光敏电阻伏安特性、光敏二极管光照特性
- 格式:doc
- 大小:927.50 KB
- 文档页数:8
光敏传感器光电特性测量实验光敏传感器是将光信号转换为电信号的传感器,也称为光电式传感器,它可用于检测直接引起光强度变化的非电量,如光强、光照度、辐射测温、气体成分分析等;也可用来检测能转换成光量变化的其它非电量,如零件直径、表面粗糙度、位移、速度、加速度及物体形状、工作状态识别等。
光敏传感器具有非接触、响应快、性能可靠等特点,因而在工业自动控制及智能机器人中得到广泛应用。
光敏传感器的物理基础是光电效应,即半导体材料的许多电学特性都因受到光的照射而发生变化。
光电效应通常分为外光电效应和内光电效应两大类。
外光电效应是指在光照射下,电子逸出物体表面的外发射的现象,也称光电发射效应,基于这种效应的光电器件有光电管、光电倍增管等。
内光电效应是指入射的光强改变物质导电率的物理现象,称为光电导效应。
几乎大多数光电控制应用的传感器都是此类,通常有光敏电阻、光敏二极管、光敏三极管、硅光电池等。
当然近年来新的光敏器件不断涌现,如:具有高速响应和放大功能的APD雪崩式光电二极管,半导体色敏传感器、光电闸流晶体管、光导摄像管、CCD图像传感器等,为光电传感器进一步的应用开创了新的一页。
本实验主要是研究光敏电阻、硅光电池、光敏二极管、光敏三极管四种光敏传感器的基本特性。
光敏传感器的基本特性包括:伏安特性、光照特性、时间响应、频率特性等。
掌握光敏传感器基本特性的测量方法,为合理应用光敏传感器打好基础。
【实验目的】了解硅光电池的基本特性,测出它的伏安特性曲线和光照特性曲线。
仪器简介仪器由全封闭光通路、实验电路、待测光敏传感器(光敏电阻、光敏二极管、光敏三极管、硅光电池)、实验连接线等组成。
仪器安装在360×220×80(mm)实验箱内,仪器面板如下图按面板电路图指示插好线路,安装好待测光敏传感器就能进行测试实验了。
【实验原理】1.伏安特性光敏传感器在一定的入射照度下,器件所加电压与光电流之间的关系称为光敏器件的伏安特性。
Ⅰ.光敏电阻的物理特性光敏电阻:常用的制作材料为硫化镉,另外还有硒、硫化铝、硫化铅和硫化铋等材料。
这些制作材料具有在特定波长的光照射下,其阻值迅速减小的特性。
这是由于光照产生的载流子都参与导电,在外加电场的作用下作漂移运动,电子奔向电源的正极,空穴奔向电源的负极,从而使光敏电阻器的阻值迅速下降。
Ⅱ.组成特性光敏电阻器是利用半导体的光电导效应制成的一种电阻值随入射光的强弱而改变的电阻器,又称为光电导探测器;入射光强,电阻减小,入射光弱,电阻增大。
还有另一种入射光弱,电阻减小,入射光强,电阻增大。
Ⅲ.作用光敏电阻器一般用于光的测量、光的控制和光电转换(将光的变化转换为电的变化)。
常用的光敏电阻器硫化镉光敏电阻器,它是由半导体材料制成的。
光敏电阻器对光的敏感性(即光谱特性)与人眼对可见光(0.4~0.76)μm的响应很接近,只要人眼可感受的光,都会引起它的阻值变化。
设计光控电路时,都用白炽灯泡(小电珠)光线或自然光线作控制光源,使设计大为简化。
根据光敏电阻的光谱特性,可分为三种光敏电阻器:紫外光敏电阻器、红外光敏电阻器、可见光光敏电阻器。
Ⅳ.参数特性(1)光电流、亮电阻。
光敏电阻器在一定的外加电压下,当有光照射时,流过的电流称为光电流,外加电压与光电流之比称为亮电阻,常用“100LX”表示。
(2)暗电流、暗电阻。
光敏电阻在一定的外加电压下,当没有光照射的时候,流过的电流称为暗电流。
外加电压与暗电流之比称为暗电阻,常用“0LX”表示。
(3)灵敏度。
灵敏度是指光敏电阻不受光照射时的电阻值(暗电阻)与受光照射时的电阻值(亮电阻)的相对变化值。
(4)光谱响应。
光谱响应又称光谱灵敏度,是指光敏电阻在不同波长的单色光照射下的灵敏度。
若将不同波长下的灵敏度画成曲线,就可以得到光谱响应的曲线。
