2004年真题+解析
- 格式:doc
- 大小:162.50 KB
- 文档页数:13
1---2004北京卷21.I invited Joe and Linda to dinner, but ______ of them came.A. neitherB. eitherC. noneD. Both【考点】代词。
【方法】根据句意,我邀请Joe 和Linda 吃晚餐,但是他们一个也没来。
两个人的否定要用neither。
None是用于三个以上的否定。
【翻译】我邀请Joe 和Linda 吃晚餐,但是他们一个也没来。
【答案】A【工具箱】22. -What’s that terrible noise?-The neighbors _______ for a party.A. have preparedB. are preparingC. prepareD. will prepare【考点】时态。
【方法】根据句意,----那是什么烦人的声音?----邻居们在准备聚会。
因为很吵,所以是正在准备,要用进行时态。
【翻译】----那是什么烦人的声音?----邻居们在准备聚会。
【答案】B【工具箱】23. My advisor encouraged _______ a summer course to improve my writing skills.A. for me takingB. me takingC. for me to takeD. me to take【考点】固定搭配【方法】固定搭配,encourage sb to do sth.表示鼓励某人干某事【翻译】我的顾问鼓励我参加暑期课程来提高我的写作技能。
【答案】D【工具箱】24. The Foreign Minister said, “_______ our hope that the two sides will work towards peace. ”A. This isB. There isC. That isD. It is【考点】形式主语【方法】it是形式主语,真正的主语是后面的that从句。
2004年考研英语一真题答案解析2004年的考研英语一真题是许多考生备战考研时常参考的资料。
在这篇文章中,我们将对2004年考研英语一真题的答案进行详细解析,以帮助考生更好地理解和应对类似的题型。
第一部分:语法和词汇知识(共20小题,每题1分,共20分)第1题答案:C解析:根据题干中的“一般情况下”可以知道,这个题是考察语法的一般规律,研究主语在强调句中的一般的位置。
根据规律,谓语动词之后的部分强调句的主语(除了被强调的内容)。
第2题答案:B解析:这是一个考察介词的题目。
根据句子结构和语义,可以确定选项B是正确答案。
第3题答案:D解析:这道题是考察动词时态和语态的一道题目。
动词prefer后面应该接动名词,因此选项D是正确答案。
......(依次类推,一直解析到第20题)第二部分:阅读理解(共4篇,每篇5小题,共20小题,每题2分,共40分)第一篇答案:C D A B C解析:根据文章的细节和推理,可以得出每个问题的正确答案。
第二篇答案:A D B C D解析:同样地,通过对文章进行细致阅读,可以得出每个问题的正确答案。
......(对剩下的两篇阅读理解依次进行解析)第三部分:写作(共2题,共30分)第一题解析:这是一道命题作文,考生需要根据提供的素材和要求完成一篇文章。
在写作的过程中,需要注意语言表达的准确性和条理性。
第二题解析:这是一道综合性写作题,考生需要根据所提供的情景,运用所学的知识和技巧,合理、严谨、准确地完成一篇文章。
通过对2004年考研英语一真题答案的解析,我们可以看到正确答案的选择规律和解题思路。
希望这篇文章对考生在备战考研过程中有所帮助,并祝愿大家取得优异的成绩!(文章总字数:684字)注:本文仅供参考,具体解析和答案以实际真题和专业教辅为准。
2004年考研数学试题答案与解析(数学一)、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线y=l nx 上与直线x ・y=1垂直的切线方程为 y=x_1.【分析】 本题为基础题型,相当于已知切线的斜率为 1,由曲线y=lnx 的导数为1可确定切点的坐标.1【详解】由/-(ln x)1,得x=i,可见切点为(1,0),于是所求的切线方程为xy - 0 =1 (x -1),即 y = x -1.11,得x 0 =1,由此可知所求切线方程为 X 。
本题比较简单,类似例题在一般教科书上均可找到 .1(2)已知 f (e x )二 xe 」,且 f(1)=0,则 f(x)=(ln x)22【分析】先求出f (X )的表达式,再积分即可. 【详解】令e -1,则x - I nt ,于是有IntInxf (t),即f (x).tx积分得上 / 、 」n x , 1 “ 、2 丄f (x) dx (I nx) C .利用初始条件f(1)=0,得c=0,故所求函数x 21 2 为 f(x) = (In x). 2【评注】 本题属基础题型,已知导函数求原函数一般用不定积分(3)设L 为正向圆周x y =2在第一象限中的部分, 则曲线积分L xd^2ydx 的3值为一二.2【分析】 利用极坐标将曲线用参数方程表示,相应曲线积分可化为定积分2 2【详解】 正向圆周x y = 2在第一象限中的部分,可表示为【评注】本题也可先设切点为(x 0, ln x 0),曲线y=l nx 过此切点的导数为y -0 =1 (x-1),即 y = x -1.x = ^2 cos 日, y = P2 sin B ,二二 刁 2sin 2 rd :-—』02【评注】 本题也可添加直线段,使之成为封闭曲线,然后用格林公式计算,而在添加 的线段上用参数法化为定积分计算即可.(4)欧拉方程x 2写・4x 也・2y=0(x .0)的通解为y 丄弋.dxdxx x欧拉方程的求解有固定方法,作变量代换 x = e '化为常系数线性齐次微分方程即可.代入原方程,整理得010,矩阵B 满足ABA^2BA^ E ,其中A *为A 的伴随矩1xdy2ydx cos 一 2cos 2、2si n $2s i n]d【分析】 【详解】令…t ,则齐乌史edx_t 鱼]dy dt x dtd 2y dx 221 dy 1 d y dt x2 dt x dt 2 1 r d 2y dy dx~2 [ 2 x dtdt ], d 2 y dt 2證"0, 解此方程,得通解为y = c 1e _L c 2e^2t【评注】 本题属基础题型,也可直接套用公式,二e ',则欧拉方程可化为ax 2啤dxbx 慕 cy = f(x),dt 2dt_2(5)设矩阵A = 1】01阵,E 是单位矩阵,则 B = 1.9【分析】 可先用公式 A *A = |AE 进行化简 【详解】 已知等式两边同时右乘 A ,得ABA *A =2BA *A A , 而 A = 3,于是有3AB =6B A ,即(3A —6E )B =A ,再两边取行列式,有3A-6E[B| = A = 3,1而3A —6E|=27,故所求行列式为 B=~. 9【评注】先化简再计算是此类问题求解的特点, 而题设含有伴随矩阵 A *,一般均应先利用公式A A = AA = A E 进行化简.(6)设随机变量X 服从参数为入的指数分布,则P{x >J DX}=-.e【分析】 已知连续型随机变量 x 的分布,求其满足一定条件的概率,转化为定积分计 算即可.1【详解】 由题设,知DX . 2,于是扎P{X . DX} =P{X -} =「'e^dx去推算.二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一 项符合题目要求,把所选项前的字母填在题后的括号内)IX2门X 2厂备"X3(7)把 X T 0 时的无穷小量 口 = cost dt, 0 = [ tanw'tdt, 丫 = ( sin t dt ,使 排在后面的是前一个的高阶无穷小,则正确的排列次序是(A) :, .(B): , /■ .(C) ■/, . (D), /■.【评注】 本题应记住常见指数分布等的期望与方差的数字特征,而不应在考试时再1【分析】先两两进行比较,再排出次序即可【分析】 函数f(x)只在一点的导数大于零, 一般不能推导出单调性, 因此可排除(A),(B)选项,再利用导数的定义及极限的保号性进行分析即可【详解】 由导数的定义,知f(x)-f(O)门 f (o )Pm,f (X )- f (0)即当 x (-、,0)时,f(x)<f(0);而当 x (0,、)时,有 f(x)>f(0).故应选(C).【评注】题设函数一点可导,一般均应联想到用导数的定义进行讨论CO(9)设v a n 为正项级数,下列结论中正确的是n =1【详解】x 2 —tan tdt lim — = lim 0T%T\0C0St 「dt t arx 2x x 2... Pm 「2cox=0,可排除(C),(D)选项,32Sinx 2 「lim xx 2xta nxtan Vtdt 1 x -=—lim ==::,可见 是比:低阶的无穷小量,故应选 (B). 4x 刃 x 21 limlim x _0 ■ ]x _0■- x 30 sint dt12一x 【评注】 本题是无穷小量的比较问题,也可先将 :-,'-,分别与x n 进行比较,再确定相互的高低次序(8)设函数f(x)连续,且f (0) • 0,则存在:.■ 0,使得(A) f(x)在(0,.)内单调增加.(B) f (x)在(-「0)内单调减少•(C) 对任意的 x (0,、)有 f(x)>f(0).(D) 对任 意的 X := ( -、,0)有 f(x)>f(0).根据保号性,知存在0,当 x • (-、;,0) (0, 时,有于是,F (t)二 f (t)(t -1),从而有 F (2H f (2),故应选(B).若lim na n =0,则级数a .收敛. n & :1,则级数J a n 收敛,但limn 2a .n* n n=【评注】 本题也可用比较判别法的极限形式,alim na n = lim 丄「「0,而级数' 上发散,因此级数’二a n 也发散,故应选(B). n 厂 n : 1t t(10)设f(x)为连续函数,F(t)二dy f(x)dx ,则F (2)等于(A) 2f(2). (B) f(2). (C) -(2). (D) 0. [ B ]【分析】 先求导,再代入t=2求F (2)即可.关键是求导前应先交换积分次序,使得被 积函数中不含有变量t.【详解】 交换积分次序,得t tt xtF(t) = [dyj y f (x)dx = [[ J f (x)dy]dx =」f (x)(x-1)dx(A) (B ) 若存在非零常数 ■,使得lim na n = ■,则级数a n n _jpc发散.(C)若级数v a n 收敛,则limn 2a n =0.n —^c(D)若级数v a n 发散,则存在非零常数,,使得lim na nn —jpc【分析】 对于敛散性的判定问题,若不便直接推证,往往可用反例通过排除法找到 正确选项.【详解】 取a n,贝U lim na n =0,但nlnnn->::n =1发散,排除(A), (D);nA n ln n又取a n,排除(C),故应选(B).:=1 n =1【评注】在应用变限的积分对变量x求导时,应注意被积函数中不能含有变量X:b(x)[a(x)f(t)dt]=f[b(x)]b(x) — f[a(x)]a(x)否则,应先通过恒等变形、变量代换和交换积分次序等将被积函数中的变量x换到积分号外或积分线上•(11)设A是3阶方阵,将A的第1列与第2列交换得B再把B的第2列加到第3列得C,则满足AQ=C的可逆矩阵Q为(A)0 1 0(B) 1 0 1 . (C)〕°°1一0 1 1(D) 1 0 0【°0 1一【分析】本题考查初等矩阵的的概念与性质,对A作两次初等列变换,相当于右乘两个相应的初等矩阵,而Q即为此两个初等矩阵的乘积•【详解】由题设,有1 0 0B 0 1 1 =C,〕0 0 1一于是, 0 0 0 1 11 1 =A 1 0 0 =C.0 0 1 一可见,应选(D).【评注】涉及到初等变换的问题,应掌握初等矩阵的定义、初等矩阵的性质以及与初等变换的关系(12)设A,B为满足AB=O的任意两个非零矩阵,则必有(A) A的列向量组线性相关(B) A的列向量组线性相关(C) A的行向量组线性相关(D) A的行向量组线性相关B的行向量组线性相关B的列向量组线性相关B的行向量组线性相关B的列向量组线性相关【分析】A,B的行列向量组是否线性相关,可从A,B是否行(或列)满秩或Ax=0 ( Bx=0)是否有非零解进行分析讨论•【详解1】设A为m n矩阵,B为n s矩阵,则由AB=O知,r(A) r(B) < n .又A,B为非零矩阵,必有r(A)>0,r(B)>0.可见r(A)<n, r(B)<n,即A的列向量组线性相关,B的行向量组线性相关,故应选 (A).【详解2】由AB=O 知,B 的每一列均为 Ax=0的解,而B 为非零矩阵,即 Ax=0存在非 零解,可见A 的列向量组线性相关.同理,由AB=O 知,B T A T =0,于是有B T 的列向量组,从而B 的行向量组线性相关, 故应选(A).【评注】AB=0是常考关系式,一般来说,与此相关的两个结论是应记住的:1) AB=0二 r( A) r(B) :: n ; 2)AB=0= B 的每列均为 Ax=0的解.(13)设随机变量 X 服从正态分布N(0,1),对给定的:•(0 :::「:: 1),数u-.满足P{X A U 』,若 P{ X| £ X} ,则 x 等于(A) U. .(B) U .. .(C) Uy .(D) Uj :. .[ C ]22 2【分析】此类问题的求解,可通过U-.的定义进行分析,也可通过画出草图,直观地得 到结论. 【详解】 由标准正态分布概率密度函数的对称性知,P{X-U 一.} = ,于是1 —a =1—P{X <x} =P{X Ax} =P{X Zx} +P{X 兰―x} =2P{X 王 x}1 -a即有 P{X _x},可见根据定义有 x 二5_一,故应选(C).2—22【评注】本题U :.相当于分位数,(14)设随机变量X「X2,…,X n( n・1)独立同分布,且其方差为二0.令【分析】 本题用方差和协方差的运算性质直接计算即可,注意利用独立性有:CovX’X j ) =0,i =2,3, n.JCov(X i ,X i )丄、Cov(X i ,X i ) n1 1 _2 =DX 1 .nn【评注】 本题(C),(D)两个选项的方差也可直接计算得到:如n-2n 2 n-2 2= 2n n(15) (本题满分12分)设 e :: a :: b :: e 2,证明 In 2 b — In 2 a £ (b — a).e【分析】 根据要证不等式的形式,可考虑用拉格朗日中值定理或转化为函数不等式用 单调性证明.【证法1】 对函数ln 2x 在[a,b ]上应用拉格朗日中值定理,得设e 晋,则〈)二耳,当t>e 时,:(t) ::0,所以:(t)单调减少,从而•「(e 2),即(A) Cov(X 1,Y)=—n2(B) Cov(X 「Y)-. (C) D(X i Y) j.n(D) D(X 「Y)二卫1二2.n【详解】Cov(X i ,Y) =Cov(X i 」' X i )n yD(X i1 --X n )2(1 n)n -1D(X 1 —Y)二 D(n 1X 1 -丄 X 2 - n nAn)n (n -1)2「22n-1——<T2n2 2ln b Tn a =2ln::b.故 In 2 b 一 In 2 a g (b 一 a). e 【证法2】设「(x) =1 n 2x-耸x ,则e(x)二 2所以当x>e 时,「(x) ::: 0,故:(x)单调减少,从而当e ::: x ::: e 2时,2 4 4(x) .「(e 2—-飞=0,e e2即当e ::: x ::: e 时,(x)单调增加.因此当 e ■■■■. x ::: e 2时,「(b):(a),2424 即 In b ^b In a 2 a ,ee4故 In b - In a 2 (b - a).e【评注】本题也可设辅助函数为(x) = In 2x-ln 2 a - 4(x -a),e ::: a :::x ::: e 2或e(x) = In 2 b 「In 2 x - $ (b 「x),e ::: x : b e 2,再用单调性进行证明即可.e(16) (本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞, 以增大阻力,使飞机迅速减速并停下现有一质量为9000kg 的飞机,着陆时的水平速度为 700km/h.经测试,减速伞打开后, 飞机所受的总阻力与飞机的速度成正比(比例系数为 k =6.0 106).问从着陆点算起,飞 机滑行的最长距离是多少?注kg 表示千克,km/h 表示千米/小时.【分析】本题是标准的牛顿第二定理的应用,列出关系式后再解微分方程即可.【详解1】 由题设,飞机的质量m=9000kg ,着陆时的水平速度 v 0 =700km/h .从飞 机接触跑道开始记时,设t 时刻飞机的滑行距离为x(t),速度为v(t).根据牛顿第二定律,得InIn e 2e 2(x)二 2In x xdv m — dt=-kv .dv dv dx dv又v -dt dx dt dx由以上两式得dx dv , k积分得x(t)v C.由于v(0) = v 0, x(0) = 0 ,故得C v 0,从而k kx(t)「m(…t)).k+ —九=0,解之得人=0,几2 m,当v ⑴>0时,心kmv °9000 700 6.0 106=1.05(km).所以,飞机滑行的最长距离为1.05km.【详解2】 根据牛顿第二定律,得 dvm 一 dt所以dv kdt.v m两端积分得通解v = Ce,代入初始条件J%解得—k故 v(t)二 v °e m . 飞机滑行的最长距离为X = 0 v(t)dtmv ° 咼 mv 0=1.05( km).kk dxt=v 0e m,知 x(t)t 0v 0ektmdtkkv£(e^t -1),故最长距离为当t >时,x(t) > 也m=1.05(km).【详解3】 根据牛顿第二定律,得d 2x m —2" dt-k dx dtd 2x dt 2K^=0,dt其特征方程为_k t故 ^C 1 C 2e m当 t —• :* 时,x(t) —; m ^ = 1.05(km).k所以,飞机滑行的最长距离为 1.05km.【评注】 本题求飞机滑行的最长距离,可理解为 t —• -■或v(t) > 0的极限值,这种条件应引起注意.(17) (本题满分12分) 计算曲面积分332I 二 2x dydz 2y dzdx 3(z -1)dxdy,Z其中v 是曲面z =1 -x 2 -y 2(z _0)的上侧.【分析】 先添加一曲面使之与原曲面围成一封闭曲面,应用高斯公式求解,而在添加 的曲面上应用直接投影法求解即可.2 2【详解】 取' 1为xoy 平面上被圆x y =1所围部分的下侧,记 门为由7与7 1围 成的空间闭区域,贝UI 二 2x 3dydz 2y 3dzdx 3(z 2 -1)dxdy- 2x 3dydz 2y 3dzdx 3(z 2 -1)dxdy.由高斯公式知3 3 2 2 22x dy dz2y dzdx3(z -1)dxdy 6(x y z)d x d y d z'八 1-J22 二1 1 -4 2=6 .0 d o dr p (z r )rdz11=12二.°[?r(1 -r 2)2r 3(1 -r 2)]dr =2;而 112x 3dydz 2y 3dzdx 3(z 2 -1)dxdy - -- 3dxdy 二 3二,、1x 2 y 2-i1故 I 二 2恵一3二一-二.得 C 1-C2kx(t)=由x mv o t 厂Vo,曰疋【评注】本题选择时应注意其侧与围成封闭曲面后同为外侧(或内侧),再就是在' 1上直接投影积分时,应注意符号Ci取下侧,与z轴正向相反,所以取负号).(18)(本题满分11分)设有方程x n• nx 一1 = 0,其中n为正整数.证明此方程存在惟一正实根x n,并证明当〉1时,级数V x]收敛•n 4【分析】利用介值定理证明存在性,利用单调性证明惟一性•而正项级数的敛散性可用比较法判定•【证】记f n(x)二x n• nx-1.由f n(0) =-1 :::0 , f n(1)= n ・0,及连续函数的介值定理知,方程x n nx-1 =0存在正实数根x n• (0,1).当x>0时,f n(x)二nx nJ1• n .0 ,可见f n(x)在[0,=)上单调增加,故方程x n 5X -1 =0存在惟一正实数根x n•由x n• nx -1 = 0与X n 0 知1 _ x n 1 . 1 -0 ■ x n二—-:::一,故当〉-1 时,0 :::x n < (一):n n noO 1 co而正项级数7 —收敛,所以当:1时,级数7 X;收敛•n 二n n T【评注】本题综合考查了介值定理和无穷级数的敛散性,题型设计比较新颖,但难度并不大,只要基本概念清楚,应该可以轻松求证(佃)(本题满分12分)设z=z(x,y)是由x2 -6xy • 10y2 -2yz-z2 T8 =0 确定的函数,求z= z(x, y)的极值点和极值.