中考数学复习复习题二[人教版]
- 格式:pdf
- 大小:822.59 KB
- 文档页数:9
专题二 计算求解题(必考)类型一 简便运算1. (2020唐山路北区三模)如图,是小明完成的一道作业题,请你参考小明的方法解答下面的问题:第1题图(1)计算:① 42020×(-0.25)2020;②(125)11×(-56)13×(12)12. (2)若2×4n ×16n =219,直接写出n 的值.2. 嘉琪研究了“十位数字相加等于10,个位数字相等”的两位数乘法的口算技巧:如34×74=2516.结果中的前两位数是用3×7+4得25,后两位数是用4×4=16,经过直接组合就可以得到正确结果2516.(1)请用上述方法直接计算45×65=________;56×56=________;(2)请用合适的数学知识解释上述方法的合理性.类型二 计算过程纠错1. 小杨对算式“(-24)×(18-13+14)+4÷(12-13)”进行计算时的过程如下: 解:原式=(-24)×18+(-24)×(-13)+(-24)×14+4÷(12-13)……① =-3+8-6+4×(2-3)……②=-1-4……③=-5④根据小杨的计算过程,回答下列问题:(1)小杨在进行第①步时,运用了__________律;(2)他在计算中出现了错误,其中你认为第________步出错了(只填写序号);(3)请你给出正确的解答过程.2. (2020石家庄模拟)已知多项式A =(x +2)2+x (1-x )-9.(1)化简多项式A 时,小明的结果与其他同学的不同,请你检查小明同学的解题过程,在标出①②③④的几项中出现错误的是________,并写出正确的解答过程;(2)小亮说:“只要给出x 2-2x +1的合理的值,即可求出多项式A 的值.”小明给出x 2-2x +1的值为4,请你求出此时A 的值.第2题图类型三 缺 项1. (2020邢台一模)嘉淇在解一道运算题时,发现一个数被污染,这道题是:计算:(-1)2020+÷(-4)×8. (1)若被污染的数为0,请计算(-1)2020+0÷(-4)×8;(2)若被污染的数是不等式组⎩⎪⎨⎪⎧2x +1>3,7-3x ≥1的整数解,求原式的值.2. (2020石家庄模拟)小丽同学准备化简:(3x 2-6x -8)-(x 2-2x □6),算式中“□”是“+,-,×,÷”中的某一种运算符号.(1)如果“□”是“×”,请你化简:(3x 2-6x -8)-(x 2-2x ×6);(2)若x 2-2x -3=0,求(3x 2-6x -8)-(x 2-2x -6)的值;(3)当x =1时,(3x 2-6x -8)-(x 2-2x □6)的结果是-4,请你通过计算说明“□”所代表的运算符号.类型四新定义1.仔细观察下列有理数的运算,回答问题.(+2)∅(+3)=+5,(-2)∅(-3)=+5,(+2)∅(-3)=-5,(-2)∅(+3)=-5,0∅(+3)=(+3)∅0=+3,0∅(-3)=(-3)∅0=+3.(1)“∅”的运算法则为:_______________________________________________________________;(2)计算:(-4)∅[0∅(-5)];(3)若(-2)∅a=a+3,求a的值.2. (2020邢台桥西区二模)如果a,b都是非零整数,且a=4b,那么就称a是“4倍数”.(1)30到35之间的“4倍数”是________,小明说:232-212是“4倍数”,嘉淇说:122-6×12+9也是“4倍数”,他们谁说的对?________.(2)设x是不为零的整数.①x(x+1)是________的倍数;②任意两个连续的“4倍数”的积可表示为________,它________(填“是”或“不是”)32的倍数.(3)设三个连续偶数的中间一个数是2n(n是整数),写出它们的平方和,并说明它们的平方和是“4倍数”.类型五与数轴结合1. (2020石家庄教学质量检测)如图①,点A,B,C是数轴上从左到右排列的三个点,分别对应的数为-5,b,4.某同学将刻度尺如图②放置,使刻度尺上的数字0对齐数轴上的点A,发现点B对齐刻度1.8 cm,点C对齐刻度5.4 cm.图①图②第1题图(1)在图①的数轴上,AC=________个单位长度;数轴上的一个单位长度对应刻度尺上的________cm;(2)求数轴上点B所对应的数b;(3)在图①的数轴上,点Q是线段AB上一点,满足AQ=2QB,求点Q所表示的数.2. (2020张家口一模)如图,在一条不完整的数轴上,从左到右的点A,B,C把数轴分成①、②、③、④四部分,点A,B,C对应的数分别是a,b,c,已知bc<0.