(5)光照特性。
光照特性指光敏电阻输出的电信号随光照度而变化的特性。
从光敏电阻的光照特性曲线可以看出,随着的光照强度的增加,光敏电阻的阻值开始迅速下降。
实验二光敏二极管特性实验一:实验原理:光敏二极管与半导体二极管在结构上是类似的,其管芯是一个具有光敏特征的PN结,具有单向导电性,因此工作时需加上反向电压。
无光照时,有很小的饱和反向漏电流,即暗电流,此时光敏二极管截止。
当受到光照时,饱和反向漏电流大大增加,形成光电流,它随入射光强度的变化而变化。
光敏二极管结构见图(6)。
二:实验所需部件:光敏二极管、稳压电源、负载电阻、遮光罩、光源、电压表(自备4 1/2位万用表).、微安表三:实验步骤:按图(7)接线,注意光敏二极管是工作在反向工作电压的。
由于硅光敏二极管的反向工作电流非常小,所以应提高工作电压,可用稳压电源上的+10V。
1、暗电流测试用遮光罩盖住光电器件模板,电路中反向工作电压接±12V,打开电源,微安表显示的电流值即为暗电流,或用4 1/2位万用表200mV档测得负载电阻RL上的压降V暗,则暗电流L暗=V暗/RL。
一般锗光敏二极管的暗电流要大于硅光敏二极管暗电流数十倍。
可在试件插座上更换其他光敏二极管进行测试比较。
2、光电流测试:取走遮光罩,读出微安表上的电流值,或是用4 1/2位万用表200mv档测得RL上的压降V光,光电流L光=V光/RL。
3、灵敏度测试:改变仪器照射光源强度及相对于光敏器件的距离,观察光电流的变化情况。
4、光谱特性测试:不同材料制成的光敏二极管对不同波长的入射光反应灵敏度是不同的。
由图(8)可以看出,硅光敏二极管和锗光敏二极管的响应峰值约在80~100μm,试用附件中的红外发射管、各色发光LED、光源光、激光光源照射光敏二极管,测得光电流并加以比较。
图(8)光敏管的伏安特性曲线图(9)光敏二极管的光谱特性曲线注意事项:本实验中暗电流测试最高反向工作电压受仪器电压条件限制定为±12V (24V),硅光敏二极管暗电流很小,不易测得。
光敏管的应用-----光控电路一:实验目的:了解光敏管在控制电路中的具体应用。
光敏二极管光敏电阻
## 光敏二极管
光敏二极管(Photodiode)是一种电子元器件,它能够将光转化为电信号。
它通常由半导体材料制成,具有PN结构,其工作原理与普通二极管相似。
当光照射到光敏二极管的PN结时,会产生电流。
光敏二极管广泛用于光电检测、通信、光学测量等领域。
## 光敏电阻
光敏电阻(Photoresistor)也是一种光敏元器件,它的电阻值会随着光照强度的变化而变化。
当光照强度增强时,光敏电阻的电阻值会变小;反之,当光照强度减弱时,光敏电阻的电阻值会变大。
光敏电阻被广泛应用于光照度检测、自动控制、摄影以及安防领域等。
光敏传感器的光电特性研究(FB815型光敏传感器光电特性实验仪)凡是将光信号转换为电信号的传感器称为光敏传感器,也称为光电式传感器,它可用于检测直接由光照明度变化引起的非电量,如光强、光照度等;也可间接用来检测能转换成光量变化的其它非电量,如零件直径、表面粗糙度、位移、速度、加速度及物体形状、工作状态识别等。
光敏传感器具有非接触、响应快、性能可靠等特点,因而在工业自动控制及智能机器人中得到广泛应用。
光敏传感器的物理基础是光电效应,通常分为外光电效应和内光电效应两大类,在光辐射作用下电子逸出材料的表面,产生光电子发射现象,则称为外光电效应或光电子发射效应。
基于这种效应的光电器件有光电管、光电倍增管等。
另一种现象是电子并不逸出材料表面的,则称为是内光电效应。
光电导效应、光生伏特效应都是属于内光电效应。
好多半导体材料的很多电学特性都因受到光的照射而发生变化。
因此也是属于内光电效应范畴,本实验所涉及的光敏电阻、光敏二极管等均是内光电效应传感器。
