圆周角和圆心角定理
- 格式:docx
- 大小:19.23 KB
- 文档页数:6
圆周角6个定理
圆周角定理是指在同圆或等圆中,同弧或等弧所对的圆周角都等于这条弧所对的圆心角的一半。
该定理也称为圆周角定理或圆心角定理。
除此之外,还有以下五个圆周角定理:
1. 同弧或等弧所对的圆周角相等。
2. 相等的圆周角所对的弧也相等。
3. 半圆所对的圆周角是直角。
4. 90 度的圆周角所对的弦是直径。
5. 在同圆或等圆中,两个圆周角、两个圆心角、两条弧、两条弦中有一组量相等,它们所对应的其余各组量也相等。
这些圆周角定理对于解决几何问题非常有用,例如可以用同弧所对的圆周角相等来证明等腰三角形的判定定理。
第二讲 圆心角、圆周角知识点一:圆心角、圆周角圆心角:顶点在 的角叫做圆心角.... 圆周角:顶点在 ,并且两边都与圆相交的角,叫做圆周角. 知识点二:弧、弦、圆心角的关系在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,他们所对应的各组量也相等。
即:(1)在同圆或等圆中,相等的圆心角所对的弧 、所对的弦 。
(2)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角 ,所对的弦 。
(3)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角 ,所对的弧 。
【典型例题】例1.如图,已知AB 、CD 为⊙O 的两条弦,AD=BC, 求证:AB=CD例2.如图,在O⊙中, ∠ACB =60°, 求证:∠AOB =∠BOC =∠AOC 。
例3.如图,MN 为半圆O 的直径,A 是BC 的中点, ∠BOC=120°,BC//MN ,求证:( 1 ) 四边形ABOC 为菱形; (2)求∠MNB 的度数.AB C D MNO知识点三:圆心角和圆周角的关系圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对所对的圆心角的 。
推论:(1)半圆(或直径)所对的圆周角是 ,90°的圆周角所对的弦是 。
(2)在同圆或等圆中,如果两个圆周角相等,他们所对的弧一定 。
【典型例题】例1.如图,已知AB=AC ,∠APC=60°.(1)求证:△ABC 是等边三角形;(2)若BC=2cm ,求⊙O 的面积.例2.如图,ABC △是O 的内接三角形,点C 是优弧AB 上一点(点C 不与A B ,重合),设OAB α∠=,C β∠=. (1)当35α=时,求β的度数; (2)猜想α与β之间的关系,并给予证明.例3. 如图,已知⊙O 的半径为2,弦BC的长为A 为弦BC 所对优弧上任意一点 (B ,C 两点除外)。
⑴求∠BAC 的度数;⑵求△ABC 面积的最大值.知识点四:圆的内接多边形(1)如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做 ,这个圆叫做这个多边形的 。
圆周角的定义是:顶点在圆上,角的两边都与圆相交的角。
其特点可归纳为:①顶点在圆上,②两边都和圆相交。
这两个条件缺一不可。
圆周角定理为:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
具体来说,定理有三方面的意义:
圆心角和圆周角在同一个圆或等圆中;
它们对着同一条弧或者对的两条弧是等弧;
具备a、b两个条件的圆周角都是相等的,且等于圆心角的一半。
此外,还有以下推论:
在同圆或等圆中,相等的圆周角所对的弧相等。
直径(半圆)所对的圆周角是直角;90°的圆周角所对的弦为直径。
如果三角形一边的中线等于这边的一半,那么这个三角形是直角三角形。
圆心角与圆周角定理如下:
•圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距也相等。
•圆周角定理:
•圆周角度数定理:圆周角的度数等于它所对的弧的度数的一半。
•同圆或等圆中,圆周角等于它所对的弧上的圆心角的一半。
•同圆或等圆中,同弧或等弧所对的圆周角相等,相等圆周角所对的弧也相等。
•半圆(或直径)所对圆周角是直角,90°的圆周角所对的弦是直径。
•圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
请注意,这些定理和性质在几何学和三角学中非常重要,它们被广泛应用于各种实际问题中,例如计算角度、长度和面积等。
同时,这些定理和性质也是数学竞赛和考试的重要内容之一。
数学知识点:圆周角定理_知识点总结
顶点在圆上,它们的两边在圆内的部分分别是圆的弦.
圆周角定理:
一条弧所对的圆周角等于它所对的圆心角的一半。
圆心角定理:
圆心角的度数等于它所对弧的度数。
推论1:
同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推论2:
半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径,高考物理。
圆周角的特点:
(1)角的顶点在圆上;
(2)角的两边在圆内的部分是圆的弦.