(1)请说明原点在第几部分;(2)若AC=5,BC=3,b=-1,求a;(3)若点B到表示1的点的距离与点C到表示1的点的距离相等,且a-b-c=-3,求-a+3b-(b-2c)的值.第2题图3. (2020河北黑马卷)已知:在一条数轴上,从左到右依次排列n(n>1)个点,在数轴上取一点P,使点P到各点的距离之和最小.如图①,若数轴上依次有A1、A2两个点,则点P可以在A1A2之间的任意位置,距离之和为A1A2;图①图②第3题图如图②,若数轴上依次有A1、A2、A3三个点,则点P在A2的位置,距离之和为A1A2+A2A3;如图③,若数轴上依次有A1、A2、A3、A4四个点,则点P可以在A2A3之间的任意位置,距离之和为A1P+A2P+A3P+A4P;第3题图③探究若数轴上依次有A1、A2、A3、A4、A5五个点,判断点P所处的位置;归纳若数轴上依次有n个点,判断点P所处的位置;应用在一条直线上有依次排列的39个工位在工作,每个工位间隔1米,我们需要设置供应站P,使这39个工位到供应站P的距离总和最小,求供应站P的位置和最小距离之和.专题二 计算求解题类型一 简便运算1. 解:(1)①原式=(-4×0.25)2020=(-1)2020=1;②原式=(-125×56×12)11×12×(-56)2 =-12×2536=-2572; (2)n =3.2. 解:(1)2925;3136;类型二 计算过程纠错1. 解:(1)乘法分配:(2)②;(3)原式=(-24)×18+(-24)×(-13)+(-24)×14+4÷(12-13) =-3+8-6+4÷16=-1+24=23.2. 解:(1)①;正确的解答过程为:A =x 2+4x +4+x -x 2-9=5x -5;(2)∵x 2-2x +1=4,即(x -1)2=4,∴x -1=±2,则A =5x -5=5(x -1)=±10.类型三 缺 项1. 解:(1)(-1)2020+0÷(-4)×8=1+0=1;(2)解不等式组⎩⎪⎨⎪⎧2x +1>37-3x ≥1,得1<x ≤2,其整数解为2. 原式=(-1)2020+2÷(-4)×8=1-4=-3.2. 解:(1)(3x 2-6x -8)-(x 2-2x ×6)=3x 2-6x -8-(x 2-12x )=3x 2-6x -8-x 2+12x=2x 2+6x -8;(2)(3x 2-6x -8)-(x 2-2x -6)=3x 2-6x -8-x 2+2x +6=2x 2-4x -2,∵x 2-2x -3=0,∴x 2-2x =3∴2x 2-4x -2=2(x 2-2x )-2=2×3-2=4;(3)当x =1时,原式=(3-6-8)-(1-2□6)=-4,整理得-11-(1-2□6)=-4,1-2□6=-7,-2□6=-8,∴□处应为“-”.类型四 新定义1. 解:(1)运算时两数同号则绝对值相加,两数异号则为绝对值相加的相反数,0与任何数进行运算,结果为该数的绝对值;(2)(-4)∅[0∅(-5)]=(-4)∅(+5)=-9;(3)当a >0时,等式可化为(-2)-a =a +3,解得a =-52,与a >0矛盾,不合题意; 当a =0时,等式可化为2=a +3,解得a =-1,与a =0矛盾,不合题意;当a <0时,等式可化为2-a =a +3,解得a =-12,符合题意. 综上所述,a 的值为-12. 2. 解:(1)32;小明;(2)①2;②16x (x +1)或16x 2+16x ,是;(3)三个连续偶数为2n -2,2n ,2n +2,∴(2n -2)2+(2n )2+(2n +2)2=4n 2-8n +4+4n 2+4n 2+8n +4=12n 2+8=4(3n 2+2),∵n 为整数,∴4(3n 2+2)是“4倍数”.类型五 与数轴结合1. 解:(1)9;0.6;2. 解:(1)∵bc <0,∴b ,c 异号.∴原点在第③部分;(2)若AC =5,BC =3,则AB =2.∵b =-1,∴a =-1-2=-3;(3)设点B 到表示1的点的距离为m (m >0),则b =1-m ,c =1+m .∴b +c =2.∵a -b -c =-3,即a -(b +c )=-3,∴a =-1.