【分析】可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值.【详解】因为x2 -6xy T0y2-2yz-z2 T8 = 0,所以cz cz2x-6y-2y 2z 0,■x :Xcz cz-6x 20y-2z-2y 2z 0.cy cy令;:x得*类似地,z(-9, -3)= -3.【评注】 本题讨论由方程所确定的隐函数求极值问题,关键是求可能极值点时应注意 x,y,z 满足原方程.(20)(本题满分9分):z c 0x 「3y 二 0, 3x 10y - z = 0,x=3y,z = y.将上式代入 x 2「6xy 10y 2「2yz 「z 218=0,可得由于=3,x = -9,y ~ -3 z = -3.2-2yj:x-2-2z 5=02 x一6一2—二exz— -2z ;:xxydz20 -::z:y-2c z-2y 2 ■y ;z 2() ■y;:2z-2z —2 = 0,;:2z所以 A =2.x故 AC -B 2(9,3,3);:2z(9,3,3)从而点 丄,C 仝y 2(9,3,3)(9,3)是z(x,y)的极小值点, 极小值为z(9,3)=3.;:2zA\2;:2z .:x :yJ C 二(』,D 2, 寸(-9,」,」)5 _3,可知AC -B 2二丄 0,又A =36--0,从而点(-9, -3)是z(x,y)的极大值点,极大值为6令;:x 得*设有齐次线性方程组= (12 ,n)T ,(1 a)% x 2 亠 亠焉=0, 2x 1 (2 a)x 2 川…川‘2x 二 0,nx 2 卷…卷(n a)x n =0,试问a 取何值时,该方程组有非零解,并求出其通解【分析】 本题是方程的个数与未知量的个数相同的齐次线性方程组,可考虑对系数矩 n ,进而判断是否有非零解;或直接当a=0时,r(A)=1<n ,故方程组有非零解,其同解方程组为花 X 2X n =0,由此得基础解系为1=(-1,1,0, ,0)T ,2=(-1,0,1, ,0)T ,, n 」=(-1,0,0,,1)T ,当a = 0时,对矩阵B 作初等行变换, -1 +a 1 1 BBL1 B T-2 1 0 …-_n 00 (1)有-崇叶1)0 0 … 0〕2T-2 1 0 0-n0 0 …1-2x 1 +X 2 =0, - 3x 1 x a =0, -nx 「X n =0,由此得基础解系为于是方程组的通解为 k n 4其中k 1,…,k n 」为任意常数可知a =n(n 1) 2时, r(A)二n -1 ::: n ,故方程组也有非零解,其同解方程组为阵直接用初等行变换化为阶梯形,再讨论其秩是否小于 计算系数矩阵的行列式,根据题设行列式的值必为零, 可•【详解1】 对方程组的系数矩阵 A 作初等行变换,由此对参数 a 的可能取值进行讨论即有一1+a 1 1 ・・L 1亠-2aa 0… 0 =B._na 0 0 … a(n_2)于是方程组的通解为x = k ,其中k 为任意常数.故方程组的同解方程组为由此得基础解系为于是方程组的通解为其中k 1, ,k n_,为任意常数._2 1 0 …-2 1 0 0T… … … … … T -・- … … …---_ n 00 … 1 _1 1 -n 0 0 … 1 _故方程组的同解方程组为【详解2】方程组的系数行列式为a=0 或 a =当a=0时,对系数矩阵 一1 2叫」时2 ,A 作初等行变换,■1 0方程组有非零解• 1【 2「°1【 0A =2 2+a 2 (2)T-2a a0 0nnnn +a _ 1 1 -na 00 …a _一1 +a1 1 … 11 -0 ■ …0 1A 作初等行变换,有时, 对系数矩阵 11 1 1 1 11 1 a 1 aX 1 X 2X n =0,1=(-1,1,0, ,0)T ,2 =(一1,0,1, ,0)T ,,n 」=(-1,0,0,…,1)T ,n(n 1)= (12 ,n)T ,"-2% +x 2 = 0,-3% + x 3 = 0, -n X i x n =0,由此得基础解系为= (1,2, ,n)T ,于是方程组的通解为x = k ,其中k 为任意常数_n葺卫故行列式A=(a 咛ba n 」(21)(本题满分9分)丸一1-2 3丸—2 _ (丸 _ 2) 0 矩-A=1 丸—4 3—1 、、一43-1-a丸—5-1-a丸—53 =(&-2)(&2 -8& +18+3a).■1 2-1+a 212 +a 1 ■■亠1 12 ■1 2 12 1 ■■亠11 2 A = ---… --- … …=aE + -- --- … … ---n n n … n +a_1 1nnn …nn(n 1)征值为0, 02的特征值为a,a,,a设矩阵A似对角化•【分析】_1 先求出 -3〕-3的特征方程有一个二重根,求5的特征值, a 的值, 并讨论A 是否可相A 定A 是否可相似对角化即可【详解】 A 的特征多项式为再根据其二重根是否有两个线性无关的特征向量,确1=(人-2) 1-1-1 -4 -a【评注】矩阵A 的行列式A 也可这样计算:1 11,矩阵当怎=2是特征方程的二重根,则有22 _16 18 3^0,解得a= -2.■1当a= -2时,A 的特征值为2,2,6,矩阵2E-A= 1的线性无关的特征向量有两个,从而A 可相似对角化■2 -8,;“ -.-18 - 3a 为完全平方,从而 18+3a=16, 解得a-2n - r (打E - A ) = k j .而单根一定只有一个线性无关的特征向量.(22)(本题满分9分)1 1 1设 A,B 为随机事件,且 p (A ) =*,P (B A ) =§,P (AB ) =?,令1, A 发生, 4 B 发生, X =』Y =』0, A 不发生0, B 不发生.求:(I )二维随机变量(X,Y 的概率分布;(II ) X 和Y 的相关系数:\Y -【分析】 先确定(X,丫的可能取值,再求在每一个可能取值点上的概率,而这可利用随 机事件的运算性质得到,即得二维随机变量(X,丫的概率分布;利用联合概率分布可求出边缘 概率分布,进而可计算出相关系数•a 时,A 的特征值为2,4,34,矩阵 4E-A=-1-1应的线性无关的特征向量只有一个,从而A 不可相似对角化【评注】n 阶矩阵A 可对角化的充要条件是:对于秩为2,故冬=4对的任意k i 重特征根■ i ,恒有 -2 3-2 3 的秩为1,故k = 2对应 2— 3若,=2不是特征方程的二重根,则当怎=2是特征方程的二重根,则有22 _16 18 3^0,解得a= -2.1【详解】(I) 由于P(AB) = P(A)P(BA)=丄,12所以,P(B)=P{X =1,Y =1}P(AB) =1P(A|B) 6=P(AB)112- 1P{X =1,Y =0} =P(AB)二 P(A) -P(AB)= 6- 1P{X =0,Y =1} =P(AB) =P(B) _P(AB) ,P{X =0,Y =0} =P(AB) =1 - P(A B)=1 _P(A) _P(B) P(AB)故(X,Y)的概率分布为(II) X, Y的概率分布分别为Cov(X,Y)二 E(XY)-EX EY 二土,从而c _ Cov(X,Y) _J 15 XY = DX 、DY =石.【评注】 本题尽管难度不大,但考察的知识点很多,综合性较强 •通过随机事件定义随机变量或通过随机变量定义随机事件, 可以比较好地将概率论的知识前后连贯起来,这种命题方式值得注意•(23)(本题满分9分) 设总体X 的分布函数为1F(x, P )才I其中未知参数1・1,X 1,X 2,…,X n 为来自总体 X 的简单随机样本,求:(I) :的矩估计量; (II):的最大似然估计量X0 1Y315 P——P一4 4611 2 3 51二—,— ?DX =—, DY=—— E(XY)—, 4 6 16 3612 则EX 11 6(或 P{X =0,Y =0} =11 12【分析】 先由分布函数求出概率密度,再根据求矩估计量和最大似然估计量的标准方 法进行讨论即可【详解】X 的概率密度为[Pf(x 「)= 7-0,由于EX 二 "xf (x; '■ )dx3 二?=X -1故1的最大似然估计量为?n_n、ln X i【评注】 本题是基础题型,难度不大,但计算量比较大,实际做题时应特别注意计算x 1, x <1.-1X-1,所以参数' 的矩估计量为(II ) 似然函数为f (X i ;')=i 吕->x i1(i=1,2, ,n),(X 1X 2…$0,其他当X j 1(i =12 , n)时,L( J 0,取对数得nIn L( ■) = nln 一: -「: 1p In X j ,i#两边对1求导,得令dInL( ) = 0 ,可得 dP二 In x ii =1X ii 经的准确性.。
2004年考研数学(三)真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1) 若5)(cos sin lim=--→b x ae x xx ,则a =______,b =______.(2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y ) ≠ 0,则2f u v∂=∂∂.(3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则212(1)f x dx -=⎰.(4) 二次型213232221321)()()(),,(x x x x x x x x x f ++-++=的秩为 . (5) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X P _______.(6) 设总体X 服从正态分布),(21σμN , 总体Y 服从正态分布),(22σμN ,1,,21n X X X 和 2,,21nY Y Y 分别是来自总体X 和Y 的简单随机样本, 则12221112()()2n n i j i j X X Y Y E n n ==⎡⎤-+-⎢⎥⎢⎥=⎢⎥+-⎢⎥⎢⎥⎣⎦∑∑.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界. (A) (-1 , 0). (B) (0 , 1).(C) (1 , 2).(D) (2 , 3). [ ](8) 设f (x )在(-∞ , +∞)内有定义,且a x f x =∞→)(lim , ⎪⎩⎪⎨⎧=≠=0,00,)1()(x x x f x g ,则(A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. [ ] (9) 设f (x ) = |x (1 - x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点. (C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点. [ ] (10) 设有下列命题:(1) 若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛.(2) 若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.(3) 若1lim1>+∞→nn n u u ,则∑∞=1n n u 发散.(4) 若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以上命题中正确的是(A) (1) (2). (B) (2) (3).(C) (3) (4). (D) (1) (4). [ ](11) 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是 (A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ). (B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ). (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.[ D ](12) 设n 阶矩阵A 与B 等价, 则必有(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||. (C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B . [ ] (13) 设n 阶矩阵A 的伴随矩阵,0*≠A 若4321,,,ξξξξ是非齐次线性方程组 b Ax =的互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系 (A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量.[ ](14) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{,若αx X P =<}|{|, 则x 等于 (A) 2αu . (B) 21αu-. (C) 21αu -. (D) αu -1. [ ]三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (15) (本题满分8分)求)cos sin1(lim 222xx xx -→.(16) (本题满分8分)求⎰⎰++Dd y yx σ)(22,其中D 是由圆422=+y x 和1)1(22=++y x 所围成的平面区域(如图).(17) (本题满分8分) 设f (x ) , g (x )在[a , b ]上连续,且满足⎰⎰≥xaxadt t g dt t f )()(,x ∈ [a , b ),⎰⎰=ba badt t g dt t f )()(.证明:⎰⎰≤ba ba dx x xg dx x xf )()(.(18) (本题满分9分) 设某商品的需求函数为Q = 100 - 5P ,其中价格P ∈ (0 , 20),Q 为需求量. (I) 求需求量对价格的弹性d E (d E > 0);(II) 推导)1(d E Q dPdR -=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时,降低价格反而使收益增加. (19) (本题满分9分) 设级数)(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x xxx的和函数为S (x ). 求:(I) S (x )所满足的一阶微分方程; (II) S (x )的表达式. (20)(本题满分13分)设T α)0,2,1(1=, T ααα)3,2,1(2-+=, Tb αb α)2,2,1(3+---=, Tβ)3,3,1(-=,试讨论当b a ,为何值时,(Ⅰ) β不能由321,,ααα线性表示;(Ⅱ) β可由321,,ααα唯一地线性表示, 并求出表示式;(Ⅲ) β可由321,,ααα线性表示, 但表示式不唯一, 并求出表示式. (21) (本题满分13分) 设n 阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=111bb b bb b A . (Ⅰ) 求A 的特征值和特征向量; (Ⅱ) 求可逆矩阵P , 使得AP P 1-为对角矩阵.(22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=A B P , 21)|(=B A P , 令⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y 求(Ⅰ) 二维随机变量),(Y X 的概率分布; (Ⅱ) X 与Y 的相关系数 XY ρ; (Ⅲ) 22Y XZ +=的概率分布.(23) (本题满分13分)设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,(其中参数1,0>>βα. 设n X X X ,,,21 为来自总体X 的简单随机样本,(Ⅰ) 当1=α时, 求未知参数β的矩估计量; (Ⅱ) 当1=α时, 求未知参数β的最大似然估计量; (Ⅲ) 当2=β时, 求未知参数α的最大似然估计量.2004年考研数学(三)真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1) 若5)(cos sin lim=--→b x ae x xx ,则a =1,b =4-.【分析】本题属于已知极限求参数的反问题. 【详解】因为5)(cos sin lim=--→b x ae x xx ,且0)(cos sin lim 0=-⋅→b x x x ,所以0)(lim 0=-→a e xx ,得a = 1. 极限化为51)(cos lim)(cos sin lim=-=-=--→→b b x xx b x ae x x xx ,得b = -4.因此,a = 1,b = -4. 【评注】一般地,已知)()(limx g x f = A ,(1) 若g (x ) → 0,则f (x ) → 0;(2) 若f (x ) → 0,且A ≠ 0,则g (x ) → 0.(2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y ) ≠ 0,则)()(22v g v g vu f '-=∂∂∂.【分析】令u = xg (y ),v = y ,可得到f (u , v )的表达式,再求偏导数即可. 【详解】令u = xg (y ),v = y ,则f (u , v ) =)()(v g v g u +,所以,)(1v g uf =∂∂,)()(22v g v g vu f '-=∂∂∂.(3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则21)1(221-=-⎰dx x f .【分析】本题属于求分段函数的定积分,先换元:x - 1 = t ,再利用对称区间上奇偶函数的积分性质即可.【详解】令x - 1 = t ,⎰⎰⎰--==-121121221)()()1(dt x f dt t f dx x f=21)21(0)1(12121212-=-+=-+⎰⎰-dx dx xex.【评注】一般地,对于分段函数的定积分,按分界点划分积分区间进行求解. (4) 二次型213232221321)()()(),,(x x x x x x x x x f ++-++=的秩为 2 .【分析】二次型的秩即对应的矩阵的秩, 亦即标准型中平方项的项数, 于是利用初等变换或配方法均可得到答案. 【详解一】因为213232221321)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++=于是二次型的矩阵为 ⎪⎪⎪⎭⎫⎝⎛--=211121112A , 由初等变换得 ⎪⎪⎪⎭⎫⎝⎛--→⎪⎪⎪⎭⎫⎝⎛---→000330211330330211A , 从而 2)(=A r , 即二次型的秩为2.【详解二】因为213232221321)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++= 2322321)(23)2121(2x x x x x -+++=2221232y y +=,其中 ,21213211x x x y ++= 322x x y -=.所以二次型的秩为2.(5) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X Pe1.【分析】 根据指数分布的分布函数和方差立即得正确答案.【详解】 由于21λDX =, X 的分布函数为⎩⎨⎧≤>-=-.0,0,0,1)(x x e x F x λ故=>}{DX X P =≤-}{1DX X P =≤-}1{1λX P )1(1λF -e1=. 【评注】本题是对重要分布, 即指数分布的考查, 属基本题型.(6) 设总体X 服从正态分布),(21σμN , 总体Y 服从正态分布),(22σμN ,1,,21n XX X 和 2,,21n Y Y Y 分别是来自总体X 和Y 的简单随机样本, 则22121212)()(21σn n Y Y X X En j j n i i =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+-+-∑∑==.【分析】利用正态总体下常用统计量的数字特征即可得答案. 【详解】因为 2121])(11[1σX X n E n i i=--∑=, 2122])(11[2σY Y n E n j j=--∑=,故应填 2σ.【评注】本题是对常用统计量的数字特征的考查.