】46°.16.如图,在圆内接四边形ABCD中,若∠A,∠B,∠C的度数之比为4:3:5,则∠D的度数是°.【答案】120°.17.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是AB,AC的中点,点F是AD的中点.若AB=8,则EF= .【答案】2.18.将从1开始的连续自然数按一下规律排列:第1行 1第2行 2 3 4第3行9 8 7 6 5第4行10 11 12 13 14 15 16第5行25 24 23 22 21 20 19 18 17…则2017在第行.【答案】45.三、解答题(本大题共10小题,共70分.解答应写出文字说明、证明过程或演算步骤.)19.(1)|﹣3|﹣(5+1)0+(﹣2)2;(2)(1﹣3a)÷23aa-.【答案】(1)6;(2)a.20.解不等式组:315312x xxx-+⎧⎪⎨--⎪⎩并写出它的整数解.【答案】不等式组的整数解为0、1、2.21.已知:如图,在平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F.求证:△ADE ≌△CBF.【答案】22.一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球.(1)用树状图或列表等方法列出所有可能出现的结果;(2)求两次摸到的球的颜色不同的概率.【答案】(1)详见解析;(2)23.23.某校计划成立学生社团,要求每一位学生都选择一个社团,为了了解学生对不同社团的喜爱情况,学校随机抽取了部分学生进行“我最喜爱的一个学生社团”问卷调查,规定每人必须并且只能在“文学社团”、“科学社团”、“书画社团”、“体育社团”和“其他”五项中选择一项,并将统计结果绘制了如下两个不完整的统计图表.社团名称人数文学社团18科技社团 a书画社团45体育社团72其他 b请解答下列问题:(1)a= ,b= ;(2)在扇形统计图中,“书画社团”所对应的扇形圆心角度数为;(3)若该校共有3000名学生,试估计该校学生中选择“文学社团”的人数.【答案】(1)36,9;(2)90°;(3)300.24. A,B两地被大山阻隔,若要从A地到B地,只能沿着如图所示的公路先从A地到C地,再由C地到B地.现计划开凿隧道A,B两地直线贯通,经测量得:∠CAB=30°,∠CBA=45°,AC=20km,求隧道开通后与隧道开通前相比,从A地到B地的路程将缩短多少?(结果精确到0.1km2≈1.4143 1.732)【答案】从A地到B地的路程将缩短6.8km.25.如图,在△ABC中,∠ACB=90°,O是边AC上一点,以O为圆心,OA为半径的圆分别交AB,AC于点E,D,在BC的延长线上取点F,使得BF=EF,EF与AC交于点G.(1)试判断直线EF与⊙O的位置关系,并说明理由;(2)若OA=2,∠A=30°,求图中阴影部分的面积.【答案】(1)详见解析;(2)2233π-.26.某公司组织员工到附近的景点旅游,根据旅行社提供的收费方案,绘制了如图所示的图象,图中折线ABCD表示人均收费y(元)与参加旅游的人数x(人)之间的函数关系.(1)当参加旅游的人数不超过10人时,人均收费为元;(2)如果该公司支付给旅行社3600元,那么参加这次旅游的人数是多少?【答案】(1)240;(2)20.27.【操作发现】如图①,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.(1)请按要求画图:将△ABC 绕点A 按顺时针方向旋转90°,点B 的对应点为B′,点C 的对应点为C′,连接BB′;(2)在(1)所画图形中,∠AB′B= . 【问题解决】如图②,在等边三角形ABC 中,AC=7,点P 在△ABC 内,且∠APC=90°,∠BPC=120°,求△APC 的面积.小明同学通过观察、解析、思考,对上述问题形成了如下想法:想法一:将△APC 绕点A 按顺时针方向旋转60°,得到△AP′B,连接PP′,寻找PA ,PB ,PC 三条线段之间的数量关系;想法二:将△APB 绕点A 按逆时针方向旋转60°,得到△AP′C′,连接PP′,寻找PA ,PB ,PC 三条线段之间的数量关系. …请参照小明同学的想法,完成该问题的解答过程.(一种方法即可) 【灵活运用】如图③,在四边形ABCD 中,AE ⊥BC ,垂足为E ,∠BAE=∠ADC ,BE=CE=2,CD=5,AD=kAB (k 为常数),求BD 的长(用含k 的式子表示).【答案】【操作发现】(1)详见解析;(2)45°;【问题解决】3;【灵活运用】21625k .28.如图①,在平面直角坐标系中,二次函数y=﹣13x 2+bx+c 的图象与坐标轴交于A ,B ,C 三点,其中点A 的坐标为(﹣3,0),点B 的坐标为(4,0),连接AC ,BC .动点P 从点A 出发,在线段AC 上以每秒1个单位长度的速度向点C 作匀速运动;同时,动点Q 从点O 出发,在线段OB 上以每秒1个单位长度的速度向点B 作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t 秒.连接PQ . (1)填空:b= ,c= ;(2)在点P ,Q 运动过程中,△APQ 可能是直角三角形吗?请说明理由;(3)在x 轴下方,该二次函数的图象上是否存在点M ,使△PQM 是以点P 为直角顶点的等腰直角三角形?若存在,请求出运动时间t ;若不存在,请说明理由;(4)如图②,点N的坐标为(﹣32,0),线段PQ的中点为H,连接NH,当点Q关于直线NH的对称点Q′恰好落在线段BC上时,请直接写出点Q′的坐标.【答案】(1)b=13,c=4;(2)△APQ不可能是直角三角形,理由详见解析;(3)655205-+(4)Q′(67,227).。
江苏省淮安市2017年中考试卷
数学答案解析
一、选择题 1.【答案】A
【解析】解:根据相反数的定义,﹣2的相反数是2. 故选:A .