通过本设计性实验可以帮助学生了解光敏电阻、光敏二极管的光电传感特性及在某些领域中的应用。
【实验原理】1.光电效应:(1)光电导效应:当光照射到某些半导体材料上时,透过到材料内部的光子能量足够大,某些电子吸收光子的能量,从原来的束缚态变成导电的自由态,这时在外电场的作用下,流过半导体的电流会增大,即半导体的电导会增大,这种现象叫光电导效应。
它是一种内光电效应。
光电导效应可分为本征型和杂质型两类。
前者是指能量足够大的光子使电子离开价带跃入导带,价带中由于电子离开而产生空穴,在外电场作用下,电子和空穴参与电导,使电导增加。
杂质型光电导效应则是能量足够大的光子使施主能级中的电子或受主能级中的空穴跃迁到导带或价带,从而使电导增加。
杂质型光电导的长波限比本征型光电导的要长的多。
(2)光生伏特效应:在无光照时,半导体PN结内部有自建电场。
当光照射在PN结及其附近时,在能量足够大的光子作用下,在结区及其附近就产生少数载流子(电子、空穴对)。
1、光电效应光敏传感器的物理基础是光电效应,在光辐射作用下电子逸出材料的表面,产生光电子发射称为外光电效应,或光电子发射效应,基于这种效应的光电器件有光电管、光电倍增管等。
电子并不逸出材料表面的则是内光电效应。
光电导效应、光生伏特效应则属于内光电效应。
即半导体材料的许多电学特性都因受到光的照射而发生变化。
光电效应通常分为外光电效应和内光电效应两大类,几乎大多数光电控制应用的传感器都是此类,通常有光敏电阻、光敏二极管、光敏三极管、硅光电池等。
(1)光电导效应若光照射到某些半导体材料上时,透过到材料内部的光子能量足够大,某些电子吸收光子的能量,从原来的束缚态变成导电的自由态,这时在外电场的作用下,流过半导体的电流会增大,即半导体的电导会增大,这种现象叫光电导效应。
它是一种内光电效应。
光电导效应可分为本征型和杂质型两类。
前者是指能量足够大的光子使电子离开价带跃入导带,价带中由于电子离开而产生空穴,在外电场作用下,电子和空穴参与电导,使电导增加。
杂质型光电导效应则是能量足够大的光子使施主能级中的电子或受主能级中的空穴跃迁到导带或价带,从而使电导增加。
杂质型光电导的长波限比本征型光电导的要长的多。
(2)光生伏特效应在无光照时,半导体PN结内部自建电场。
当光照射在PN结及其附近时,在能量足够大的光子作用下,在结区及其附近就产生少数载流子(电子、空穴对)。
载流子在结区外时,靠扩散进入结区;在结区中时,则因电场E的作用,电子漂移到N区,空穴漂移到P区。
结果使N区带负电荷,P区带正电荷,产生附加电动势,此电动势称为光生电动势,此现象称为光生伏特效应。
2、实验原理(1)光敏电阻利用具有光电导效应的半导体材料制成的光敏传感器称为光敏电阻。
目前,光敏电阻应用的极为广泛,可见光波段和大气透过的几个窗口都有适用的光敏电阻。
利用光敏电阻制成的光控开关在我们日常生活中随处可见。
当内光电效应发生时,光敏电阻电导率的改变量为:(1)在(1)式中,e为电荷电量,为空穴浓度的改变量,为电子浓度的改变量,表示迁移率。
东南大学物理实验报告姓名学号指导教师日期报告成绩实验名称光敏传感器的光电特性研究目录实验一光敏电阻特性实验实验二光敏二极管特性实验一、实验目的:1、了解光敏电阻的基本特性,测出它的伏安特性曲线和光照特性曲线;2、了解硅光电池的基本特性,测出它的伏安特性曲线和光照特性曲线;3、了解硅光敏二极管的基本特性,测出它的伏安特性和光照特性曲线;4、了解硅光敏三极管的基本特性,测出它的伏安特性和光照特性曲线。
二、实验原理:光敏传感器是将光信号转换为电信号的传感器,也称为光电式传感器,它可用于检测直接引起光强度变化的非电量,如光强、光照度、辐射测温、气体成分分析等;也可用来检测能转换成光量变化的其它非电量,如零件直径、表面粗糙度、位移、速度、加速度及物体形状、工作状态识别等。