圆周角和圆心角相对于圆心与直径的位置关系有三种:
解题规律:
解决圆周角和圆心角的计算和证明问题,要准确找出同弧所对的圆周角和圆心角,然后再灵活运用圆周角定理.。
3·3圆周角和圆心角的关系要点精讲1.圆周角定义:圆周角(angle in a circular segment):顶点在圆上,并且角的两边和圆相交的角.两个特征:(1)角的顶点在圆上;(2)两边在圆内的部分是圆的两条弦.2.圆周角定理:同弧所对的圆周角相等,所对的圆周角都等于它所对的圆心角的一半.注意:(1)定理的条件是同一条弧所对的圆周角和圆心角,结论是圆周角等于圆心角的一半.(2)不能丢掉“一条弧所对的”而简单说成“圆周角等于圆心角的一半”.在同圆或等圆中,同弧或等弧所对的圆周角相等.注意:(1)“同弧”指“同一个圆”.(2)“等弧”指“在同圆或等圆中”.(3)“同弧或等弧”不能改为“同弦或等弦”.3.直径所对的圆周角是直角,90°的圆周角所对的弦是直径.注意:这一推论应用非常广泛,一般地,如果题目的已知条件中有直径时,往往作出直径上的圆周角——直角:如果需要直角或证明垂直时,往往作出直径即可解决问题.4.反证法:注意:用反证法证明命题的一般步骤:(1)假设命题的结论不成立;(2)从这个假设出发,经过推理论证,得出矛盾.(3)山矛盾判定假设不正确,从而肯定命题的结论正确.5.圆内角与圆外角:我们把顶点在圆内(两边自然和圆相交)的角叫圆内角(如图1.顶点在圆外并且两边都和圆相交的角叫圆外角(如图2).定理:圆内角的度数,等于它所对弧的度数与它的对顶角所对弧的度数之和的一半.圆外角的度数,等于它的两边所夹两条弧的度数的差的一半.典型例题1.已知:⊙O中,所对的圆周角是∠ABC,圆心角是∠AOC.求证:∠ABC=12 AOC.【解析】证明:∠AOC是△ABO的外角,∴∠AOC=∠ABO+∠BAO.∵OA=OB,∴∠ABO=∠BAO.∴∠AOC=2∠ABO.即∠ABC=12∠AOC.如果∠ABC的两边都不经过圆心(如下图),那么结果怎样?特殊情况会给我们什么启发吗?你能将下图中的两种情况分别转化成上图中的情况去解决吗?如图(1),点O在∠ABC内部时,只要作出直径BD,将这个角转化为上述情况的两个角的和即可证出.由刚才的结论可知:∠ABD=12∠AOD,∠CBD=12∠COD,∴∠ABD+∠CBD=12(∠AOD+∠COD),即∠ABC=12∠AOC.在图(2)中,当点O在∠ABC外部时,仍然是作出直径BD,将这个角转化成上述情形的两个角的差即可.由前面的结果,有∠ABD=12∠AOD,∠CBD=12∠COD.∴∠ABD-∠CBD=12(∠AOD-∠COD),即∠ABC=12∠AOC.2.如图示,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?[分析]由于AB是⊙O的直径,故连接AD.由推论直径所对的圆周角是直角,便可得AD⊥BC,又因为△ABC中,AC=AB,所以由等腰三角形的二线合一,可证得BD=CD.【解析】BD=CD.理由是:连结AD.∵AB是⊙O的直径,∴∠ADB=90°.即AD⊥BC.又∵AC=AB,∴BD=CD.3.为什么有些电影院的坐位排列(横排)呈圆弧形?说一说这种设计的合理性.【解析】有些电影院的坐位排列呈圆弧形,这样设计的理由是尽量保证同排的观众视角相等.4.如下图,哪个角与∠BAC相等?【解析】∠BDC=∠BAC.5. 如下图,⊙O的直径AB=10 cm,C为⊙O上的一点,∠ABC=30°,求AC的长.【解析】∵AB为⊙O的直径.∴ACB=90°.又∵∠ABC=30°, ∴AC=21AB=21×10=5(cm). 6.小明想用直角尺检查某些工件是否恰好为半圆形,根据下图,你能判断哪个是半圆形?为什么?【解析】图(2)是半圆形、理由是:90°的圆周角所对的弦是直径.7.船在航行过程中,船长常常通过测定角度来确定是否会遇到暗礁,如下图,A 、B 表示灯塔,暗礁分布在经过A 、B 两点的一个圆形区域内,C 表示一个危险临界点,∠ACB 就是“危险角”.当船与两个灯塔的夹角大于“危险角”时,就有可能触礁;当船与两个灯塔的夹角小于“危险角”时,就能避免触礁.(1)当船与两个灯塔的夹角∠α大于“危险角”时,船位于哪个区域?