【提示】根据相反数的意义,只有符号不同的数为相反数. 【考点】相反数的概念 2.【答案】B
【解析】解:将9680000用科学记数法表示为:69.6810⨯ 故选B .
【提示】科学记数法的表示形式为10n a ⨯的形式,其中1|10|a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数 【考点】科学计数法 3.【答案】D
【解析】解:原式235a a +== 故选:D .
【提示】根据同底数幂的乘法,可得答案. 【考点】同底数幂的乘法法则 4.【答案】C
【解析】解:(1,2)P -关于y 轴对称的点的坐标是(1,2)- 故选:C .
【提示】关于y 轴对称的点,纵坐标相同,横坐标互为相反数,可得答案. 【考点】直角坐标系中对称点的规则 5.【答案】A
【解析】解:A .被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A 符合题意; B .被开方数含能开得尽方的因数或因式,故B 不符合题意; C .被开方数含能开得尽方的因数或因式,故C 不符合题意; D .被开方数含分母,故D 不符合题意;
故答案为:46
故答案为2
22.【答案】(1)如图:
42
【解析】解:(1)如图:
42
23.【答案】(1)36
9
(2)90︒
(3)300
【解析】解:(1)调查的总人数是7240%180
÷=(人),则18020%36
a=⨯=(人),则180184572369
b=----=
cos
CAB AC=∠
10214.14km
≈
答:从A地到B地的路程将缩短6.8km.
是O的切线,证明见解析
(2)阴影部分的面积
2
π
-
是O的切线;
是O的直径,∴60,∴∠
23 EG=
2 23π
3
-
【提示】(1)连接OE ,根据等腰三角形的性质得到A AEO ∠=∠,B BEF ∠=∠,于是得到90OEG ︒∠=,即可得到结论;
(2)由AD 是O 的直径,得到90AED ︒∠=,根据三角形的内角和得到60EOD ︒∠=,求得30EGO ︒∠=,根据三角形和扇形的面积公式即可得到结论.
【考点】切线的判定定理,直角三角形的性质,扇形的面积公式,割补法. 26.【答案】(1)240 (2)20
【解析】解:(1)观察图像可知:当参加旅游的人数不超过10人时,人均收费为240元. 故答案为240.
(2)∵360024015÷=,360015024÷=,∴收费标准在BC 段,设直线BC 的解析式为y kx b =+,则有
1024025150k b k b +=⎧⎨+=⎩,解得6
300k b =-⎧⎨
=⎩
,∴6300y x =-+,由题意(6300)3600x x -+=,解得20x =或30(舍弃) 答:参加这次旅游的人数是20人. 【提示】(1)观察图像即可解决问题;
(2)首先判断收费标准在BC 段,求出直线BC 的解析式,列出方程即可解决问题.
【考点】一次函数的实际运用,一次函数的图像,系数法求一次函数表达式,列一元二次方程解决实际问题 27.【答案】【操作发现】(1)如图所示,AB C ''△即为所求;
(2)45︒
【问题解决】如图②,
AP PC=
73
△即为所求;
【解析】解:【操作发现】(1)如图所示,AB C''
【问题解决】如图②,
AP PC=
73
=,连接DG.则BD CG
理由如下:连结QC.
(3)如图所示:
11。