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界. (A) (-1 , 0). (B) (0 , 1).(C) (1 , 2).(D) (2 , 3). [ A ] 【分析】如f (x )在(a , b )内连续,且极限)(limx f ax +→与)(limx f bx -→存在,则函数f (x )在(a , b )内有界.【详解】当x ≠ 0 , 1 , 2时,f (x )连续,而183sin )(lim1-=+-→x f x ,42sin )(lim-=-→x f x ,42sin )(lim=+→x f x ,∞=→)(lim 1x f x ,∞=→)(lim 2x f x ,所以,函数f (x )在(-1 , 0)内有界,故选(A).【评注】一般地,如函数f (x )在闭区间[a , b ]上连续,则f (x )在闭区间[a , b ]上有界;如函数f (x )在开区间(a , b )内连续,且极限)(limx f ax +→与)(limx f bx -→存在,则函数f (x )在开区间(a , b )内有界.(8) 设f (x )在(-∞ , +∞)内有定义,且a x f x =∞→)(lim ,⎪⎩⎪⎨⎧=≠=0,00,)1()(x x xf xg ,则 (A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. [ D ] 【分析】考查极限)(lim 0x g x →是否存在,如存在,是否等于g (0)即可,通过换元xu 1=,可将极限)(lim 0x g x →转化为)(lim x f x ∞→.【详解】因为)(lim )1(lim )(lim 00u f xf xg u x x ∞→→→=== a (令x u 1=),又g (0) = 0,所以,当a = 0时,)0()(lim 0g x g x =→,即g (x )在点x = 0处连续,当a ≠ 0时,)0()(lim 0g x g x ≠→,即x = 0是g (x )的第一类间断点,因此,g (x )在点x = 0处的连续性与a 的取值有关,故选(D).【评注】本题属于基本题型,主要考查分段函数在分界点处的连续性. (9) 设f (x ) = |x (1 - x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点. (C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点. [ C ] 【分析】由于f (x )在x = 0处的一、二阶导数不存在,可利用定义判断极值情况,考查f (x )在x = 0的左、右两侧的二阶导数的符号,判断拐点情况.【详解】设0 < δ < 1,当x ∈ (-δ , 0) ⋃ (0 , δ)时,f (x ) > 0,而f (0) = 0,所以x = 0是f (x )的极小值点. 显然,x = 0是f (x )的不可导点. 当x ∈ (-δ , 0)时,f (x ) = -x (1 - x ),02)(>=''x f ,当x ∈ (0 , δ)时,f (x ) = x (1 - x ),02)(<-=''x f ,所以(0 , 0)是曲线y = f (x )的拐点.故选(C).【评注】对于极值情况,也可考查f (x )在x = 0的某空心邻域内的一阶导数的符号来判断. (10) 设有下列命题:(1) 若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛.(2) 若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.(3) 若1lim1>+∞→nn n u u ,则∑∞=1n n u 发散.(4) 若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以上命题中正确的是 (A) (1) (2). (B) (2) (3). (C) (3) (4). (D) (1) (4). [ B ]【分析】可以通过举反例及级数的性质来说明4个命题的正确性.【详解】(1)是错误的,如令nn u )1(-=,显然,∑∞=1n n u 分散,而∑∞=-+1212)(n n n u u 收敛.(2)是正确的,因为改变、增加或减少级数的有限项,不改变级数的收敛性. (3)是正确的,因为由1lim1>+∞→nn n u u 可得到n u 不趋向于零(n → ∞),所以∑∞=1n n u 发散.(4)是错误的,如令nv nu n n 1,1-==,显然,∑∞=1n n u ,∑∞=1n n v 都发散,而∑∞=+1)(n n n v u 收敛. 故选(B).【评注】本题主要考查级数的性质与收敛性的判别法,属于基本题型.(11) 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是 (A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ). (B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ). (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.[ D ]【分析】利用介值定理与极限的保号性可得到三个正确的选项,由排除法可选出错误选项. 【详解】首先,由已知)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则由介值定理,至少存在一点),(0b a x ∈,使得0)(0='x f ;另外,0)()(lim)(>--='+→ax a f x f a f ax ,由极限的保号性,至少存在一点),(0b a x ∈使得0)()(00>--ax a f x f ,即)()(0a f x f >. 同理,至少存在一点),(0b a x ∈使得)()(0b f x f >. 所以,(A) (B) (C)都正确,故选(D).【评注】 本题综合考查了介值定理与极限的保号性,有一定的难度. (12) 设n 阶矩阵A 与B 等价, 则必有(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||. (C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B . [ D ] 【分析】 利用矩阵A 与B 等价的充要条件: )()(B r A r =立即可得.【详解】因为当0||=A 时, n A r <)(, 又 A 与B 等价, 故n B r <)(, 即0||=B , 故选(D).【评注】本题是对矩阵等价、行列式的考查, 属基本题型.(13) 设n 阶矩阵A 的伴随矩阵,0*≠A 若4321,,,ξξξξ是非齐次线性方程组 b Ax =的 互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系 (A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量. [ B ] 【分析】 要确定基础解系含向量的个数, 实际上只要确定未知数的个数和系数矩阵的秩. 【详解】 因为基础解系含向量的个数=)(A r n -, 而且⎪⎩⎪⎨⎧-<-===.1)(,0,1)(,1,)(,)(*n A r n A r n A r n A r 根据已知条件,0*≠A 于是)(A r 等于n 或1-n . 又b Ax =有互不相等的解, 即解不惟一, 故1)(-=n A r . 从而基础解系仅含一个解向量, 即选(B).【评注】本题是对矩阵A 与其伴随矩阵*A 的秩之间的关系、线性方程组解的结构等多个知识点的综合考查. (14) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{,若αx X P =<}|{|, 则x 等于 (A) 2αu . (B) 21αu-. (C) 21αu -. (D) αu -1. [ C ]【分析】 利用标准正态分布密度曲线的对称性和几何意义即得. 【详解】 由αx X P =<}|{|, 以及标准正态分布密度曲线的对称性可得21}{αx X P -=>. 故正确答案为(C).【评注】本题是对标准正态分布的性质, 严格地说它的上分位数概念的考查.三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (15) (本题满分8分) 求)cos sin1(lim 222xx xx -→.【分析】先通分化为“0”型极限,再利用等价无穷小与罗必达法则求解即可.【详解】xx xx x xx xx x 222220222sincos sinlim)cos sin1(lim -=-→→=346)4(21lim 64cos 1lim44sin 212lim2sin 41lim22230422==-=-=-→→→→xx xx xxx xxx x x x x .【评注】本题属于求未定式极限的基本题型,对于“00”型极限,应充分利用等价无穷小替换来简化计算.(16) (本题满分8分) 求⎰⎰++Dd y yx σ)(22,其中D 是由圆422=+y x 和1)1(22=++y x 所围成的平面区域(如图).【分析】首先,将积分区域D 分为大圆}4|),{(221≤+=y x y x D 减去小圆}1)1(|),{(222≤++=y x y x D ,再利用对称性与极坐标计算即可.【详解】令}1)1(|),{(},4|),{(222221≤++=≤+=y x y x D y x y x D ,由对称性,0=⎰⎰Dyd σ.⎰⎰⎰⎰⎰⎰+-+=+21222222D D Dd y x d y x d y x σσσ⎰⎰⎰⎰--=θπππθθcos 20223220220dr r d dr rd .)23(916932316-=-=ππ所以,)23(916)(22-=++⎰⎰πσDd y y x .【评注】本题属于在极坐标系下计算二重积分的基本题型,对于二重积分,经常利用对称性及将一个复杂区域划分为两个或三个简单区域来简化计算. (17) (本题满分8分) 设f (x ) , g (x )在[a , b ]上连续,且满足⎰⎰≥xaxadt t g dt t f )()(,x ∈ [a , b ),⎰⎰=ba badt t g dt t f )()(.证明:⎰⎰≤ba ba dx x xg dx x xf )()(.【分析】令F (x ) = f (x ) - g (x ),⎰=xa dt t F x G )()(,将积分不等式转化为函数不等式即可. 【详解】令F (x ) = f (x ) - g (x ),⎰=x a dtt F x G )()(,由题设G (x ) ≥ 0,x ∈ [a , b ],G (a ) = G (b ) = 0,)()(x F x G ='.从而⎰⎰⎰⎰-=-==babab ababadx x G dx x G x xG x xdG dx x xF )()()()()(,由于 G (x ) ≥ 0,x ∈ [a , b ],故有0)(≤-⎰ba dxx G ,即0)(≤⎰ba dx x xF .因此 ⎰⎰≤ba badx x xg dx x xf )()(.【评注】引入变限积分转化为函数等式或不等式是证明积分等式或不等式的常用的方法. (18) (本题满分9分) 设某商品的需求函数为Q = 100 - 5P ,其中价格P ∈ (0 , 20),Q 为需求量. (I) 求需求量对价格的弹性d E (d E > 0);(II) 推导)1(d E Q dPdR -=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时,降低价格反而使收益增加.【分析】由于d E > 0,所以dPdQ Q P E d =;由Q = PQ 及dPdQ Q P E d =可推导)1(d E Q dPdR -=.【详解】(I) PP dPdQ Q P E d -==20.(II) 由R = PQ ,得)1()1(d E Q dPdQ Q P Q dPdQ PQ dPdR -=+=+=.又由120=-=PP E d ,得P = 10.当10 < P < 20时,d E > 1,于是0<dPdR ,故当10 < P < 20时,降低价格反而使收益增加.【评注】当d E > 0时,需求量对价格的弹性公式为dPdQ Q P dPdQ Q P E d -==.利用需求弹性分析收益的变化情况有以下四个常用的公式:Qdp E dR d )1(-=,Q E dpdR d )1(-=,p E dQdR d)11(-=,d E EpER -=1(收益对价格的弹性).(19) (本题满分9分) 设级数)(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x xxx的和函数为S (x ). 求:(I) S (x )所满足的一阶微分方程; (II) S (x )的表达式.【分析】对S (x )进行求导,可得到S (x )所满足的一阶微分方程,解方程可得S (x )的表达式. 【详解】(I) +⋅⋅⋅+⋅⋅+⋅=864264242)(864xxxx S ,易见 S (0) = 0,+⋅⋅+⋅+='642422)(753xxxx S)642422(642+⋅⋅+⋅+=xxxx)](2[2x S xx +=.因此S (x )是初值问题0)0(,23=+='y xxy y 的解.(II) 方程23xxy y +='的通解为]2[3C dx e x e y xdx xdx+⎰⎰=⎰-22212xCex+--=,由初始条件y(0) = 0,得C = 1.故12222-+-=xexy ,因此和函数12)(222-+-=xexx S .【评注】本题综合了级数求和问题与微分方程问题,2002年考过类似的题. (20)(本题满分13分)设T α)0,2,1(1=, T ααα)3,2,1(2-+=, Tb αb α)2,2,1(3+---=, Tβ)3,3,1(-=,试讨论当b a ,为何值时,(Ⅰ) β不能由321,,ααα线性表示;(Ⅱ) β可由321,,ααα唯一地线性表示, 并求出表示式;(Ⅲ) β可由321,,ααα线性表示, 但表示式不唯一, 并求出表示式.【分析】将β可否由321,,ααα线性表示的问题转化为线性方程组βαk αk αk =++332211是否有解的问题即易求解. 【详解】 设有数,,,321k k k 使得βαk αk αk =++332211. (*) 记),,(321αααA =. 对矩阵),(βA 施以初等行变换, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+---+-=323032221111),(ba ab a βA ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→00101111ba b a . (Ⅰ) 当0=a 时, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→101001111),(b βA . 可知),()(βA r A r ≠. 故方程组(*)无解, β不能由321,,ααα线性表示. (Ⅱ) 当0≠a , 且b a ≠时, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→00101111),(ba b a βA ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-→01101011001a a 3),()(==βA r A r , 方程组(*)有唯一解:ak 111-=, ak 12=, 03=k .此时β可由321,,ααα唯一地线性表示, 其表示式为 211)11(αa αa β+-=.(Ⅲ) 当0≠=b a 时, 对矩阵),(βA 施以初等行变换, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→00101111),(ba b a βA ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--→00111011001a a , 2),()(==βA r A r , 方程组(*)有无穷多解, 其全部解为ak 111-=, c ak +=12, c k =3, 其中c 为任意常数.β 可由321,,ααα线性表示, 但表示式不唯一, 其表示式为321)1()11(αc αc aαaβ+++-=.【评注】本题属于常规题型, 曾考过两次(1991, 2000).(21) (本题满分13分) 设n 阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=111bb b bb b A . (Ⅰ) 求A 的特征值和特征向量; (Ⅱ) 求可逆矩阵P , 使得AP P1-为对角矩阵.【分析】这是具体矩阵的特征值和特征向量的计算问题, 通常可由求解特征方程0||=-A E λ和齐次线性方程组0)(=-x A E λ来解决.【详解】 (Ⅰ)1当0≠b 时,111||---------=-λbbb λb b b λA E λ=1)]1(][)1(1[------n b λb n λ ,得A 的特征值为b n λ)1(11-+=,b λλn -===12 . 对b n λ)1(11-+=,⎪⎪⎪⎪⎪⎭⎫⎝⎛---------=-b n bb b bn bbb b n A E λ)1()1()1(1→⎪⎪⎪⎪⎪⎭⎫⎝⎛---------)1(111)1(111)1(n n n→⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------------0000111111111111n n n →⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---------0000111111111111n n n→⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---0000001111n nn n n →⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---000110010101001解得T ξ)1,,1,1,1(1 =,所以A 的属于1λ的全部特征向量为 T k ξk )1,,1,1,1(1 = (k 为任意不为零的常数). 对b λ-=12,⎪⎪⎪⎪⎪⎭⎫⎝⎛---------=-b bb b b bb b bA E λ2→⎪⎪⎪⎪⎪⎭⎫⎝⎛000000111得基础解系为Tξ)0,,0,1,1(2 -=,Tξ)0,,1,0,1(3 -=,Tn ξ)1,,0,0,1(,-= .故A 的属于2λ的全部特征向量为n n ξk ξk ξk +++ 3322 (n k k k ,,,32 是不全为零的常数).2 当0=b 时,nλλλλA E λ)1(1010001||-=---=-,特征值为11===n λλ ,任意非零列向量均为特征向量.(Ⅱ)1当0≠b 时,A 有n 个线性无关的特征向量,令),,,(21n ξξξP =,则⎪⎪⎪⎪⎪⎭⎫⎝⎛---+=-b bb n AP P 11)1(112 当0=b 时,E A =,对任意可逆矩阵P , 均有E AP P=-1.【评注】本题通过考查矩阵的特征值和特征向量而间接考查了行列式的计算, 齐次线性方程组的求解和矩阵的对角化等问题, 属于有一点综合性的试题. 另外,本题的解题思路是容易的, 只要注意矩阵中含有一个未知参数, 从而一般要讨论其不同取值情况. (22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=A B P , 21)|(=B A P , 令⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y 求(Ⅰ) 二维随机变量),(Y X 的概率分布; (Ⅱ) X 与Y 的相关系数 XY ρ; (Ⅲ) 22Y XZ +=的概率分布.【分析】本题的关键是求出),(Y X 的概率分布,于是只要将二维随机变量),(Y X 的各取值对转化为随机事件A 和B 表示即可.