为什么? (2)当船与两个灯塔的夹角∠α小于“危险角”时,船位于哪个区域?为什么? 分析:这是一个有实际背景的问题,由题意可知:“危险角” ∠ACB 实际上就是圆周角,船P 与两个灯塔的夹角为∠α,P 有可能在⊙O 外,P 有可能在⊙O 内,当∠α>∠C 时,船位于暗礁区域内;当∠α<∠C 时,船位于暗礁区域外,我们可采用反证法进行论证. 【解析】(1)当船与两个灯塔的夹角∠α大于“危险角” ∠C 时,船位于暗礁区域内(即⊙O 内),理由是:连结BE ,假设船在(⊙O 上,则有∠α=∠C ,这与∠α>∠C 矛盾,所以船不可能在⊙O 上;假设船在⊙O 外,则有∠α<∠AEB ,即∠α<∠C ,这与∠α>∠C 矛盾,所以船不可能在⊙O 外.因此.船只能位于⊙O 内.(2)当船与两个灯塔的夹角∠α小于“危险角”∠C时,船位于暗礁区域外(即⊙O 外).理由是:假设船在⊙O上,则有∠α=∠C,这与∠α<∠C矛盾,所以船不可能在⊙O上;假设船在⊙O内,则有∠α>∠AEB,即∠α>∠C.这与∠α<∠C矛盾,所以船不可能在⊙O内,因此,船只能位于⊙O外.8.如图,已知在⊙O中,直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D.求BC、AD和BD的长.分析:由AB为直径,知∠ACB=90°,又AC、AB已知,可由勾股定理求BC.又∠ADB=90°,AD=DB,由勾股定理可求AD、BD.【解析】∵AB为直径,∴∠ACB=∠ADB=90°,又∵AB=10cm,AC=6cm,又∵CD是∠ACB的平分线,∠ACD=∠DCB,∴AD=DB.在 Rt∠ADB中,9.已知AB是⊙O的直径,AE是弦,C是的中点,CD⊥AB于D,交AE于F,CB交AE于G.求证:CF=FG.分析:如图7—107,要证CF=FG,只需证∠FCG=∠FGC.由已知,∠FCG与∠B互余.如果连结AC,∠ACB=90°.∠FGC与∠CAG互余.【解析】证明:连结AC,∵AB为直径,∴∠ACB=90°,∠FGC=90°-∠CAE.又∵CD⊥AB于D,∠FCG=90°-∠B,∴∠FGC=∠FCG.因此,CF=FG.10.如图,AB 是⊙O 的直径. ABCDO(1)若OD ∥AC ,与 的大小有什么关系?为什么?(2)把(1)中的条件和结论交换一下,还能成立吗?说明理由. 【解析】(1)=延长DO 交⊙O 于E . ∵AC ∥OD , ∴=. ∵∠1=∠2, ∴=. ∴=.(2)仍成立,延长DO 交⊙O 于点E ,连结AD . ∵=,=, ∴=. ∴∠3=∠D . ∴AC ∥OD .11.如图,⊙O 上三点A 、B 、C ,AB =AC ,∠ABC 的平分线交⊙O 于点E ,∠ACB 的平分线交⊙O 于点F ,BE 和CF 相交于点D ,四边形AFDE 是菱形吗?验证你的结论. AB CDEFO【解析】四边形AFDE 是菱形.证明:∵∠ABC=∠ACB, ∠ABE=∠EBC=∠ACF=∠FCB. 又∠FAB ,∠FCB 是同弧上的圆周角, ∴∠FAB=∠FCB ,同理∠EAC=∠EBC. 有∠FAB=∠ABE=∠EAC=∠ACF.∴AF ∥ED ,AE ∥FD 且AF=AE. ∴四边形AFDE 是菱形.12.如图是一大型圆形工件被埋在土里而露出地表的部分.为推测它的半径,小亮同学谈了他的做法:先量取弦AB 的长,再量中点到AB 的距离CD 的长,就能求出这个圆形工件的半径.你认为他的做法合理吗?如不合理,说明理由;如合理,请你给出具体的数值,求出半径,与同伴交流.BDCDEO1 23CABD【解析】小亮的做法合理.取AB=8 m ,CD=2 m, 设圆形工件半径为r, ∴r 2=(r -2)2+42. 得r=5(m).13.如图,现需测量一井盖(圆形)的直径,但只有一把角尺(尺的两边互相垂直,一边有刻度,且两边长度都长于井盖的半径),请配合图形,用文字说明测量方案,写出测量的步骤.(要求写出两种测量方案)【解析】方案1:使角尺顶点在圆上,角尺两边与圆两交点连接就是圆的直径,用刻度尺量出直径.方案2:任画圆的一条弦,用尺量出弦的中点,利用角尺过弦中点做弦的垂线,垂线与圆的两交点间的线段为圆的直径.14.如图,在⊙O 中,AB 是直径,CD 是弦,AB ⊥CD . (1)P 是上一点(不与C 、D 重合),求证:∠CPD =∠COB .