光敏传感器具有非接触、响应快、性能可靠等特点,因而在工业自动控制及智能机器人中得到广泛应用。
1、光电效应光敏传感器的物理基础是光电效应,在光辐射作用下电子逸出材料的表面,产生光电子发射称为外光电效应,或光电子发射效应,基于这种效应的光电器件有光电管、光电倍增管等。
电子并不逸出材料表面的则是内光电效应。
光电导效应、光生伏特效应则属于内光电效应。
即半导体材料的许多电学特性都因受到光的照射而发生变化。
光电效应通常分为外光电效应和内光电效应两大类,几乎大多数光电控制应用的传感器都是此类,通常有光敏电阻、光敏二极管、光敏三极管、硅光电池等。
(1)光电导效应若光照射到某些半导体材料上时,透过到材料内部的光子能量足够大,某些电子吸收光子的能量,从原来的束缚态变成导电的自由态,这时在外电场的作用下,流过半导体的电流会增大,即半导体的电导会增大,这种现象叫光电导效应。
它是一种内光电效应。
光电导效应可分为本征型和杂质型两类。
前者是指能量足够大的光子使电子离开价带跃入导带,价带中由于电子离开而产生空穴,在外电场作用下,电子和空穴参与电导,使电导增加。
杂质型光电导效应则是能量足够大的光子使施主能级中的电子或受主能级中的空穴跃迁到导带或价带,从而使电导增加。
光敏二极管光敏电阻
光敏二极管是一种能够将光信号转换成电信号的器件,也被称为光电二极管。
它通常由一个半导体材料制成,具有两个电极(阳极和阴极)。
当光照射到光敏二极管时,光子能量会促使电子从价带跃迁到导带,从而形成电流。
光敏电阻是另一种用于检测光的器件,它通常是由半导体材料或光敏材料制成。
光敏电阻的电阻值会随着光照强度的变化而改变。
当光照强度增加时,光敏电阻的电阻值会减小,反之亦然。
光敏二极管和光敏电阻都可以用于光控制系统、照相机、光电转换器等应用中。
它们的基本原理类似,但工作原理和性能略有不同,具体使用哪种器件取决于具体的应用需求。
光敏电阻基本特性及主要参数的测试光敏电阻特性测试及分析南京理⼯⼤学紫⾦学院光电综合实验室光敏电阻主要参数及基本特性的测试⼀、⼯作原理光敏电阻器是利⽤半导体的光电效应制成的⼀种电阻值随⼊射光的强弱⽽改变的电阻器;半导体的导电能⼒取决于半导体导带内载流⼦数⽬的多少。
当光敏电阻受到光照时,价带中的电⼦吸收光⼦能量后跃迁到导带,成为⾃由电⼦,同时产⽣空⽳,电⼦—空⽳对的出现使电阻率变⼩。
光照愈强,光⽣电⼦—空⽳对就越多,阻值就愈低。
当光敏电阻两端加上电压后,流过光敏电阻的电流随光照增⼤⽽增⼤。
⼊射光消失,电⼦-空⽳对逐渐复合,电阻也逐渐恢复原值,电流也逐渐减⼩。
光敏电阻器⼀般⽤于光的测量、光的控制和光电转换(将光的变化转换为电的变化)光敏电阻的主要参量有暗电阻,亮电阻、光谱范围、峰值波长和时间常量等。
基本特性有伏安特性、光照特性、光谱特性等。
伏安特性是指在⼀定照度下,加在光敏电阻两端的电压和光电流之间的关系。
光照特性是指在⼀定外加电压下,光敏电阻的光电流与光通亮的关系。
根据光敏电阻的光谱特性,可分为三种光敏电阻器:1.紫外光敏电阻器:对紫外线较灵敏,包括硫化镉、硒化镉光敏电阻器等,⽤于探测紫外线。
2.红外光敏电阻器:主要有硫化铅、碲化铅、硒化铅。
锑化铟等光敏电阻器,⼴泛⽤于导弹制导、天⽂探测、⾮接触测量、⼈体病变探测、红外光谱,红外通信等国防、科学研究和⼯农业⽣产中。
3.可见光光敏电阻器:包括硒、硫化镉、硒化镉、碲化镉、砷化镓、硅、锗、硫化锌光敏电阻器等。
主要⽤于各种光电控制系统,如光电⾃动开关门户,航标灯、路灯和其他照明系统的⾃动亮灭,⾃动给⽔和⾃动停⽔装置,机械上的⾃动保护装置和“位置检测器”,极薄零件的厚度检测器,照相机⾃动曝光装置,光电计数器,烟雾报警器,光电跟踪系统等⽅⾯。