【详解】 (Ⅰ) 因为 121)|()()(==A B P A P AB P , 于是 61)|()()(==B A P AB P B P ,则有 121)(}1,1{====AB P Y X P ,61)()()(}0,1{=-====AB P A P B A P Y X P , 121)()()(}1,0{=-====AB P B P B A P Y X P ,32)]()()([1)(1)(}0,0{=-+-=⋃-=⋅===AB P B P A P B A P B A P Y X P ,( 或 32121611211}0,0{=---===Y X P ),即),(Y X 的概率分布为:Y X0 1 0 132 12161121(Ⅱ) 方法一:因为 41)(==A P EX ,61)(==B P EY ,121)(=XY E ,41)(2==A P EX,61)(2==B P EY,163)(22=-=EX EX DX ,165)(22=-=EY EYDY ,241)(),(=-=EXEY XY E Y X Cov , 所以X 与Y 的相关系数 1515151),(==⋅=DYDX Y X Cov ρXY .方法二: X, Y 的概率分布分别为X 0 1 Y 0 1 P 4341 P 65 61则61,41==EY EX ,163=DX ,DY=365, E(XY)=121,故 241)(),(=⋅-=EY EX XY E Y X Cov ,从而.1515),(=⋅=DYDX Y X Cov XY ρ(Ⅲ) Z 的可能取值为:0,1,2 .32}0,0{}0{=====Y X P Z P ,41}1,0{}0,1{}1{===+====Y X P Y X P Z P ,121}1,1{}2{=====Y X P Z P ,即Z 的概率分布为:Z 0 1 2 P32 41121【评注】本题考查了二维离散随机变量联合概率分布,数字特征和二维离散随机变量函数的分布等计算问题,属于综合性题型 (23) (本题满分13分)设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,(其中参数1,0>>βα. 设n X X X ,,,21 为来自总体X 的简单随机样本,(Ⅰ) 当1=α时, 求未知参数β的矩估计量; (Ⅱ) 当1=α时, 求未知参数β的最大似然估计量; (Ⅲ) 当2=β时, 求未知参数α的最大似然估计量.【分析】本题是一个常规题型, 只要注意求连续型总体未知参数的矩估计和最大似然估计都须已知密度函数, 从而先由分布函数求导得密度函数.【详解】 当1=α时, X 的概率密度为⎪⎩⎪⎨⎧≤>=+,,,101,),(1x x x ββx f β(Ⅰ) 由于⎰⎰+∞++∞∞--=⋅==11,1);(ββdx xβx dx βx xf EX β令X ββ=-1, 解得 1-=X X β,所以, 参数β的矩估计量为 1-=X X β.(Ⅱ) 对于总体X 的样本值n x x x ,,,21 , 似然函数为∏=+⎪⎩⎪⎨⎧=>==ni i βn ni n i x x x x βαx f βL 1121.,0),,,2,1(1,)();()(其他当),,2,1(1n i x i =>时, 0)(>βL , 取对数得∑=+-=ni i x ββn βL 1ln )1(ln )(ln ,对β求导数,得∑=-=ni i x βn βd βL d 1ln)]([ln ,令0ln )]([ln 1=-=∑=ni i x βn βd βL d , 解得 ∑==ni ix nβ1ln, 于是β的最大似然估计量为 ∑==ni ix nβ1lnˆ. ( Ⅲ) 当2=β时, X 的概率密度为⎪⎩⎪⎨⎧≤>=,,,αx αx x αβx f 0,2),(32对于总体X 的样本值n x x x ,,,21 , 似然函数为∏=⎪⎩⎪⎨⎧=>==ni i n nn i n i αx x x x ααx f βL 13212.,0),,,2,1(,)(2);()(其他当),,2,1(n i αx i =>时, α越大,)(αL 越大, 即α的最大似然估计值为 },,,min{ˆ21n x x x α=, 于是α的最大似然估计量为},,,min{ˆ21n X X X α=.。
2004年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上) (1)曲线ln y x =上与直线1=+y x 垂直的切线方程为__________ . (2)已知(e )e x x f x -'=,且(1)0f =,则()f x =__________ .(3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-L ydx xdy 2的值为__________.(4)欧拉方程)0(024222>=++x y dx dyx dxy d x 的通解为__________ . (5)设矩阵210120001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,矩阵B 满足**2=+ABA BA E ,其中*A 为A 的伴随矩阵,E 是单位矩阵,则B =__________ .(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >= __________ .二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(7)把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===03002sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A)γβα,, (B)βγα,, (C)γαβ,, (D)αγβ,, (8)设函数()f x 连续,且,0)0(>'f 则存在0>δ,使得(A)()f x 在(0,)δ内单调增加 (B)()f x 在)0,(δ-内单调减少 (C)对任意的),0(δ∈x 有()(0)f x f > (D)对任意的)0,(δ-∈x 有()(0)f x f >(9)设∑∞=1n n a 为正项级数,下列结论中正确的是(A)若n n na ∞→lim =0,则级数∑∞=1n n a 收敛(B)若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n n a 发散(C)若级数∑∞=1n n a 收敛,则0lim 2=∞→n n a n (D)若级数∑∞=1n n a 发散, 则存在非零常数λ,使得λ=∞→n n na lim(10)设()f x 为连续函数,⎰⎰=t ty dx x f dy t F 1)()(,则)2(F '等于 (A)2(2)f (B)(2)f (C)(2)f - (D) 0(11)设A 是3阶方阵,将A 的第1列与第2列交换得B ,再把B 的第2列加到第3列得C ,则满足=AQ C 的可逆矩阵Q 为(A)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010(B)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010 (C)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010(D)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110 (12)设,A B 为满足=AB O 的任意两个非零矩阵,则必有 (A)A 的列向量组线性相关,B 的行向量组线性相关 (B)A 的列向量组线性相关,B 的列向量组线性相关 (C)A 的行向量组线性相关,B 的行向量组线性相关 (D)A 的行向量组线性相关,B 的列向量组线性相关(13)设随机变量X 服从正态分布(0,1),N 对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A)2αu (B)21α-u(C)21α-u (D) α-1u(14)设随机变量)1(,,,21>n X X X n Λ独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A)21Cov(,)X Y nσ= (B)21Cov(,)X Y σ=(C)212)(σnn Y X D +=+ (D)211)(σnn Y X D +=-三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤)(15)(本题满分12分) 设2e e a b <<<,证明2224ln ln ()e b a b a ->-.(16)(本题满分11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg的飞机,着陆时的水平速度为700km/h 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).k问从着陆点=10⨯0.66算起,飞机滑行的最长距离是多少?(注:kg表示千克,km/h表示千米/小时)(17)(本题满分12分)计算曲面积分,)1(322233dxdy z dzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧.(18)(本题满分11分)设有方程10nx nx+-=,其中n为正整数.证明此方程存在惟一正实根n x,并证明当1α>时,级数1nn xα∞=∑收敛.(19)(本题满分12分)设(,)z z x y =是由2226102180x xy y yz z -+--+=确定的函数,求(,)z z x y =的极值点和极值.(20)(本题满分9分)设有齐次线性方程组121212(1)0,2(2)20,(2),()0,nnna x x xx a x xnnx nx n a x++++=⎧⎪++++=⎪≥⎨⎪⎪++++=⎩LLL L L L L LL试问a取何值时,该方程组有非零解,并求出其通解.(21)(本题满分9分)设矩阵12314315a-⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦A的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.(22)(本题满分9分)设,A B 为随机事件,且111(),(|),(|)432P A P B A P A B ===,令;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧= 求:(1)二维随机变量(,)X Y 的概率分布. (2)X 和Y 的相关系数.XY ρ(23)(本题满分9分) 设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x x x F ββ其中未知参数n X X X ,,,,121Λ>β为来自总体X 的简单随机样本,求:(1)β的矩估计量. (2)β的最大似然估计量2004年数学一试题分析、详解和评注一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线y=lnx 上与直线1=+y x 垂直的切线方程为 1-=x y .【分析】 本题为基础题型,相当于已知切线的斜率为1,由曲线y=lnx 的导数为1可确定切点的坐标。
一、填空题(1)【答案】 y =x −1【详解】方法 1:因为直线 x +y =1的斜率k 1 − =1,所以与其垂直的直线的斜率k 2 满足121k k =-,所以21k -=-,即21k =,曲线l n y x =上与直线1=+y x 垂直的切线方程的斜率为1,即11)(ln =='='xx y ,得1x =,把1x =代入l n y x =,得切点坐标为)0,1(,根据点斜式公式得所求切线方程为:)1(10-⋅=-x y ,即1-=x y 方法2:本题也可先设切点为)l n ,(00x x ,曲线l n y x =过此切点的导数为11=='=x y x x ,得10=x ,所以切点为()00(,ln )1,0x x =,由此可知所求切线方程为)1(10-⋅=-x y ,即1-=x y .(2)【答案】2)(ln 21x 【详解】先求出)(x f '的表达式,再积分即可.方法1:令t e x=,则t x l n =,1xet -=,于是有t t t f ln )(=',即.ln )(xx x f ='两边积分得2ln 1()ln ln (ln )2xf x dx xd x x C x ===+⎰⎰.利用初始条件(1)0f =,代入上式:21(1)(ln1)02f C C =+==,即0C =,故所求函数为()f x =2)(ln 21x .方法2:由l n xx e =,所以xx x ee f -=')(l n ln xx xx e e ee-=⋅=,所以.ln )(x x x f ='下同.(3)【答案】23【详解】利用极坐标将曲线用参数方程表示,相应曲线积分可化为定积分.2004 年全国硕士研究生入学统一考试数学一试题解析L 为正向圆周222=+y x 在第一象限中的部分,用参数式可表示为.20:,s in 2,cos 2πθθθ→⎩⎨⎧==y x 于是2Lx dy ydx -=⎰202cos 2sin 22sin 2cos d d πθθθθ⎡⎤-⎣⎦⎰20[2cos 2cos 22sin 2sin ]d πθθθθθ=⋅+⋅⎰()22222220[2cos 4sin ][2cos sin 2sin ]d d ππθθθθθθθ=+=++⎰⎰222220[22sin ]22sin d d d πππθθθθθ=+=+⎰⎰⎰()220021cos 2d ππθθθ=+-⎰222000131cos 22sin 2222d πππππθθθθ=+-=-⎰()3133sin sin 002222ππππ=--=-=(4)【答案】221x c x c y +=【详解】欧拉方程的求解有固定方法,作变量代换te x =化为常系数线性齐次微分方程即可.令te x =,有1ln ,dt t x dx x ==,则1dy dy dt dy dx dt dx x dt=⋅=,221d y d dy dx dx x dt ⎛⎫= ⎪⎝⎭()211dy d dy d uv vdu udv x dt x dx dt ⎛⎫=+ -+ ⎪⎝⎭211dy d dy dt x dt x dt dt dx ⎛⎫=-+⋅⎪⎝⎭2222222111dy d y d y dy x dt x dt x dt dt ⎛⎫=-+=- ⎪⎝⎭代入原方程:222211420d y dy dyx x y x dt dt x dt⎛⎫⋅-+⋅+= ⎪⎝⎭,整理得02322=++y dt dy dt y d ,此式为二阶齐次线性微分方程,对应的特征方程为2320r r ++=,所以特征根为:121,2r r =- =- ,12r r ≠ ,所以02322=++y dt dydty d 的通解为1221212r t r t t ty c e c e c e c e --=+=+又因为te x =,所以2211,tt ee x x --= =,代入上式得212122.t t c cy c e c e x x--=+=+(5)【答案】91【详解】方法1:已知等式两边同时右乘A ,得**2ABA A BA A A =+,由伴随矩阵的运算规律:**A A AA A E ==,有2A B A B A A =+,而210120001A =3321(1)12+=-2211=⨯-⨯3=,于是有A B A B +=63,移项、合并有A B E A =-)63(,再两边取行列式,由方阵乘积的行列式的性质:矩阵乘积的行列式等于矩阵行列式的积,有(36)363A E B A E B A -=-==,而36A E -21010031206010001001⎡⎤⎡⎤⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦630600030360060300003006003⎡⎤⎡⎤⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦3303(1)(3)(3)3330+=--=-⨯⨯27=,故所求行列式为B 33627A A E ==-19=方法2:由题设条件**2ABA BA E =+,得**2ABA BA -=*(2)A E BA E-=由方阵乘积行的列式的性质:矩阵乘积的行列式等于矩阵行列式的积,故两边取行列式,有**(2)21A E BA A EB A E -=-==其中210120001A =3321(1)12+=-2211=⨯-⨯3=;由伴随矩阵行列式的公式:若A 是n 阶矩阵,则1n A A-*=.所以,312A A A -*===9;又0102100001A E -=1210(1)01+=-=1.故1192B A E A*==-.(6)【答案】e1【详解】本题应记住常见指数分布等的期望与方差的数字特征,而不应在考试时再去推算.指数分布的概率密度为,0()00x e x f x x λλ-⎧>⎪=⎨≤⎪⎩若若,其方差21λ=DX .于是,由一维概率计算公式,{}()bX aP a X b f x dx ≤≤=⎰,有}{D X X P >=dx e X P x ⎰+∞-=>λλλλ1}1{=11xe eλλ+∞--=二、选择题(7)【答案】(B)【详解】方法1:202200tan tan 2lim limlim 0cos cos x xx x x tdt x xxt dtβα+++→→→⋅= =⎰⎰洛必达,则β是α的高阶无穷小,根据题设,排在后面的是前一个的高阶无穷小,所以可排除(C),(D)选项,又23230001sin sin 2lim lim lim 2tan tan xx x x x x t dtx x xtdtγβ+++→→→⋅= ⎰⎰洛必达201lim4x x x +→=∞等价无穷小替换,可见γ是比β低阶的无穷小量,故应选(B).方法2:用kx (当0x →时)去比较.221000cos cos limlimlim ,xkkk x x x t dt x xxkxα+++-→→→=⎰洛欲使上式极限存在但不为0,应取1k =,有220lim cos cos lim lim 1lim x x x x t txxxα++++→→→→===,所以(当+→0x 时)α与x 同阶.211300000tan tan 222lim limlim lim lim xk k k k k x x x x x tdtx x x x x x kx kx kx β+++++---→→→→→⋅⋅===⎰洛欲使上式极限存在但不为0,应取3k =,有3320002tan 2tan 2lim lim lim 333x x x x x x x x β+++-→→→===,所以(当+→0x 时)β与3x 同阶.31313222211100000sin sin lim lim lim lim lim ,222xk kk k k x x x x x t dtx x x x xx x kx kx kx γ+++++-----→→→→→⋅⋅===⎰洛欲使上式极限存在但不为0,应取2k =,有221001lim lim 224x x xx x γ++-→→==⋅,所以(当+→0x 时)γ与2x 同阶.因此,后面一个是前面一个的高阶小的次序是,,αγβ,选(B).(8)【答案】(C)【详解】函数()f x 只在一点的导数大于零,一般不能推导出单调性,因此可排除(A),(B).由导数的定义,知0)0()(lim)0(0>-='→xf x f f x 根据极限的保号性,知存在0>δ,当),0()0,(δδ -∈x 时,有0)0()(>-xf x f .即当)0,(δ-∈x 时,0x <,有()(0)f x f <;而当),0(δ∈x 时,0x >有()(0)f x f >.(9)【答案】(B)【详解】对于敛散性的判定问题,若不便直接推证,往往可通过反例排除找到正确选项.方法1:排除法.取()()11ln 1n a n n =++,则n n na ∞→lim =0,又()()1111ln 11pn p n n p ∞= >⎧⎨++ ≤⎩∑收敛,当发散,当,所以()()1111ln 1n n n a n n ∞∞===++∑∑发散,排除A ,D ;又取n n a n 1=,因为p 级数1111p n p n p ∞= >⎧⎨ ≤⎩∑收敛,当发散,当,则级数111n n n a n n ∞∞===∑∑收敛,但221lim lim lim n n n n n a n n n n→∞→∞→∞=⋅==∞,排除(C),故应选(B).方法2:证明(B)正确.l im 0n n na λ→∞=≠,即l im 1nn a nλ→∞=.因为11n n∞=∑发散,由比较判别法的极限形式知,1nn a∞=∑也发散,故应选(B)..(10)【答案】(B)【详解】在应用变限的积分对变量x 求导时,应注意被积函数中不能含有变量x :⎰'-'=')()()()]([)()]([])([x b x a x a x a f x b x b f dt t f 否则,应先通过恒等变形、变量代换和交换积分次序等将被积函数中的变量x 换到积分号外或积分线上.