(2)点P ′在劣弧CD 上(不与C 、D 重合)时,∠CP ′D 与∠COB 有什么数量关系?请证明你的结论.BA CDOP【解析】(1)证明:连结OD, ∵AB 是直径,AB ⊥CD, ∴=.∴∠COB=∠DOB=21∠COD. 又∵∠CPD=21∠COD, ∴∠CPD=∠COB. (2)∠CP ′D 与∠COB 的数量关系是:∠CP ′D+∠COB=180°.证明:∵∠CPD+∠CP ′D=180°,∠COB=∠CPD, ∴∠CP ′D+∠COB=180°15.(9分)已知,如图20,AB 是⊙O 的直径,C 是⊙O 上一点,连接AC,过点C 作直线CD ⊥AB 于D(AD<DB),点E 是DB 上任意一点(点D 、B 除外),直线CE 交⊙O 于点F,连接AF 与直线CD 交于点G.(1)求证:AC 2=AG ·AF ;(2)若点E 是AD (点A 除外)上任意一点,上述结论是否仍然成立?若成立,请画出图形并给予证明;若不成立,请说明理由.AB CD OEGF【解析】(1)证明:连接CB ,∵AB 是直径,CD ⊥AB , ∴∠ACB =∠ADC =90°. ∴Rt △CAD ∽Rt △BAC . ∴得∠ACD =∠ABC . ∵∠ABC =∠AFC , ∴∠ACD =∠AFC . ∴△ACG ∽△ACF . ∴ACAF AG AC. ∴AC 2=AG ·AF . (2)当点E 是AD (点A 除外)上任意一点,上述结论仍成立 ①当点E 与点D 重合时,F 与G 重合, 有AG =AF ,∵CD ⊥AB ,∴=, AC =AF . ∴AC 2=AG ·AF .②当点E 与点D 不重合时(不含点A )时,证明类似①.。
圆周角的定理及推论的应用圆周角是数学中的一个重要概念,掌握圆周角的定理及其推论,对于解决许多几何问题非常有帮助。
本文将围绕圆周角的定理及推论的应用展开阐述。
一、圆周角的定义圆周角是指落在圆周上的两条弧所对的角,即两个弧之间的角度量。
一般用大写字母表示圆周角,如∠ABC。
二、圆周角的定理1、相等圆周角定理:在同一个圆周上,所对的圆周角相等。
证明:作弦AB、CD相交于点E,则∠AEB=∠CED。
由于AE、BE、CE、DE均是从一个圆心O引出的弦,故∠AEB=∠CEB,∠CED=∠BED,又因为OE=OE,故OEB≌OED,由此可得∠OEB=∠OED,即∠AEB=∠CED。
2、圆心角的定理:在同一个圆中,所对的圆心角相等。
证明:连接圆心O到AB的中垂线OH,H为AB的中点。
则OH垂直于AB,因此∠AOH、∠BOH均为直角,所以∠AOB=2∠AOH=2∠BOH。
3、正弦定理:在任意三角形ABC中,设a、b、c分别为三角形BC、AC、AB 的边长,R为外接圆半径,则有:sinA=a/2R,sinB=b/2R,sinC=c/2R证明:如下图所示,以AB、BC、CA为边作三角形ABC的外接圆,设圆心为O。
连接AO、BO、CO,过O点作弦AD、BE、CF,则OD=OE=OF=R,所以AOD、BOE、COF都是等边三角形。
因此,∠OAB=∠CFO、∠OBA=∠CEO、∠OBC=∠AEO、∠OCB=∠AFO。
设∠BAC=x,∠ABC=y,∠ACB=z,由三角形内角和公式得:x+y+z=180又由圆周角定理得:∠BOC=2y,∠AOC=2z,∠AOB=2x于是:∠AOB+∠BOC+∠AOC=3602x+2y+2z=360,即x+y+z=180。
将sinA、sinB、sinC带入上述公式中,可得:sinA/BC=sinB/CA=sinC/AB=1/2R即sinA=a/2R,sinB=b/2R,sinC=c/2R。
4、余弦定理:在任意三角形ABC中,设a、b、c分别为三角形BC、AC、AB 的边长,R为外接圆半径,则有:cosA=(b²+c²-a²)/2bc,cosB=(a²+c²-b²)/2ac,cosC=(a²+b²-c²)/2ab证明:将ABC的外接圆的半径延长到BC、AC和AB上分别交于点D、E、F。
《圆周角和圆心角的关系》第1课时教学设计
会昌县白鹅初中邹焰辉
教学过程设计说明
创设问题情境[师]前面我们学习了与圆有关的哪种角?它有什
么特点?请同学们画一个圆心角.