⼆、实验⽬的1、学习掌握光敏电阻⼯作原理2、学习掌握光敏电阻的基本特性3、掌握光敏电阻特性测试的⽅法4、了解光敏电阻的基本应⽤三、实验内容1、光敏电阻的暗电阻、亮电阻、光电阻测试实验(基本参数测试)2、光敏电阻的暗电流、亮电流、光电流测试实验(基本参数测试)3、光敏电阻的光谱特性测试实验(特性测试)4、光敏电阻的伏安特性测试实验(特性测试)四、测试仪器的技术参数及结构原理1、仪器的测量精度:电压:0.01V电流:0.01mA2、光学参数偏振⽚⼝径:35mm3、导轨长度:980mm4、结构原理:结构如图(⼀)所⽰,在导轨上安置四个磁⼒滑座,分别将光源、起偏器、减偏器、接收器插⼊滑座內。
光敏传感器的光电特性研究
(FB815型光敏传感器光电特性实验仪)
凡是将光信号转换为电信号的传感器称为光敏传感器,也称为光电式传感器,它可用于检测直接由光照明度变化引起的非电量,如光强、光照度等;也可间接用来检测能转换成光量变化的其它非电量,如零件直径、表面粗糙度、位移、速度、加速度及物体形状、工作状态识别等。
光敏传感器具有非接触、响应快、性能可靠等特点,因而在工业自动控制及智能机器人中得到广泛应用。
光敏传感器的物理基础是光电效应,通常分为外光电效应和内光电效应两大类,在光辐射作用下电子逸出材料的表面,产生光电子发射现象,则称为外光电效应或光电子发射效应。
基于这种效应的光电器件有光电管、光电倍增管等。
另一种现象是电子并不逸出材料表面的,则称为是内光电效应。
光电导效应、光生伏特效应都是属于内光电效应。
好多半导体材料的很多电学特性都因受到光的照射而发生变化。
因此也是属于内光电效应范畴,本实验所涉及的光敏电阻、光敏二极管等均是内光电效应传感器。
通过本设计性实验可以帮助学生了解光敏电阻、光敏二极管的光电传感特性及在某些领域中的应用。
【实验原理】
1.光电效应:
(1)光电导效应:
当光照射到某些半导体材料上时,透过到材料内部的光子能量足够大,某些电子吸收光子的能量,从原来的束缚态变成导电的自由态,这时在外电场的作用下,流过半导体的电流会增大,即半导体的电导会增大,这种现象叫光电导效应。
它是一种内光电效应。
光电导效应可分为本征型和杂质型两类。
前者是指能量足够大的光子使电子离开价带跃入导带,价带中由于电子离开而产生空穴,在外电场作用下,电子和空穴参与电导,使电导增加。
杂质型光电导效应则是能量足够大的光子使施主能级中的电子或受主能级中的空穴跃迁到导带或价带,从而使电导增加。
杂质型光电导的长波限比本征型光电导的要长的多。
(2)光生伏特效应:
在无光照时,半导体PN结内部有自建电场。
当光照射在PN结及其附近时,在能量足够大的光子作用下,在结区及其附近就产生少数载流子(电子、空穴对)。
载流子在结区外时,靠扩散进入结区;在结区中时,则因电场E的作用,电子漂移到N区,空穴漂移到P区。
结果使N区带负电荷,P区带正电荷,产生附加电动势,此电动势称为光生电动势,此现象称为光生伏特效应。
2.光敏传感器的基本特性:
光敏传感器的基本特性则包括:伏安特性、光照特性等。
伏安特性:光敏传感器在一定的入射光照度下,光敏元件的电流I 与所加电压U 之间的关系称为光敏器件的伏安特性。
改变照度则可以得到一族伏安特性曲线。
它是传感器应用设计时的重要依据。
掌握光敏传感器基本特性的测量方法,为合理应用光敏传感器打好基础。
本实验主要是研究光敏电阻、光敏二极管的基本特性。
(1)光敏电阻:
利用具有光电导效应的半导体材料制成的光敏传感器称为光敏电阻。
目前光敏电阻应用的极为广泛,其工作过程为,当光敏电阻受到光照时,发生内光电效应,光敏电阻电导率的改变量为:
n p e n e p μ∙∙∆+μ∙∙∆=σ∆ (1)
在(1)式中,e 为电子电荷量,p ∆为空穴浓度的改变量,n ∆为电子浓度的改变量,
μ表示迁移率。
当两端加上电压U 后,光电流为:
U d
A
I ph ∙σ∆∙=
(2) 式中A 为与电流垂直的表面积,d 为电极间的间
距。
在一定的光照度下,σ∆为恒定的值,因而光电流和电压成线性关系。