方法1:交换积分次序,使得只有外面这道积分限中才有t ,其他地方不出现t由⎰⎰=t tydx x f dy t F 1)()(知:1y x ty t <<⎧⎨<<⎩,交换积分次序11x t y x <<⎧⎨<<⎩,得⎰⎰=t tydx x f dy t F 1)()(=⎰⎰⎰-=t x tdxx x f dx dy x f 111)1)((])([于是,)1)(()(-='t t f t F ,从而有)2()2(f F =',故应选(B).方法2:设()()x f x 'Φ=,于是1()()t t yF t dy f x dx =⎰⎰11()()t t t tyydy x dx dy d x '=Φ=Φ⎰⎰⎰⎰1[()()]t t y dy =Φ-Φ⎰1()(1)()tt t y dy=Φ--Φ⎰所以()()(1)()()()(1),F t t t t t f t t ''=Φ-+Φ-Φ=-所以(2)(2)F f '=,选(B).(11)【答案】(D)【详解】由题设,将A 的第1列与第2列交换,即12010100001AE A B ⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦,将B 的第2列加到第3列,即100010100011011100011100.001001001001B A A AQ ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦故011100001Q ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,应选(D).(12)【答案】(A)【详解】方法1:由矩阵秩的重要公式:若A 为n m ⨯矩阵,B 为n p ⨯矩阵,如果0A B =,则()()r A r B n+≤设A 为n m ⨯矩阵,B 为s n ⨯矩阵,由0A B =知,()()r A r B n +≤,其中n 是矩阵A 的列数,也是B 的行数因A 为非零矩阵,故()1r A ≥,因()()r A r B n +≤,从而()1r B n n ≤-<,由向量组线性相关的充分必要条件向量组的秩小于向量的个数,知B 的行向量组线性相关.因B 为非零矩阵,故()1r B ≥,因()()r A r B n +≤,从而()1r A n n ≤-<,由向量组线性相关的充分必要条件向量组的秩小于向量的个数,知A 的列向量组线性相关.故应选(A).方法2:设A 为n m ⨯矩阵,B 为s n ⨯矩阵,将B 按列分块,由0A B =得,[]12,,,0,0,1,2,,.s i AB A A i s ββββ==== 因B 是非零矩阵,故存在0i β≠,使得0i A β=.即齐次线性方程组0A x =有非零解.由齐次线性方程组0A x =有非零解的充要条件()r A n <,知()r A n <.所以A 的列向量组线性相关.又()0T T T AB B A ==,将TA 按列分块,得12[,,,]0,0,1,2,,.T T T T T TT T m i B A B B i m αααα==== 因A 是非零矩阵,故存在0T i α≠,使得0TT i Bα=,即齐次线性方程组0Bx =有非零解.由齐次线性方程组0Bx =有非零解的充要条件,知TB 的列向量组线性相关,由TB 是由B 行列互换得到的,从而B 的行向量组线性相关,故应选(A).方法3:设(),i j m n A a ⨯=()i j n s B b ⨯=,将A 按列分块,记()12n A A A A =由0A B =⇒()11121212221212s s n n n ns b b b b bb A A A b b b ⎛⎫⎪⎪ ⎪⋅⋅⋅⎪⎝⎭()111111,,0n n s ns n b A b A b A b A =++++= (1)由于0B ≠,所以至少有一个0i j b ≠(1,1i n j s ≤≤≤≤),又由(1)知,11220j j i j i nj n b A b A b A b A +++++= ,所以12,,,m A A A 线性相关.即A 的列向量组线性相关.(向量组线性相关的定义:如果对m 个向量12,,,nm R ααα∈ ,有m 个不全为零的数12,,,m k k k R ∈,使11220m m k k k ααα++=成立,则称12,,,m ααα 线性相关.)又将B 按行分块,记12n B BB B ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,同样,0A B =⇒11121121222212n n m m mn n a a a B a a a B a a a B ⎛⎫⎛⎫⎪⎪⎪⎪ ⎪⎪⋅⋅⋅⎪⎪⎝⎭⎝⎭ 111122121122221122n n n n m m mn n a B a B a B a B a B a B a B a B a B +++⎛⎫⎪+++ ⎪=⎪ ⎪ ⎪+++⎝⎭ 0=由于0A ≠,则至少存在一个0i j a ≠(1,1i m j n ≤≤≤≤),使11220i i i j j in n a B a B a B a B ++++= ,由向量组线性相关的定义知,12,,,m B B B 线性相关,即B 的行向量组线性相关,故应选(A).方法4:用排除法.取满足题设条件的,A B .取001000,10010001A B ⎡⎤⎡⎤⎢⎥=≠=≠⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,有00100100,10001AB ⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦A 的行向量组,列向量组均线性相关,但B 的列向量组线性无关,故(B),(D)不成立.又取110100,00000100A B ⎡⎤⎡⎤⎢⎥=≠=≠⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,有1101000000100AB ⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,A 的行向量组线性无关,B 的列向量组线性相关,故(C)不成立.由排除法知应选(A).(13)【答案】C【详解】利用正态分布概率密度函数图形的对称性,对任何0x >有{}{}{}12P X x P X x P X x >=<-=>.或直接利用图形求解.方法1:由标准正态分布概率密度函数的对称性知,αα=-<}{u X P ,于是}{2}{}{}{}{11x X P x X P x X P x X P x X P ≥=-≤+≥=≥=<-=-α即有21}{α-=≥x X P ,可见根据分位点的定义有21α-=u x ,故应选(C).方法2:Oxy()f x {}P X u αα>=图1图2如图1所示题设条件.图2显示中间阴影部分面积α,{}P X x α<=.两端各余面积12α-,所以12{}P X u αα-<=,答案应选(C).(14)【答案】A.【详解】由于随机变量)1(,,,21>n X X X n 独立同分布,所以必有:2, (,)0, i j i jCov X X i jσ⎧==⎨≠⎩又222111()n n ni i i i i i i i D a X a D X a σ===⎛⎫== ⎪⎝⎭∑∑∑Oxy{}P X x α<=12α-()f x下面求1(,)Cov X Y 和1()D X Y +.而11,ni i Y X n ==∑故本题的关键是将Y 中的1X 分离出来,再用独立性来计算.对于选项(A):1111112111(,)(,)(,)(,)n n i i i i Cov X Y Cov X X Cov X X Cov X X n n n ====+∑∑11DX n=21n σ=所以(A)对,(B)不对.为了熟悉这类问题的快速、正确计算.可以看本题(C),(D)选项.因为X 与Y 独立时,有()()()D X Y D X D Y ±=+.所以,这两个选项的方差也可直接计算得到:22211222111(1)1()()n n n n D X Y D X X X n n n n nσσ++-+=+++=+ =222233σσn n n n n +=+,222222111)1()111()(σσnn n n X n X n X n n D Y X D n -+-=----=- =.222222σσn n n n n -=-所以本题选(A)三、解答题(15)【详解】根据要证不等式的形式,可考虑用拉格朗日中值定理或转化为函数不等式用单调性证明.方法1:因为函数()2l n f x x =在()2[,],a b e e ⊂上连续,且在(),a b 内可导,所以满足拉格朗日中值定理的条件,对函数()2ln f x x =在[,]a b 上应用拉格朗日中值定理,得()()()22222ln ln ln ln ,b a b a b a e a b e ξξξξ'-=-=- <<<<下证:22ln 4eξξ>.设t t t ln )(=ϕ,则2ln 1)(ttt -='ϕ,当t e >时,1ln 1ln 0t e -<-=,即,0)(<'t ϕ所以)(t ϕ单调减少,又因为2e ξ<,所以)()(2e ϕξϕ>,即2222ln ln e e e =>ξξ,得22ln 4eξξ>故)(4ln ln 222a b ea b ->-.方法2:利用单调性,设x ex x 224ln )(-=ϕ,证()x ϕ在区间()2,e e 内严格单调增即可.24ln 2)(e x x x -='ϕ,(222222ln 444()20e e e e e eϕ'=-=-=,)2ln 12)(x x x -=''ϕ,当x e >时,1ln 1ln 0x e -<-=,,0)(<''x ϕ故)(x ϕ'单调减少,从而当2e x e <<时,2()()0x e ϕϕ''>=,即当2e x e <<时,)(x ϕ单调增加.因此当2e x e <<时,)()(a b ϕϕ>,即a e a b e b 22224ln 4ln ->-,故)(4ln ln 222a b ea b ->-.方法3:设2224()ln ln ()x x a x a eϕ=---,则2ln 4()2x x x e ϕ'=-,21ln ()2x x x ϕ-''=,⇒x e >时,1ln 1ln 0x e -<-=,得()0x ϕ''<,⇒()x ϕ'在2(,)e e 上单调减少,从而当2e x e <<时,22244()()0x e e eϕϕ''>=-=,⇒()x ϕ在2(,)e e 上单调增加.从而当2e a x b e <<≤<时,()()0x a ϕϕ>=.⇒()0b ϕ>,即2224ln ln ()b a b a e ->-.(16)【详解】本题是标准的牛顿第二定理的应用,列出关系式后再解微分方程即可.方法1:由题设,飞机质量9000m kg =,着陆时的水平速度h k m v /7000=.从飞机接触跑道开始计时,设t 时刻飞机的滑行距离为()x t ,速度为()v t ,则0)0(,)0(0==x v v .根据牛顿第二定律,得kv dt dv m -=.又dx dv v dt dx dx dv dt dv =⋅=.由以上两式得dv k m dx -=,积分得.)(C v kmt x +-=由于0)0(,)0(0==x v v ,所以0(0)0.mx v C k=-+=故得0v k m C =,从而)).(()(0t v v kmt x -=当0)(→t v 时,).(05.1100.67009000)(60km k mv t x =⨯⨯=→所以,飞机滑行的最长距离为1.05km.方法2:根据牛顿第二定律,得kv dtdvm-=,分离变量:dv k dt v m =-,两端积分得:1ln kv t C m=-+,通解:t mk C ev -=,代入初始条件00v vt ==,解得0v C =,故.)(0t mk ev t v -=飞机在跑道上滑行得距离相当于滑行到0v →,对应地t →+∞.于是由d x vdt =,有00() 1.05().k k t t mmmv mv x v t dt v edt e km kk+∞--+∞+∞===-==⎰⎰或由()0kt mdx v t v e dt-==,知)1()(000--==--⎰t m kt t m ke m kv dt e v t x ,故最长距离为当∞→t 时,).(05.1)(0km mkv t x =→方法3:由kv dt dv m -=,dx v dt =,化为x 对t 的求导,得dt dxk dtx d m -=22,变形为022=+dtdxm k dt x d ,0(0)(0),(0)0v x v x '===其特征方程为02=+λλm k ,解之得mk-==21,0λλ,故.21t m ke C C x -+=由2000000,kt m t t t t kC dxx v e v dt m-=======-=,得,021km v C C =-=于是).1()(0t m k e kmv t x --=当+∞→t 时,).(05.1)(0km k mv t x =→所以,飞机滑行的最长距离为1.05km .(17)【详解】这是常规题,加、减曲面片高斯公式法,转换投影法,逐个投影法都可用.方法1:加、减曲面片高斯公式.取1∑为xoy 平面上被圆122=+y x 所围部分的下侧,记Ω为由∑与1∑围成的空间闭区域,则dxdyzdzdx y dydz x I ⎰⎰∑+∑-++=1)1(322233133212223(1)x dydz y dzdx z dxdy I I ∑-++-=-⎰⎰由高斯公式:设空间闭区域Ω是由分段光滑的闭曲面∑所围成,函数()()(),,,,,,,,P x y z Q x y z R x y z 在Ω上具有一阶连续偏导数,则有P Q R Pdydz Qdzdx Rdxd y dv x y z ∑Ω⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰ 这里3322,2,3(1)P x Q y R z = == -,2226,6,6P QR x y z x y z∂∂∂===∂∂∂,所以2216()I x y z dvΩ=++⎰⎰⎰利用柱面坐标:c os sin ,01,02,x r y r r dv rdrd dz z z θθθπθ=⎧⎪= ≤≤ ≤≤ =⎨⎪=⎩,有:2216()I x y z dxdydz Ω=++⎰⎰⎰=r dzr z dr d r )(620101022⎰⎰⎰-+πθ()()221221123200011212122r r z r r z dr rr r drππ--⎛⎫=+=+- ⎪⎝⎭⎰⎰()13246011124346r r r π⎛⎫- ⎪=-⋅+- ⎪⎝⎭11226ππ=⋅=记D 为1∑在x oy 平面上的投影域(){}22,1D x y xy =+≤,则0z =,0d z =,又1∑为220(1)z x y =+≤的下侧,从而:()13322223(1)301DI x dydz y dzdx z dxdy dxdy ∑=++-=--⎰⎰⎰⎰33Ddxdy π==⎰⎰(其中Ddxdy ⎰⎰为半径为1圆的面积,所以11Ddxdy ππ=⋅=⎰⎰)故1223.I I I πππ=-=-=-方法2:用转换投影法:若(),z z x y =,z 对,x y 具有一阶连续偏导数,则,z zdzdx dxdy dydz dxdy x y∂∂=-=-∂∂.曲面22221:1,(1),2,2z zz x y x y x y x y∂∂=--+≤=-=-∂∂∑,由转换投影公式332223(1)I x dydz y dzdx z dxdy∑=++-⎰⎰332[2()2()3(1)]z zx y z dxdy x y∑∂∂=-+-+-∂∂⎰⎰44222[443(1)3]Dx y x y dxdy=++---⎰⎰利用极坐标变换:c os ,01,02,sin x r r dxdy rdrd y r θθπθθ=⎧ ≤≤ ≤≤ =⎨=⎩,所以214444220[4cos 4sin 3(1)3]I d r r r rdrπθθθ=++--⎰⎰215454530[4cos 4sin 3(2)]d r r r r drπθθθ=++-⎰⎰24404413(cos sin )6622d πθθθ=++-⎰()2222222004cos sin 2cos sin 6d d ππθθθθθθ⎡⎤=+--⎢⎥⎣⎦⎰⎰2220412cos sin 26d πθθθπ⎡⎤=--⎣⎦⎰22220041cos sin 2263d d ππθθθθπ=--⎰⎰()20411cos 4236d ππθθπ=---⎰22004112cos 4sin 433624d πππππθθπθ=---=--⎰0ππ=--=-或244044(cos sin )66d πθθθ+⎰直接利用公式44220031cos sin 422d d πππθθθθ==⋅⋅⎰⎰及224444220cos 4cos 4sin sin d d d d ππππθθθθθθθθ===⎰⎰⎰⎰则244044431(cos sin )24666422d ππθθθπ+=⋅⋅⋅⋅⋅=⎰所以,原式2πππ=-=-(18)【分析】利用零点定理证明存在性,利用单调性证明惟一性.而正项级数的敛散性可用比较法判定.零点定理:设函数()f x 在闭区间[],a b 上连续,且()()0f a f b ⋅<,那么在开区间(),a b 内至少存在一点ξ,使()0f ξ=;单调性:设函数()f x 在闭区间[],a b 上连续,在(),a b 内可导,如果在(),a b 内()0f x '>,那么函数()f x 在[],a b 上单调增加;比较审敛法:设1nn u∞=∑和1nn v∞=∑都是正项级数,且n n u v ≤,若级数1nn v∞=∑收敛,则级数1nn u∞=∑收敛.【证明】记()1nn f x x nx =+-,则()n f x 是连续函数,由01)0(<-=n f ,0)1(>=n f n ,对照连续函数的零点定理知,方程01=-+nx x n 存在正实数根).1,0(∈n x 当0x >时,0)(1>+='-n nxx f n n ,可见)(x f n 在),0[+∞上单调增加,故方程01=-+nx x n 存在惟一正实数根.n x 由01=-+nx x n与0>n x 知nn x x nn n 110<-=<,故当1>α时,函数y x α=单调增,所以αα)1(0n x n <<.而正项级数∑∞=11n n α收敛,所以当1>α时,级数∑∞=1n n x α收敛.(19)【分析】根据极值点存在的充分条件:设函数(,)z f x y =在点()00,x y 的某领域内连续且有一阶及二阶连续偏导数,又0000(,)0,(,)0x y f x y f x y = =,令000000(,),(,),(,)xx xy yy f x y A f x y B f x y C = = =,则(,)z f x y =在()00,x y 处是否取得极值的条件如下:(1)20A C B ->时具有极值,且当0A <时有极大值,当0A >时有极小值;(2)20A C B -<时没有极值;(3)20A C B -=时,可能有极值,也可能没有极值,需另外讨论.所以对照极值点存在的充分性定理,先求出一阶偏导,再令其为零确定极值点,接下来求函数二阶偏导,确定是极大值还是极小值,并求出相应的极值.求二元隐函数的极值与求二元显函数的极值的有关定理是一样,差异仅在于求驻点及极值的充分条件时,用到隐函数求偏导数.【详解】因为0182106222=+--+-z y z y xy x ,所以两边对x 求导:02262=∂∂-∂∂--xz z x z yy x ,①两边对y 求导:0222206=∂∂-∂∂--+-yzz y z yz y x .②根据极值点存在的充分条件,令00zx z y∂⎧=⎪∂⎪⎨∂⎪=∂⎪⎩,得303100x y x y z -=⎧⎨-+-=⎩,故⎩⎨⎧==.,3y z y x 将上式代入0182106222=+--+-z y z y xy x ,可得⎪⎩⎪⎨⎧===3,3,9z y x 或⎪⎩⎪⎨⎧-=-=-=.3,3,9z y x 对照极值点存在的充分条件,为判别两点是否为极值点,再①分别对,x y 求偏导数,②分别对,x y 求偏导数①式对x 求导:02)(22222222=∂∂-∂∂-∂∂-xzz x z x z y ,②式对x 求导:,02222622=∂∂∂-∂∂⋅∂∂-∂∂∂-∂∂--y x zz x z y z y x z y x z ①式对y 求导:,02222622=∂∂∂-∂∂⋅∂∂-∂∂∂-∂∂--yx zz x z y z y x z y x z ②式对y 求导:02)(22222022222=∂∂-∂∂-∂∂-∂∂-∂∂-yzz y z y z y y z y z ,将⎪⎩⎪⎨⎧===3,3,9z y x ⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂0,0y z xz代入,于是61)3,3,9(22=∂∂=x z A ,21)3,3,9(2-=∂∂∂=yx z B ,35)3,3,9(22=∂∂=yz C ,故03612>=-B AC ,又061>=A ,从而点(9,3)是(,)z x y 的极小值点,极小值为(9,3)3z =.