[生]学习了圆心角,它的顶点在圆心.
[师]圆心是圆中一个特殊的点,当角的顶点在圆
心时,就有圆心角.这样角与圆两种不同的图形
产生了联系,在圆中还有比较特殊的点吗?如果
有,把这样的点作为角的顶点,会是怎样的图形?
回顾旧知,导入新课
设置悬念,激发学生学
习欲望。
探索新知
认识概念 [师]同学们请观察下面的图(1).(出示投影片
3.3.1A)
[师]图中的∠ABC,顶点在什么位置?角的两边
有什么特点?
[生]∠ABC的顶点B在圆上,它的两边分别和圆
有另一个交点.(通过学生观察,类比得到定义)
圆周角(angle in a circular segment)定义:
顶点在圆上,并且角的两边和圆相交的角.
[师]请同学们考虑两个问题:
(1)顶点在圆上的角是圆周角吗?
(2)圆和角的两边都相交的角是圆周角吗?
请同学们画图回答上述问题.
[师]通过画图,相互交流,讨论认清圆周角概念
的本质特征,从而总结出圆周角的两个特征:
在通过射门游戏引入圆
周角的概念。
让学生认识圆周角的两
个重要特征。
(1)角的顶点在圆上;
(2)两边在圆内的部分是圆的两条弦.试
一试1(出示投影片)
列举一些反例让学生进
行辨析。
联想建构
验证猜想 [师]在图(1)中,当球员在B、D、E处射门时,
他所处的位置对球门AC分别形成三个张角∠AB
C,∠ADC,∠AEC.这三个角的大小有什么关
系?
我们知道,在同圆或等圆中,相等的弧所对的圆
心角相等.那么,在同圆或等圆中,相等的弧所
对的圆周角有什么关系?
[师]请同学们动手画出⊙O中弧AC所对的圆心
角和圆周角.观察弧AC所对的圆周角有几个?
它们的大小有什么关系?你是通过什么方法得到
的?弧AC所对的圆心角和所对的圆周角之间有
什么关系?
[生]弧AC所对的圆周角有无数个.通过测量的
方法得知:弧AC所对的圆周角相等,所对的圆
周角都等于它所对的圆心角的一半.
(教师用几何画板展示变化中的圆周角与圆心角
的关系)
[师]对于有限次的测量得到的结论,必须通过其
论证,怎么证明呢?说说你的想法,并与同伴交
流.
提出这一问题意在引起
学生思考,为本节活动
埋下伏笔。
[生]互相讨论、交流,寻找解题途径.
[师生共析]能否考虑从特殊情况入手试一下.(学生口述,教师播放flash.)
(学生口述,教师播放flash
[师]如果∠ABC的两边都不经过圆心(如下图),那么结果怎样?特殊情况会给我们什么启发吗?你能将下图中的两种情况分别转化成上图中的情况去解决吗?(学生互相交流、讨论)
[生甲]如图(1),点O在∠ABC内部时,只要作出直径BD,将这个角转化为上述情况的两个角的
和即可证出.(学生口述,教师播放flash.)[生乙]在图(2)中,当点O在∠ABC外部时,仍然是作出直径BD,将这个角转化成上述情形的两个角的差即可.(学生口述,教师播放flash.)
[师]还会有其他情况吗?请思考.
[生]不会有.
[师]经过刚才我们一起探讨,得到了什么结论?
[生]一条弧所对的圆周角等于它所对的圆心角的一半.
[师]这一结论称为圆周角定理.由此我们可以知道,当解决一问题有困难时,可以首先考虑其特殊情形,然后再设法解决一般问题,这是解决问题时常用的策略.今后我们在处理问题时,注意运用.通过这样的启发提问,可提高学生的思维能力,为推理论证圆周角定理,打下了良好的基础。
解决困难问题的时间,首先考虑其特殊情形,然后再设法解决一般问题。
意识地向学生渗透解决问题的策略以及转化、分类、归纳等数学思想方法。
让学生积极主动参与到学习活动中去。