光敏电阻的伏安特性如图a 5所示,不同的光强以得到不同的伏安特性,表明电阻值随光照度发生变化。
光照度不变的情况下,电压越高,光电流也越大,而且没有饱和现象。
当然,与一般电阻一样光敏电阻的工作电压和电流都不能超过规定的最高额定值。
(2)光敏二极管:
光敏二极管的伏安特性相当于向下平移了的普通二
极管,如图a 7所示。
零偏压时,光敏二极管有光电流输出。
光敏二极管的光照特性亦呈良好线性,如图c 7。
光敏二极管的的电流灵敏度一般为常数。
一般在作线性检测元件时,选择光敏二极管。
实验(一)光敏电阻的伏安特性测试
【实验目的】
1.了解内光效应。
2.通过实验掌握光敏电阻工作原理。
3.了解光敏电阻的基本特性,测出它的伏安特性曲线曲线。
【实验仪器】
FB815型光敏传感器光电特性设计性实验仪,万用电表一只,导线若干。
【实验步骤】
1、按实验仪面板示意图8接好实验线路,
光源用标准钨丝灯。
将检测用光敏电阻 装入待测点,连结12V ~2V ++电源,光源电压V 12~0电源(可调)。
2、 先将可调光源调至一定的光照度, 每次
在一定的光照条件下,测出电源电压为:
12V
10V, 8V, 6V, 4V, 2V,++++++时电阻1R 两端的电压R U ,从而得到6个光电流数据
0k Ω
0.1U I R
ph =
,同时算出此
时光敏电阻的阻值,即Ph
R
cc g I U U R -=。
以后调节相对光强重复上述实验(要求至少在
三个不同照度下重复以上实验)。
3、根据实验数据画出光敏电阻的一族伏安特性曲线。
实验(二)光敏二极管的光照度特性测试【实验目的】
1.了解光敏二极管的工作原理。
2.了解硅光敏二极管的基本特性,并测出它的光照特性曲线。
【实验仪器】
FB815型光敏传感器光电特性设计性实验仪,万用电表一只,导线若干。
【实验步骤】
1、按实验仪面板示意图10接好实验线路。
2、选择一定的偏压,每次在一定的偏压下测出光敏二极管在相对光照度为“弱光”到逐步增强的光电流数据,其中k Ω
00.1U I R
ph
(k Ω00.1为取样电阻)。
这里要求至少测出3个不同的反偏电压下的数据。
3、根据实验数据画出光敏二极管的一族光照特性曲线。
FB815型光敏传感器光电特性设计性实验仪,其结构如图1所示。
该实验仪由光敏电阻、光敏二极管、光敏三极管、硅光电池四种光敏传感器及可调电源、电阻箱(自备)、数字万用表,九孔接线板与光学暗箱所组成。
具体介绍如下。
1.光学暗箱(见图2):
光学暗箱的大小为3
mm 110280360⨯⨯,中间位置是九孔实验板,学生可以在上面按自己的需要搭建实验电路,在箱子的左里边有编号821L ,L ,L ⋯的接线孔,从里面直接连到箱子左侧的外面,实验时将外用电源,测量万用表及变阻箱通过不同的接线口接入箱
里的实验电路,当箱子密封以后,里面就与外界完全隔绝,工作时照明光路是置于暗箱中进行,从而消除杂散光对实验的影响。
图2是暗箱分布示意图。
2 . JK--30工作电源(见图3):
本实验仪配有JK--30工作电源,图3为专用电源面板功能分布图。
主要提供两路工作电压,一路光电源输出,供白帜灯发光,电压V 12~0可变,另一路传感器工作电源,有
12V 10V, 8V, 6V, 4V, 2V,±±±±±±等量值变化,以保证实验的不同需要。
光敏传
感器的照度可以通过调节可调光源的电压或改变光源与传感器之间的距离来调节。
3. 其他实验配件(见图4):
【附录1】FB815光敏传感器光电特性实验仪相对照度(Lux)参考表
【附录2】九孔实验板插亏孔距离参考
【思考题】
1.光敏传感器感应光照有一个滞后时间,即光敏传感器的响应时间,如何来测试光敏传
感器的响应时间?
2.光照强度与距离的关系,验证光照强度与距离的平方成反比(把实验装置近似为点光
源)。