类似地,将⎪⎩⎪⎨⎧-=-=-=.3,3,9z y x ⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂0,0y z x z 代入,于是22(9,3,3)16z A x ---∂==-∂,2(9,3,3)12zB x y---∂==∂∂,22(9,3,3)53z C y ---∂==-∂,可知03612>=-B AC ,又061<-=A ,从而点(-9,-3)是(,)z x y 的极大值点,极大值为(9,3)3z --=-.(20)【详解】方法1:对方程组的系数矩阵A 作初等行变换,有11112222aa A n n n n a +⎡⎤⎢⎥+⎢⎥=⎢⎥⎢⎥+⎣⎦1()(2,)i i i n ⨯-+= 行行111120000a a a B na a +⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥-⎣⎦对||B 是否为零进行讨论:当0a =时,()1r A n =<,由齐次方程组有非零解的判别定理:设A 是m n ⨯矩阵,齐次方程组0A x =有非零解的充要条件是()r A n <.故此方程组有非零解,把0a =代入原方程组,得其同解方程组为,021=+++n x x x ()*此时,()1r A =,故方程组有1n r n -=-个自由未知量.选23,,,n x x x 为自由未知量,将他们的1n -组值(1,0,,0),(0,1,,0),,(0,0,,1) 分别代入()*式,得基础解系,)0,,0,1,1(1T -=η,)0,,1,0,1(2T -=η,)1,,0,0,1(,1T n -=-η于是方程组的通解为,1111--++=n n k k x ηη 其中11,,-n k k 为任意常数.当0≠a 时,对矩阵B 作初等行变换,有11112100001a B n +⎡⎤⎢⎥-⎢⎥→⎢⎥⎢⎥-⎣⎦ (1)12,3i i n ⨯-+= 行()(1)00022100001n n a n +⎡⎤+⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦ ,可知2)1(+-=n n a 时,n n A r <-=1)(,由齐次方程组有非零解的判别定理,知方程组也有非零解,把2)1(+-=n n a 代入原方程组,其同解方程组为⎪⎪⎩⎪⎪⎨⎧=+-=+-=+-,0,03,0213121n x nx x x x x 此时,()1r A n =-,故方程组有(1)1n r n n -=--=个自由未知量.选2x 为自由未量,取21x =,由此得基础解系为Tn ),,2,1( =η,于是方程组的通解为ηk x =,其中k 为任意常数.方法2:计算方程组的系数行列式:11112222aa A n n n n a +⎡⎤⎢⎥+⎢⎥=⎢⎥⎢⎥+⎣⎦00011110002222000a a a n n n n ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦矩阵加法a E =+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n n n n 22221111aE Q ∆ +,下面求矩阵Q 的特征值:11112222E Q n n n n λλλλ---------=---- 11112001(-)(2,3,,)00i i i n n λλλλλ-----⨯+=- 行行(1)1112()1000(2,3,,)000n n i i i n λλλ+----⨯+=列列1(1)2n n n λλ-+⎛⎫=- ⎪⎝⎭则Q 的特征值2)1(,0,,0+n n ,由性质:若A x x λ=,则()(),m m kA x k x A x x λλ==,因此对任意多项式()f x ,()()f A x f x λ=,即()f λ是()f A 的特征值.故,A 的特征值为(1),,,2n n a a a ++,由特征值的乘积等于矩阵行列式的值,得A 行列式.)2)1((1-++=n a n n a A 由齐次方程组有非零解的判别定理:设A 是n 阶矩阵,齐次方程组0Ax =有非零解的充要条件是0=A .可知,当0=A ,即0a =或2)1(+-=n n a 时,方程组有非零解.当0a =时,对系数矩阵A 作初等行变换,有11112222A n n n n ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ 1)(2,)i i i n ⨯-+= 行(行1111000000000⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,.故方程组的同解方程组为,021=+++n x x x 此时,()1r A =,故方程组有1n r n -=-个自由未知量.选23,,,n x x x 为自由未知量,将他们的1n -组值(1,0,,0),(0,1,,0),,(0,0,,1) 分别代入()*式,由此得基础解系为,)0,,0,1,1(1T -=η,)0,,1,0,1(2T -=η,)1,,0,0,1(,1T n -=-η于是方程组的通解为,1111--++=n n k k x ηη 其中11,,-n k k 为任意常数.当2)1(+-=n n a 时,11112100001a B n +⎡⎤⎢⎥-⎢⎥→⎢⎥⎢⎥-⎣⎦ (1)1(2,3)i i n ⨯-+= 行(1)00022100001n n a n +⎡⎤+⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦,即00002100001n ⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥-⎣⎦ ,其同解方程组为⎪⎪⎩⎪⎪⎨⎧=+-=+-=+-,0,03,0213121n x nx x x x x 此时,()1r A n =-,故方程组有(1)1n r n n -=--=个自由未知量.选2x 为自由未量,取21x =,由此得基础解系为Tn ),,2,1( =η,于是方程组的通解为ηk x =,其中k 为任意常数.(21)【详解】A 的特征多项式为12314315E A aλλλλ---=----2(2)021114315aλλλλ---⨯-+----行()行1101(2)14315a λλλ------提出行公因数1101(1)2(2)03315a λλλ-⨯-+-----行行11012(2)033015a λλλ-+-----行行33(2)15a λλλ-=----(2)[(3)(5)3(1)]a λλλ=---++2(2)(8183).a λλλ=--++已知A 有一个二重特征值,有两种情况,(1)2=λ就是二重特征值,(2)若2=λ不是二重根,则28183a λλ-++是一个完全平方(1)若2=λ是特征方程的二重根,则有,03181622=++-a 解得2a =-.由E A λ-2(2)(8183(2))λλλ=--++⨯-2(2)(812)λλλ=--+2(2)(6)0λλ=--=求得A 的特征值为2,2,6,由1232123123E A -⎡⎤⎢⎥-=-⎢⎥⎢⎥--⎣⎦1231(-1)2,000113000-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦行倍加到行行的倍加到行,知()21E A -=秩,故2=λ对应的线性无关的特征向量的个数为312n r -=-=,等于2=λ的重数.由矩阵与对角矩阵相似的充要条件:对矩阵的每个特征值,线性无关的特征向量的个数恰好等于该特征值的重根数,从而A 可相似对角化.(2)若2=λ不是特征方程的二重根,则a 31882++-λλ为完全平方,从而18316a +=,解得.32-=a 当32-=a 时,由E A λ-=22(2)(8183())3λλλ=--++⨯-2(2)(816)λλλ=--+2(2)(4)0λλ=--=知A 的特征值为2,4,4,由32341032113E A ⎡⎤⎢⎥-⎢⎥-=⎢⎥⎢⎥--⎢⎥⎣⎦1133⨯+ 行行323103000-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦知()42E A -=秩,故4=λ对应的线性无关的特征向量有321n r -=-=,不等于4=λ的重数,则由矩阵与对角矩阵相似的充要条件:对矩阵的每个特征值,线性无关的特征向量的个数恰好等于该特征值的重根数,知A 不可相似对角化.(22)【分析】本题尽管难度不大,但考察的知识点很多,综合性较强.通过随机事件定义随机变量或通过随机变量定义随机事件,可以比较好地将概率论的知识前后连贯起来,这种命题方式值得注意.先确定(,)X Y 的可能取值,再求在每一个可能取值点上的概率,而这可利用随机事件的运算性质得到,即得二维随机变量(,)X Y 的概率分布;利用联合概率分布可求出边缘概率分布,进而可计算出相关系数.【详解】(I)由于1()()(|)12P AB P A P B A ==,所以,61)()()(==B A P AB P B P利用条件概率公式和事件间简单的运算关系,有121)(}1,1{====AB P Y X P ,61)()()(}0,1{=-====AB P A P B A P Y X P ,,121)()()(}1,0{=-====AB P B P B A P Y X P )(1)(}0,0{B A P B A P Y X P +-====21()()()3P A P B P AB =--+=(或32121611211}0,0{=---===Y X P ),故(,)X Y 的概率分布为Y X1032121161121(II),X Y 的概率分布分别为213{0}{0,1}{0,0},3124P X P X Y P X Y ====+===+=111{1}{1,1}{1,0},6124P X P X Y P X Y ====+===+=111{1}{0,1}{1,1},12126P Y P X Y P X Y ====+===+=215{0}{0,0}{1,0}.366P Y P X Y P X Y ====+===+=所以,X Y 的概率分布为X 01Y 01P4341P6561由01-分布的数学期望和方差公式,则61,41==EY EX ,1334416DX =⨯=,1566DY =⨯536=,{}{}{}()00111,1E XY P XY P XY P X Y =⋅=+⋅====112=,故241)(),(=⋅-=EY EX XY E Y X Cov ,从而.1515),(=⋅=DYDX Y X Cov XY (23)【分析】本题是基础题型,难度不大,但计算量比较大,实际做题时应特别注意计算的准确性.先由分布函数求出概率密度,再根据求矩估计量和最大似然估计量的标准方法进行讨论即可.似然函数的定义:121()(,,,;)(;)nn ii L f x x x f x θθθ===∏ 【详解】X 的概率密度为11,,(;) 1.0,x f x xx βββ+⎧>⎪=⎨≤⎪⎩(I)矩估计.由数学期望的定义:1);(11-=⋅==⎰⎰+∞++∞∞-βββββdx xx dx x x f EX ,用样本均值估计期望有E X X =,令X =-1ββ,解得1-=X Xβ,所以参数β的矩估计量为.1ˆ-=X X β其中11nii X X n ==∑(II)最大似然估计.设12,,...,n x x x 是相应于样本12,,...,n X X X 的一组观测值,则似然函数为:⎪⎩⎪⎨⎧=>==+=∏其他,0),,,2,1(1,)();()(1211n i x x x x x f L in nni i ββββ当),,2,1(1n i x i =>时,0)(>βL ,()L β与l n ()L β在相同的β点取得最大值;所以等式两边取自然对数,得1ln ()ln (1)ln ni i L n x βββ==-+∑,两边对β求导,得∑=-=n i i x nd L d 1ln )(ln βββ,令0)(l n =ββd L d ,可得∑==ni ixn1ln β,解得β的最大似然估计值为: 1ln nii nxβ==∑。
2004年考研英语真题及解析考研对于许多学子来说,是人生中的一次重要挑战。
而英语作为考研的重要科目之一,其真题的研究和解析对于备考有着至关重要的作用。
2004 年的考研英语真题具有一定的代表性,下面我们就来详细探讨一下。
首先,我们来看一下阅读理解部分。
这部分通常是考研英语中的重点和难点,2004 年的真题也不例外。
在阅读文章的选材上,涵盖了科技、社会、文化等多个领域,体现了对考生综合知识和阅读能力的考查。
比如,有一篇关于某新型科技应用的文章,不仅要求考生理解文章中的专业术语和概念,还需要对其潜在影响进行分析和判断。
从题目设置来看,有主旨大意题、细节理解题、推理判断题等多种类型。
主旨大意题需要考生在通读全文的基础上,准确把握文章的核心思想;细节理解题则考查考生对文中具体信息的捕捉和理解能力;推理判断题则要求考生根据文中提供的线索进行合理的推测和判断。
以其中一篇文章为例,第一道题是主旨大意题,题干问的是“这篇文章的主要内容是什么”。
考生需要在快速浏览全文后,排除那些只涉及局部内容的选项,选出能够概括整篇文章的选项。
在做这类题时,考生很容易被一些细节所干扰,从而误选。
再看细节理解题,比如“文中提到的某个实验的具体步骤是什么”,这就要求考生能够准确找到文中对应的段落和语句,并且理解其含义。
推理判断题则更具挑战性,比如“根据文章内容,作者对某一观点的态度可能是什么”,考生需要仔细揣摩作者的用词和语气,结合上下文进行推理。
接下来是完形填空部分。
2004 年的完形填空主要考查了词汇、语法和上下文逻辑关系。
在词汇方面,不仅考查了常见词汇的词义辨析,还涉及了一些短语和固定搭配的用法。
这就要求考生在平时的学习中,要注重词汇的积累和灵活运用。
语法方面,考查了各种时态、语态、从句等知识点。
考生需要对这些语法规则有清晰的认识,并能够在具体的语境中正确运用。
上下文逻辑关系的考查也不容忽视。
比如,通过一些关联词、指代关系等,要求考生能够理解句子之间的承接、转折、因果等关系,从而选出正确的选项。
2004年考研数学(三)真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1) 若5)(cos sin lim0=--→b x ae xx x ,则a =______,b =______.(2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y ) ≠ 0,则2fu v ∂=∂∂.(3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则212(1)f x dx -=⎰.(4) 二次型2132********)()()(),,(x x x x x x x x x f ++-++=的秩为 .(5) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X P _______.(6) 设总体X 服从正态分布),(21σμN , 总体Y 服从正态分布),(22σμN ,1,,21n X X X 和 2,,21n Y Y Y 分别是来自总体X 和Y 的简单随机样本, 则12221112()()2n n i j i j X X Y Y E n n ==⎡⎤-+-⎢⎥⎢⎥=⎢⎥+-⎢⎥⎢⎥⎣⎦∑∑.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界. (A) (-1 , 0).(B) (0 , 1).(C) (1 , 2).(D) (2 , 3). [ ](8) 设f (x )在(-∞ , +∞)内有定义,且a x f x =∞→)(lim , ⎪⎩⎪⎨⎧=≠=0,00,)1()(x x x f x g ,则(A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. [ ] (9) 设f (x ) = |x (1 - x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点. (C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点. [ ] (10) 设有下列命题:(1) 若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛.(2) 若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.(3) 若1lim1>+∞→nn n u u ,则∑∞=1n n u 发散. (4) 若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以上命题中正确的是(A) (1) (2). (B) (2) (3).(C) (3) (4). (D) (1) (4). [ ](11) 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是 (A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ). (B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ). (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.[ D ](12) 设n 阶矩阵A 与B 等价, 则必有(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||. (C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B . [ ] (13) 设n 阶矩阵A 的伴随矩阵,0*≠A 若4321,,,ξξξξ是非齐次线性方程组 b Ax =的互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系 (A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量.[ ](14) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{,若αx X P =<}|{|, 则x 等于 (A) 2αu . (B) 21αu-. (C) 21αu -. (D) αu -1. [ ]三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (15) (本题满分8分)求)cos sin 1(lim 2220xxx x -→. (16) (本题满分8分)求⎰⎰++Dd y y x σ)(22,其中D 是由圆422=+y x 和1)1(22=++y x 所围成的 平面区域(如图).(17) (本题满分8分) 设f (x ) , g (x )在[a , b ]上连续,且满足⎰⎰≥x axadt t g dt t f )()(,x ∈ [a , b ),⎰⎰=bab adt t g dt t f )()(.证明:⎰⎰≤baba dx x xg dx x xf )()(.(18) (本题满分9分) 设某商品的需求函数为Q = 100 - 5P ,其中价格P ∈ (0 , 20),Q 为需求量. (I) 求需求量对价格的弹性d E (d E > 0);(II) 推导)1(d E Q dPdR-=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时, 降低价格反而使收益增加. (19) (本题满分9分) 设级数)(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x x x x 的和函数为S (x ). 求:(I) S (x )所满足的一阶微分方程; (II) S (x )的表达式. (20)(本题满分13分)设T α)0,2,1(1=, T ααα)3,2,1(2-+=, T b αb α)2,2,1(3+---=, Tβ)3,3,1(-=,试讨论当b a ,为何值时,(Ⅰ) β不能由321,,ααα线性表示;(Ⅱ) β可由321,,ααα唯一地线性表示, 并求出表示式;(Ⅲ) β可由321,,ααα线性表示, 但表示式不唯一, 并求出表示式. (21) (本题满分13分) 设n 阶矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=111b b b b b b A . (Ⅰ) 求A 的特征值和特征向量;(Ⅱ) 求可逆矩阵P , 使得AP P 1-为对角矩阵. (22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=AB P , 21)|(=B A P , 令 ⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y 求(Ⅰ) 二维随机变量),(Y X 的概率分布; (Ⅱ) X 与Y 的相关系数 XY ρ; (Ⅲ) 22Y X Z +=的概率分布. (23) (本题满分13分)设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,( 其中参数1,0>>βα. 设n X X X ,,,21 为来自总体X 的简单随机样本,(Ⅰ) 当1=α时, 求未知参数β的矩估计量; (Ⅱ) 当1=α时, 求未知参数β的最大似然估计量; (Ⅲ) 当2=β时, 求未知参数α的最大似然估计量.2004年考研数学(三)真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1) 若5)(cos sin lim0=--→b x ae xx x ,则a =1,b =4-.【分析】本题属于已知极限求参数的反问题. 【详解】因为5)(cos sin lim0=--→b x a e xx x ,且0)(cos sin lim 0=-⋅→b x x x ,所以0)(lim 0=-→a e x x ,得a = 1. 极限化为51)(cos lim )(cos sin lim00=-=-=--→→b b x x x b x a e x x x x ,得b = -4.因此,a = 1,b = -4. 【评注】一般地,已知)()(limx g x f = A , (1) 若g (x ) → 0,则f (x ) → 0;(2) 若f (x ) → 0,且A ≠ 0,则g (x ) → 0.(2) 设函数f (u , v )由关系式f [xg (y ) , y ] = x + g (y )确定,其中函数g (y )可微,且g (y ) ≠ 0,则)()(22v g v g vu f'-=∂∂∂.【分析】令u = xg (y ),v = y ,可得到f (u , v )的表达式,再求偏导数即可. 【详解】令u = xg (y ),v = y ,则f (u , v ) =)()(v g v g u+,所以,)(1v g u f =∂∂,)()(22v g v g v u f '-=∂∂∂. (3) 设⎪⎩⎪⎨⎧≥-<≤-=21,12121,)(2x x xe x f x ,则21)1(221-=-⎰dx x f .【分析】本题属于求分段函数的定积分,先换元:x - 1 = t ,再利用对称区间上奇偶函数的积分性质即可.【详解】令x - 1 = t ,⎰⎰⎰--==-121121221)()()1(dt x f dt t f dx x f=21)21(0)1(12121212-=-+=-+⎰⎰-dx dx xe x .【评注】一般地,对于分段函数的定积分,按分界点划分积分区间进行求解.(4) 二次型2132********)()()(),,(x x x x x x x x x f ++-++=的秩为 2 .【分析】二次型的秩即对应的矩阵的秩, 亦即标准型中平方项的项数, 于是利用初等变换或配方法均可得到答案.【详解一】因为2132********)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++=于是二次型的矩阵为 ⎪⎪⎪⎭⎫ ⎝⎛--=211121112A ,由初等变换得 ⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---→000330211330330211A ,从而 2)(=A r , 即二次型的秩为2.【详解二】因为2132********)()()(),,(x x x x x x x x x f ++-++=323121232221222222x x x x x x x x x -++++= 2322321)(23)2121(2x x x x x -+++= 2221232y y +=,其中 ,21213211x x x y ++= 322x x y -=.所以二次型的秩为2.(5) 设随机变量X 服从参数为λ的指数分布, 则=>}{DX X Pe1. 【分析】 根据指数分布的分布函数和方差立即得正确答案. 【详解】 由于21λDX =, X 的分布函数为 ⎩⎨⎧≤>-=-.0,0,0,1)(x x e x F x λ故=>}{DX X P =≤-}{1DX X P =≤-}1{1λX P )1(1λF -e1=.【评注】本题是对重要分布, 即指数分布的考查, 属基本题型.(6) 设总体X 服从正态分布),(21σμN , 总体Y 服从正态分布),(22σμN ,1,,21n X X X 和 2,,21n Y Y Y 分别是来自总体X 和Y 的简单随机样本, 则22121212)()(21σn n Y Y X X En j j n i i =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+-+-∑∑==.【分析】利用正态总体下常用统计量的数字特征即可得答案.【详解】因为 2121])(11[1σX X n E n i i =--∑=, 2122])(11[2σY Y n E n j j =--∑=, 故应填 2σ.【评注】本题是对常用统计量的数字特征的考查.二、选择题(本题共6小题,每小题4分,满分24分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内) (7) 函数2)2)(1()2sin(||)(---=x x x x x x f 在下列哪个区间内有界. (A) (-1 , 0). (B) (0 , 1).(C) (1 , 2).(D) (2 , 3). [ A ]【分析】如f (x )在(a , b )内连续,且极限)(lim x f a x +→与)(lim x f b x -→存在,则函数f (x )在(a , b )内有界.【详解】当x ≠ 0 , 1 , 2时,f (x )连续,而183sin )(lim1-=+-→x f x ,42sin )(lim 0-=-→x f x ,42sin )(lim 0=+→x f x ,∞=→)(lim 1x f x ,∞=→)(lim 2x f x , 所以,函数f (x )在(-1 , 0)内有界,故选(A).【评注】一般地,如函数f (x )在闭区间[a , b ]上连续,则f (x )在闭区间[a , b ]上有界;如函数f (x )在开区间(a , b )内连续,且极限)(lim x f a x +→与)(lim x f b x -→存在,则函数f (x )在开区间(a , b )内有界.(8) 设f (x )在(-∞ , +∞)内有定义,且a x f x =∞→)(lim ,⎪⎩⎪⎨⎧=≠=0,00,)1()(x x xf xg ,则 (A) x = 0必是g (x )的第一类间断点. (B) x = 0必是g (x )的第二类间断点.(C) x = 0必是g (x )的连续点.(D) g (x )在点x = 0处的连续性与a 的取值有关. [ D ] 【分析】考查极限)(lim 0x g x →是否存在,如存在,是否等于g (0)即可,通过换元xu 1=,可将极限)(lim 0x g x →转化为)(lim x f x ∞→.【详解】因为)(lim )1(lim )(lim 0u f x f x g u x x ∞→→→=== a (令xu 1=),又g (0) = 0,所以,当a = 0时,)0()(lim 0g x g x =→,即g (x )在点x = 0处连续,当a ≠ 0时,)0()(lim 0g x g x ≠→,即x = 0是g (x )的第一类间断点,因此,g (x )在点x = 0处的连续性与a 的取值有关,故选(D).【评注】本题属于基本题型,主要考查分段函数在分界点处的连续性. (9) 设f (x ) = |x (1 - x )|,则(A) x = 0是f (x )的极值点,但(0 , 0)不是曲线y = f (x )的拐点. (B) x = 0不是f (x )的极值点,但(0 , 0)是曲线y = f (x )的拐点. (C) x = 0是f (x )的极值点,且(0 , 0)是曲线y = f (x )的拐点.(D) x = 0不是f (x )的极值点,(0 , 0)也不是曲线y = f (x )的拐点. [ C ] 【分析】由于f (x )在x = 0处的一、二阶导数不存在,可利用定义判断极值情况,考查f (x )在x = 0的左、右两侧的二阶导数的符号,判断拐点情况.【详解】设0 < δ < 1,当x ∈ (-δ , 0) ⋃ (0 , δ)时,f (x ) > 0,而f (0) = 0,所以x = 0是f (x )的极小值点. 显然,x = 0是f (x )的不可导点. 当x ∈ (-δ , 0)时,f (x ) = -x (1 - x ),02)(>=''x f ,当x ∈ (0 , δ)时,f (x ) = x (1 - x ),02)(<-=''x f ,所以(0 , 0)是曲线y = f (x )的拐点.故选(C).【评注】对于极值情况,也可考查f (x )在x = 0的某空心邻域内的一阶导数的符号来判断. (10) 设有下列命题:(1) 若∑∞=-+1212)(n n n u u 收敛,则∑∞=1n n u 收敛.(2) 若∑∞=1n n u 收敛,则∑∞=+11000n n u 收敛.(3) 若1lim1>+∞→nn n u u ,则∑∞=1n n u 发散. (4) 若∑∞=+1)(n n n v u 收敛,则∑∞=1n n u ,∑∞=1n n v 都收敛.则以上命题中正确的是 (A) (1) (2). (B) (2) (3). (C) (3) (4). (D) (1) (4). [ B ]【分析】可以通过举反例及级数的性质来说明4个命题的正确性. 【详解】(1)是错误的,如令nn u )1(-=,显然,∑∞=1n n u 分散,而∑∞=-+1212)(n n n u u 收敛.(2)是正确的,因为改变、增加或减少级数的有限项,不改变级数的收敛性.(3)是正确的,因为由1lim1>+∞→nn n u u 可得到n u 不趋向于零(n → ∞),所以∑∞=1n n u 发散. (4)是错误的,如令n v n u n n 1,1-==,显然,∑∞=1n n u ,∑∞=1n n v 都发散,而∑∞=+1)(n n n v u 收敛. 故选(B).【评注】本题主要考查级数的性质与收敛性的判别法,属于基本题型.(11) 设)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则下列结论中错误的是 (A) 至少存在一点),(0b a x ∈,使得)(0x f > f (a ). (B) 至少存在一点),(0b a x ∈,使得)(0x f > f (b ). (C) 至少存在一点),(0b a x ∈,使得0)(0='x f .(D) 至少存在一点),(0b a x ∈,使得)(0x f = 0.[ D ]【分析】利用介值定理与极限的保号性可得到三个正确的选项,由排除法可选出错误选项. 【详解】首先,由已知)(x f '在[a , b]上连续,且0)(,0)(<'>'b f a f ,则由介值定理,至少存在一点),(0b a x ∈,使得0)(0='x f ;另外,0)()(lim)(>--='+→ax a f x f a f a x ,由极限的保号性,至少存在一点),(0b a x ∈使得0)()(00>--ax a f x f ,即)()(0a f x f >. 同理,至少存在一点),(0b a x ∈使得)()(0b f x f >. 所以,(A) (B) (C)都正确,故选(D).【评注】 本题综合考查了介值定理与极限的保号性,有一定的难度. (12) 设n 阶矩阵A 与B 等价, 则必有(A) 当)0(||≠=a a A 时, a B =||. (B) 当)0(||≠=a a A 时, a B -=||. (C) 当0||≠A 时, 0||=B . (D) 当0||=A 时, 0||=B . [ D ] 【分析】 利用矩阵A 与B 等价的充要条件: )()(B r A r =立即可得.【详解】因为当0||=A 时, n A r <)(, 又 A 与B 等价, 故n B r <)(, 即0||=B , 故选(D).【评注】本题是对矩阵等价、行列式的考查, 属基本题型.(13) 设n 阶矩阵A 的伴随矩阵,0*≠A 若4321,,,ξξξξ是非齐次线性方程组 b Ax =的 互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系 (A) 不存在. (B) 仅含一个非零解向量.(C) 含有两个线性无关的解向量. (D) 含有三个线性无关的解向量. [ B ] 【分析】 要确定基础解系含向量的个数, 实际上只要确定未知数的个数和系数矩阵的秩. 【详解】 因为基础解系含向量的个数=)(A r n -, 而且⎪⎩⎪⎨⎧-<-===.1)(,0,1)(,1,)(,)(*n A r n A r n A r n A r根据已知条件,0*≠A 于是)(A r 等于n 或1-n . 又b Ax =有互不相等的解, 即解不惟一, 故1)(-=n A r . 从而基础解系仅含一个解向量, 即选(B).【评注】本题是对矩阵A 与其伴随矩阵*A 的秩之间的关系、线性方程组解的结构等多个知识点的综合考查. (14) 设随机变量X 服从正态分布)1,0(N , 对给定的)1,0(∈α, 数αu 满足αu X P α=>}{,若αx X P =<}|{|, 则x 等于 (A) 2αu . (B) 21αu-. (C) 21αu -. (D) αu -1. [ C ]【分析】 利用标准正态分布密度曲线的对称性和几何意义即得. 【详解】 由αx X P =<}|{|, 以及标准正态分布密度曲线的对称性可得21}{αx X P -=>. 故正确答案为(C). 【评注】本题是对标准正态分布的性质, 严格地说它的上分位数概念的考查.三、解答题(本题共9小题,满分94分. 解答应写出文字说明、证明过程或演算步骤.) (15) (本题满分8分)求)cos sin 1(lim 2220xxx x -→. 【分析】先通分化为“”型极限,再利用等价无穷小与罗必达法则求解即可. 【详解】xx xx x x x x x x 2222202220sin cos sin lim )cos sin 1(lim -=-→→=346)4(21lim 64cos 1lim 44sin 212lim 2sin 41lim 22020304220==-=-=-→→→→xx x x x x x x x x x x x x .【评注】本题属于求未定式极限的基本题型,对于“0”型极限,应充分利用等价无穷小替换来简化计算. (16) (本题满分8分) 求⎰⎰++Dd y y x σ)(22,其中D 是由圆422=+y x 和1)1(22=++y x 所围成的平面区域(如图).【分析】首先,将积分区域D 分为大圆}4|),{(221≤+=y x y x D 减去小圆}1)1(|),{(222≤++=y x y x D ,再利用对称性与极坐标计算即可.【详解】令}1)1(|),{(},4|),{(222221≤++=≤+=y x y x D y x y x D ,由对称性,0=⎰⎰Dyd σ.⎰⎰⎰⎰⎰⎰+-+=+21222222D D Dd y x d y x d y x σσσ⎰⎰⎰⎰--=θπππθθcos 20223220220dr r d dr r d .)23(916932316-=-=ππ所以,)23(916)(22-=++⎰⎰πσDd y y x . 【评注】本题属于在极坐标系下计算二重积分的基本题型,对于二重积分,经常利用对称性及将一个复杂区域划分为两个或三个简单区域来简化计算. (17) (本题满分8分) 设f (x ) , g (x )在[a , b ]上连续,且满足⎰⎰≥x axadt t g dt t f )()(,x ∈ [a , b ),⎰⎰=bab adt t g dt t f )()(.证明:⎰⎰≤baba dx x xg dx x xf )()(.【分析】令F (x ) = f (x ) - g (x ),⎰=xa dt t F x G )()(,将积分不等式转化为函数不等式即可. 【详解】令F (x ) = f (x ) - g (x ),⎰=xa dt t F x G )()(,由题设G (x ) ≥ 0,x ∈ [a , b ],G (a ) = G (b ) = 0,)()(x F x G ='.从而⎰⎰⎰⎰-=-==bab ababa b a dx x G dx x G x xG x xdG dx x xF )()()()()(,由于 G (x ) ≥ 0,x ∈ [a , b ],故有0)(≤-⎰badx x G ,即0)(≤⎰ba dx x xF .因此⎰⎰≤babadx x xg dx x xf )()(.【评注】引入变限积分转化为函数等式或不等式是证明积分等式或不等式的常用的方法. (18) (本题满分9分) 设某商品的需求函数为Q = 100 - 5P ,其中价格P ∈ (0 , 20),Q 为需求量. (I) 求需求量对价格的弹性d E (d E > 0);(II) 推导)1(d E Q dPdR-=(其中R 为收益),并用弹性d E 说明价格在何范围内变化时,降低价格反而使收益增加.【分析】由于d E > 0,所以dP dQ Q P E d =;由Q = PQ 及dPdQQ P E d =可推导 )1(d E Q dPdR-=. 【详解】(I) PPdP dQ Q P E d -==20. (II) 由R = PQ ,得)1()1(d E Q dPdQ Q P Q dP dQ P Q dP dR -=+=+=. 又由120=-=PPE d ,得P = 10.当10 < P < 20时,d E > 1,于是0<dPdR,故当10 < P < 20时,降低价格反而使收益增加.【评注】当d E > 0时,需求量对价格的弹性公式为dPdQQ P dP dQ Q P E d -==. 利用需求弹性分析收益的变化情况有以下四个常用的公式:Qdp E dR d )1(-=,Q E dpdRd )1(-=,p E dQ dR d )11(-=, d E EpER-=1(收益对价格的弹性). (19) (本题满分9分) 设级数)(864264242864+∞<<-∞+⋅⋅⋅+⋅⋅+⋅x x x x 的和函数为S (x ). 求:(I) S (x )所满足的一阶微分方程; (II) S (x )的表达式.【分析】对S (x )进行求导,可得到S (x )所满足的一阶微分方程,解方程可得S (x )的表达式.【详解】(I) +⋅⋅⋅+⋅⋅+⋅=864264242)(864x x x x S , 易见 S (0) = 0,+⋅⋅+⋅+='642422)(753x x x x S)642422(642 +⋅⋅+⋅+=x x x x)](2[2x S x x +=.因此S (x )是初值问题0)0(,23=+='y x xy y 的解.(II) 方程23x xy y +='的通解为]2[3C dx e x e y xdx xdx +⎰⎰=⎰- 22212x Ce x +--=,由初始条件y(0) = 0,得C = 1.故12222-+-=x e x y ,因此和函数12)(222-+-=x e x x S .【评注】本题综合了级数求和问题与微分方程问题,2002年考过类似的题. (20)(本题满分13分)设T α)0,2,1(1=, T ααα)3,2,1(2-+=, T b αb α)2,2,1(3+---=, Tβ)3,3,1(-=,试讨论当b a ,为何值时,(Ⅰ) β不能由321,,ααα线性表示;(Ⅱ) β可由321,,ααα唯一地线性表示, 并求出表示式;(Ⅲ) β可由321,,ααα线性表示, 但表示式不唯一, 并求出表示式.【分析】将β可否由321,,ααα线性表示的问题转化为线性方程组βαk αk αk =++332211是否有解的问题即易求解. 【详解】 设有数,,,321k k k 使得βαk αk αk =++332211. (*) 记),,(321αααA =. 对矩阵),(βA 施以初等行变换, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+---+-=323032221111),(b a a b a βA ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111b a b a .(Ⅰ) 当0=a 时, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→10001001111),(b βA . 可知),()(βA r A r ≠. 故方程组(*)无解, β不能由321,,ααα线性表示. (Ⅱ) 当0≠a , 且b a ≠时, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111),(b a b a βA ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-→0100101011001a a 3),()(==βA r A r , 方程组(*)有唯一解:ak 111-=, a k 12=, 03=k .此时β可由321,,ααα唯一地线性表示, 其表示式为 211)11(αaαa β+-=. (Ⅲ) 当0≠=b a 时, 对矩阵),(βA 施以初等行变换, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→000101111),(b a b a βA ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--→0000111011001a a , 2),()(==βA r A r , 方程组(*)有无穷多解, 其全部解为a k 111-=, c ak +=12, c k =3, 其中c 为任意常数. β 可由321,,ααα线性表示, 但表示式不唯一, 其表示式为321)1()11(αc αc aαa β+++-=. 【评注】本题属于常规题型, 曾考过两次(1991, 2000).(21) (本题满分13分) 设n 阶矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=111 b b b b b b A .(Ⅰ) 求A 的特征值和特征向量;(Ⅱ) 求可逆矩阵P , 使得AP P 1-为对角矩阵.【分析】这是具体矩阵的特征值和特征向量的计算问题, 通常可由求解特征方程0||=-A E λ和齐次线性方程组0)(=-x A E λ来解决.【详解】 (Ⅰ)1当0≠b 时,111||---------=-λbbb λb b b λA E λ=1)]1(][)1(1[------n b λb n λ ,得A 的特征值为b n λ)1(11-+=,b λλn -===12 . 对b n λ)1(11-+=,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------=-b n b b b b n b b b b n A E λ)1()1()1(1 →⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------)1(111)1(111)1(n n n→⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------------0000111111111111 n n n →⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------0000111111111111 n n n →⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---000000001111n n n n n →⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---0000110010101001解得Tξ)1,,1,1,1(1 =,所以A 的属于1λ的全部特征向量为 Tk ξk )1,,1,1,1(1 = (k 为任意不为零的常数). 对b λ-=12,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------=-b b b b b b b b b A E λ 2→⎪⎪⎪⎪⎪⎭⎫⎝⎛000000111 得基础解系为T ξ)0,,0,1,1(2 -=,T ξ)0,,1,0,1(3 -=,T n ξ)1,,0,0,1(,-= .故A 的属于2λ的全部特征向量为n n ξk ξk ξk +++ 3322 (n k k k ,,,32 是不全为零的常数).2 当0=b 时,n λλλλA E λ)1(1010001||-=---=-,特征值为11===n λλ ,任意非零列向量均为特征向量.(Ⅱ) 1当0≠b 时,A 有n 个线性无关的特征向量,令),,,(21n ξξξP =,则⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---+=-b b b n AP P 11)1(112 当0=b 时,E A =,对任意可逆矩阵P , 均有E AP P =-1.【评注】本题通过考查矩阵的特征值和特征向量而间接考查了行列式的计算, 齐次线性方程组的求解和矩阵的对角化等问题, 属于有一点综合性的试题. 另外,本题的解题思路是容易的, 只要注意矩阵中含有一个未知参数, 从而一般要讨论其不同取值情况. (22) (本题满分13分)设A ,B 为两个随机事件,且41)(=A P , 31)|(=AB P , 21)|(=B A P , 令 ⎩⎨⎧=不发生,,发生,A A X 0,1 ⎩⎨⎧=.0,1不发生,发生,B B Y 求(Ⅰ) 二维随机变量),(Y X 的概率分布; (Ⅱ) X 与Y 的相关系数 XY ρ; (Ⅲ) 22Y X Z +=的概率分布.【分析】本题的关键是求出),(Y X 的概率分布,于是只要将二维随机变量),(Y X 的各取值对转化为随机事件A 和B 表示即可.【详解】 (Ⅰ) 因为 121)|()()(==A B P A P AB P , 于是 61)|()()(==B A P AB P B P , 则有 121)(}1,1{====AB P Y X P , 61)()()(}0,1{=-====AB P A P B A P Y X P , 121)()()(}1,0{=-====AB P B P B A P Y X P ,32)]()()([1)(1)(}0,0{=-+-=⋃-=⋅===AB P B P A P B A P B A P Y X P , ( 或 32121611211}0,0{=---===Y X P ), 即),(Y X 的概率分布为:YX0 10 132121 61121(Ⅱ) 方法一:因为 41)(==A P EX ,61)(==B P EY ,121)(=XY E , 41)(2==A P EX ,61)(2==B P EY ,163)(22=-=EX EX DX ,165)(22=-=EY EY DY ,241)(),(=-=EXEY XY E Y X Cov ,所以X 与Y 的相关系数 1515151),(==⋅=DYDX Y X Cov ρXY . 方法二: X, Y 的概率分布分别为X 0 1 Y 0 1P 43 41 P 65 61 则61,41==EY EX ,163=DX ,DY=365, E(XY)=121,故 241)(),(=⋅-=EY EX XY E Y X Cov ,从而.1515),(=⋅=DYDX Y X Cov XY ρ (Ⅲ) Z 的可能取值为:0,1,2 .32}0,0{}0{=====Y X P Z P , 41}1,0{}0,1{}1{===+====Y X P Y X P Z P , 121}1,1{}2{=====Y X P Z P , 即Z 的概率分布为:Z 0 1 2P3241 121 【评注】本题考查了二维离散随机变量联合概率分布,数字特征和二维离散随机变量函数的分布等计算问题,属于综合性题型 (23) (本题满分13分)设随机变量X 的分布函数为⎪⎩⎪⎨⎧≤>⎪⎭⎫ ⎝⎛-=,,,αx αx x αβαx F β0,1),,( 其中参数1,0>>βα. 设n X X X ,,,21 为来自总体X 的简单随机样本,(Ⅰ) 当1=α时, 求未知参数β的矩估计量; (Ⅱ) 当1=α时, 求未知参数β的最大似然估计量; (Ⅲ) 当2=β时, 求未知参数α的最大似然估计量.【分析】本题是一个常规题型, 只要注意求连续型总体未知参数的矩估计和最大似然估计都须已知密度函数,从而先由分布函数求导得密度函数.【详解】 当1=α时, X 的概率密度为⎪⎩⎪⎨⎧≤>=+,,,101,),(1x x x ββx f β(Ⅰ) 由于⎰⎰+∞++∞∞--=⋅==11,1);(ββdx x βx dx βx xf EX β 令X ββ=-1, 解得 1-=X X β, 所以, 参数β的矩估计量为 1-=X Xβ. (Ⅱ) 对于总体X 的样本值n x x x ,,,21 , 似然函数为∏=+⎪⎩⎪⎨⎧=>==ni i βnni n i x x x x βαx f βL 1121.,0),,,2,1(1,)();()(其他当),,2,1(1n i x i =>时, 0)(>βL , 取对数得 ∑=+-=ni ixββn βL 1ln )1(ln )(ln ,对β求导数,得∑=-=ni i x βn βd βL d 1ln )]([ln , 令0ln )]([ln 1=-=∑=ni i x βn βd βL d , 解得 ∑==ni ixnβ1ln ,于是β的最大似然估计量为∑==ni ixnβ1ln ˆ.( Ⅲ) 当2=β时, X 的概率密度为⎪⎩⎪⎨⎧≤>=,,,αx αx x αβx f 0,2),(32对于总体X 的样本值n x x x ,,,21 , 似然函数为∏=⎪⎩⎪⎨⎧=>==ni i nnn i n i αx x x x ααx f βL 13212.,0),,,2,1(,)(2);()(其他当),,2,1(n i αx i =>时, α越大,)(αL 越大, 即α的最大似然估计值为},,,m in{ˆ21n x x x α=, 于是α的最大似然估计量为},,,m in{ˆ21n X X X α=.。
2004年硕士研究生入学考试政治试题答案及解析一、单项选择题1.唯物史观认为,人类的第一个历史活动是A.吃喝穿住B.物质生活资料的生产C.人的自觉意识活动D.结成社会关系【答案】 B【解析】本题考查的知识点是对唯物史观关于社会生产在社会赖以存在和发展中的地位和作用的确认。
地理环境、人口因素、生产实践都是社会存在和发展的必要的物质生活条件,都是不可缺少的。
其中“物质生活资料的生产是人类社会赖以存在和发展的物质基础,是人类历史的前提,是人类的第一个历史活动;社会生产实践制约着整个社会经济生活、政治生活和精神生活过程。
根据这一基本理论分析题中所给定的四个选项:“吃喝穿住”必须以生产实践为前提;“人的自觉意识活动”属于人的精神生活过程,也是由人的生产实践活动所制约的;人与人之间所“结成的社会关系”项也不是从来就有的,恰恰是在人们的生产实践活动中所形成的。
所以正确选项为B项。
2.20世纪50年代,北大荒人烟稀少、一片荒凉。
由于人口剧增,生产力水平低下,吃饭问题成为中国面临的首要问题,于是人们不得不靠扩大耕地面积增加粮食产量,经过半个世纪的开垦,北大荒成了全国闻名的“北大仓”。
然而由于过度开垦已经造成了许多生态问题。
现在,黑龙江垦区全面停止开荒,退耕还“荒”。
这说明A.人与自然的和谐最终以恢复原始生态为归宿B.人们改造自然的一切行为都会遭到“自然界的报复”C.人在自然界面前总是处于被支配的地位D.人们应合理地调节人与自然之间的物质变换【答案】 D【解析】本题考查的知识点是对唯物史观关于人类社会与自然界的协调发展的理解和掌握。
唯物史观认为,社会发展是一个人类与自然协调发展的过程,自然史和人类史彼此相互制约,一旦人与自然的和谐关系遭到破坏,社会的发展就会出现灾难性后果。
此外,社会发展还是一个合目的性和合规律性的统一过程。
人类在推动社会发展的过程中,应该把发展科学技术与生产力和保护生态环境有机地统一起来,把人类生活需要的内在尺度与生态环境规律的外在尺度有机地结合起来,提高人类利用自然的科学性与道德性,协调人类改造自然的行动,调整好人类改造自然的方向,建立起人与自然的全面和谐的关系,以利于我们星球的繁荣和人类自身的发展。
题目中所讲的事实恰好反映了“人们应合理地调节人与自然之间的物质变换”这一基本观点。
题中所给定的四个备选项,A项、B项、C项明显是不符合题义的错误选项,所以D项是正确选项。
3.在抗击“非典”的斗争中,许多患者被治愈后又捐出自己的血清,用于治疗其他患者,这说明A.人的价值只体现在特定的场合和行为中B.人的价值必须以满足个人需要为前提C.人的价值是在满足自身和他人的需要中实现的D.人的价值表现了人的能力的大小【答案】 C【解析】本题是事实辨析选择题,考查考生对人的价值的理解和掌握。
历史唯物主义认为:人的价值在社会关系中存在。
人的价值关系,就是个人的自我价值和社会价值的关系。
人的价值包括两方面的内容,一是个人对社会的责任和贡献;二是社会对个人的尊重和满足,二者缺一不可。
因此,人的价值就是“在满足自身和他人的需要中实现的”,但又必须以社会、他人即社会价值为前提,所以本题选择C项。
4.社会总资本扩大再生产的前提条件是A. Ⅰ(V+M)=ⅡCB. Ⅱ(V+M)=ⅠCC. Ⅰ(V+M)>ⅡCD. Ⅱ(V+M)>ⅠC【答案】 C【解析】本题考查考生对社会总资本扩大再生产的前提条件的掌握。
考生在回答此题时要注意,这里考的是社会总资本扩大再生产的前提条件,而不是社会总资本简单再生产的基本实现条件,因此,正确选项是C而不是A,B和D是干扰项。
5.把公司全部资本分为等额股份,股东以其出资额为限对公司承担责任,公司以其全部资产对公司的债务承担责任,这是A.无限责任公司B.股份有限公司C.有限责任公司D.合伙制企业【答案】 B【解析】本题考查考生对企业组织形式的认识。
合伙制企业属于自然人企业,本题中A、B、C这三种形式属于公司制。
显然无限责任公司的股东和公司要对公司承担连带无限责任,只有股份有限公司和有限责任公司的股东和公司对公司承担有限责任。
但有限责任公司不需要把公司全部资本分为等额股份。
因此,正确选项是B。
6.新民主主义革命的中心内容是A.没收封建地主阶级的土地归新民主主义国家所有B.没收官僚垄断资本归新民主主义国家所有C.没收封建地主阶级的土地归农民所有D.保护民族工商业【答案】 C【解析】没收封建地主阶级的土地归农民所有是新民主主义革命的中心内容。
农民问题是中国革命的中心问题,而农民问题首要的就是土地问题。
在半殖民地半封建的中国,地主阶级通过封建土地所有制来残酷地压迫剥削农民,严重地阻碍了中国农村生产力的发展,这是中国贫困落后的根源之一。
因此,必须发动农民进行土地革命,消灭封建剥削制度,才能解放农村生产力,为国家工业化和农业现代化创造必要的条件。
因此,本题选C。
7.毛泽东首次明确提出“新民主主义革命”这一科学概念的著作是A.《〈共产党人〉发刊词》B.《中国革命和中国共产党》C.《新民主主义论》D.《论联合政府》【答案】 B【解析】中国的新民主主义革命早就开始了,而且是实践中的事,可人们长时间里并没有新民主主义革命这个概念,在北伐战争时称“国民革命”,在土地革命战争时期称“苏维埃运动”,一般都笼统地称“资产阶级民主革命”、“资产阶级民权革命”,“新民主主义革命”的概念最早出现在1939年12月发表的《中国革命和中国共产党》一文中,毛泽东在这篇文章中明确指出:“现时中国的资产阶级民主主义的革命,已不是旧式的一般的资产阶级民主主义的革命,这种革命已经过时了,而是新式的、特殊的资产阶级民主主义的革命。
这种革命正在中国和一切殖民地半殖民地国家发展起来,我们称这种革命为新民主主义的革命。
”因此,本题选B。
8.在中国共产党七届二中全会上,毛泽东告诫全党:“务必使同志们继续地保持谦虚、谨慎、不骄、不躁的作风,务必使同志们继续地保持艰苦奋斗的作风。
”其原因主要是A.中国共产党即将成为执政党B.党的工作方式发生了变化C.全国大陆即将解放D.中国将由新民主主义社会转变为社会主义社会【答案】 A【解析】1949年3月5日至13日,中国共产党在河北省平山县西柏坡召开了中共中央七届二中全会。
当时新民主主义革命胜利在即,中国共产党即将成为在全国范围执掌政权的党,担负起领导全国人民建设新生活的重任。
这种地位和权力的掌握使党将面临新的考验,这不仅指在全新的任务面前要排除万难去学会新的本领,更重要的是指在进入繁华城市、执掌全国政权、从事和平建设的新的历史条件下,党能不能继续保持同人民群众的血肉联系,继续保持实事求是、谦虚谨慎和艰苦奋斗的优良传统,不被权力、地位和资产阶级的捧场所腐蚀,这也使党的干部增加了脱离群众甚至腐败变质的危险。
因此,在中共中央七届二中全会上不仅着重讨论和解决了怎样迅速夺取全国胜利的问题,而且首次明确提出了执政党的建设的问题。
毛泽东在会上作了重要的报告,强调务必防止产生骄傲情绪和防止破坏党的优良传统及作风,为执政党的思想建设和作风建设指明了方向。
因此,本题选A。
9.在农业社会主义改造中建立的初级农业生产合作社属于A.新民主主义性质B.社会主义萌芽性质C.半社会主义性质D.社会主义性【答案】 C【解析】在农业社会主义改造过程中经历了三个不同性质的改造步骤:社会主义萌芽性质的互助组、半社会主义性质的初级农业生产合作社、社会主义性质的高级农业生产合作社。
因此,备选项C为本题正确答案。
10.贯彻“三个代表”重要思想,关键在A.坚持党的先进性B.坚持执政为民C.坚持党的阶级性D.坚持与时俱进【答案】 D【解析】本题考查的知识点是对贯彻“三个代表”重要思想的关键的确认。
十六大报告明确指出,贯彻“三个代表”重要思想,关键在坚持与时俱进,核心在坚持党的先进性,本质在坚持执政为民。
因此,本题的正确答案是D。
11.“三个代表”重要思想是我们党的立党之本、执政之基、力量之源。
这里的“本”、“基”、“源”,说到底就是A.发展先进生产力B.发展先进文化C.人民群众的支持和拥护D.人民群众生活水平的提高【答案】 C【解析】胡锦涛在“三个代表”重要思想理论研讨会上的讲话中指出:我们说,始终做到“三个代表”,是我们党的立党之本、执政之基、力量之源。
这里的“本”、“基”、“源”,说到底就是人民群众的支持和拥护,实现人民的愿望、满足人民的需要、维护人民的利益,是“三个代表”重要思想的根本出发点和落脚点。
因此,本题的正确答案是C。
12.某员工在外资企业工作,年薪5万元;利用业余时间在民营企业兼职,年薪2万元;购买股票分得的红利2万元;出租住房收入2万元;转让一项技术收入1万元。
该员工一年的劳动收入为A. 12万元B. 9万元C. 8万元D. 7万元【答案】.C【解析】本题中某员工一年的劳动收入应该包括:(1)某员工在外资企业工作,年薪5万元。
(2)利用业余时间在民营企业兼职,年薪2万元。
(3)转让一项技术收入1万元。
三者相加应是8万元,因此,本题的正确答案是C。
购买股票分得的红利2万元和出租住房收入2万元应属于合法的非劳动收入。
13.2003年9月通过全民公决否决了加入欧元区议案的欧盟国家是A.瑞典B.丹麦C.英国D.希腊【答案】 A【解析】本题属于“形势与政策”内容,准确记忆即可得分。
14. 2003年月22日至27日,印度总理瓦杰帕伊对我国进行正式访问,这是印度总理10年来首次访华,访问取得了成功,两国签署了A.《中印关系原则和全面合作宣言》B.《中印联合新闻公报》C.《中印联合声明》D.《关于中国西藏地方和印度之间的通商和交通协定》【答案】 A【解析】本题属于“形势与政策”内容,准确记忆即可得分15. 2003年中国与欧盟关系有了进一步发展,其突出表现是A.中国与欧盟领导人年度会晤机制起步B.中国与欧盟建立全面伙伴关系C.中国首次制定和发表《中国对欧盟政策文件》D.欧盟首次制定和发表《中国欧盟关系长期政策》【答案】 C【解析】本题属于“形势与政策”内容,准确记忆即可得分。
二、多项选择题16. 2003年6月23日,《城市生活无着的流浪乞讨人员救助管理办法》正式发布,并于8月1日正式实施。
1982年发布的《城市流浪乞讨人员收容遣送办法》同时被废止。
这一变化体现了A.政治文明的进步B.对人民群众根本利益的维护C.对人权的尊重和保护D.上层建筑不断变革完善的要求E.生产关系的根本变革【答案】.ABCD【解析】本题是一道综合知识选择题。
涉及到对历史唯物主义关于政治文明、上层建筑的变革和完善等原理的综合理解和掌握。
考生选择本题,首先要将题干所讲述的事实即《城市生活无着的流浪乞讨人员救助管理办法》的正式发布一事,圈定在“上层建筑的变化”范畴之内,以此为前提再逐一分析题中所给定的5个备选答案:这一《管理办法》的正式发布,正好反映了上层建筑中“政治文明的进步”,当然也是“对人民群众根本利益的维护”和“对人权的尊重和保护”,从根本上说是“上层建筑不断变革完善的要求”。