∴-a +3b -(b -2c )=-a +3b -b +2c =-a +2b +2c =-a +2(b +c )=-(-1)+2×2=5.3. 解:探究 数轴上依次有A 1、A 2、A 3、A 4、A 5五个点,当点P 的位置在A 3处时,距离总和最小;归纳 当n 为偶数时,点P 在第n 2和第n 2+1个点之间的任意位置; 当n 为奇数时,点P 在第n +12个点的位置; 应用 设点P 在数轴上表示的数为x ,距离之和为M ,则M =||x -1+||x -2+…+||x -39, ∵39+12=20, ∴当x =20时,代数式M 取到最小值,∵每个工位间隔1米,∴M=19+18+…+0+1+2+…+19=(19+1)×19=380(米). 答:供应站P的位置在第20个工位,最小距离之和为380米.。
专题二阅读理解专题【课堂精讲】例1阅读例题,模拟例题解方程.解方程x2+|x-1|-1=0.解:(1)当x-1≥0即x≥1时,原方程可化为:x2+x-1-1=0即x2+x-2=0,解得x1=1,x2=-2(不合题意,舍去)(2)当x-1<0即x<1时,原方程可化为:x2-(x-1)-1=0即x2-x=0,解得x3=0,x4=1(不合题意,舍去)综合(1)、(2)可知原方程的根是x1=1,x2=0.请你模拟以上例题解方程:x2+|x+3|-9=0.解析:(1)当x+3≥0时,即x≥-3时.原方程可化为:x2+x-6=0.解得x1=2,x2=-3.(2)当x+3<0时,即x<-3时.原方程可化为:x2-x-12=0.解得x3=-3,x4=4.经检验,x3=-3,x4=4都不符合题意,舍去.综合(1)、(2)可知原方程的根为x1=2,x2=-3.点评:解决这类题的策略是先理解例题的思想方法,再把这种思想方法迁移到问题中从而得到解决.例2条件:如下图,A、B是直线l同旁的两个定点.问题:在直线l上确定一点P,使PA+PB的值最小.方法:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小模型应用:(1)如图1,正方形ABCD边长为2,E为AB的中点,P是AC上一动点.则PB+PE的最小值是______;(2)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC最小值是______;(3)如图3,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值是______.解析:关键在于把握题中的两点:第一是动点在哪条线上运动?这条线就确定为对称轴;第二是画出一个点的对称点,并确定符合条件的动点的位置,再进行解答.(1)在图1中,点B关于AC的对称点是D,连接DE交AC于点P,此时点P就符合条件,再进行计算.(2)在图2中,点A关于OB的对称点是点D,连接DC交OB于点P,点P就是符合条件的点.PA+PC的最小值是CD,求出CD的长即可.(3)在图3中,作出P关于OB、OA的对称点P′和P″.连接P′P″交OB、OA于R、Q.再连接PR、PQ.则△PRQ的周长最小,此时△PRQ的周长=P′P″的长.在等腰直角形P′OP″中.求出P′P″的长即可.答案:523102【课堂提升】1.阅读材料,解答问题.用图象法解一元二次不等式,x2-2x-3>0.解:设y=x2-2x-3,则y是x的二次函数.∵a=1>0,∴抛物线开口向上.又∵当y=0时,x2-2x-3=0.解得x1=-1,x2=3.∴由此得抛物线y=x2-2x-3的大致图象如图所示:观察函数图象可知:当x<-1或x>3时,y>0.∴x2-2x-3>0的解集是:x<-1或x>3.(1)观察图象,直接写出一元二次不等式:x2-2x-3<0的解集是________;(2)仿照上例,用图象法解一元二次不等式:x2-5x+6<0的解集.2. 阅读下列材料:解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:解∵x﹣y=2,∴x=y+2又∵x>1,∵y+2>1.∴y>﹣1.又∵y<0,∴﹣1<y<0.…①同理得:1<x<2.…②由①+②得﹣1+1<y +x <0+2∴x +y 的取值范围是0<x +y <2请按照上述方法,完成下列问题:(1)已知x ﹣y =3,且x >2,y <1,则x +y 的取值范围是 .(2)已知y >1,x <﹣1,若x ﹣y =a 成立,求x +y 的取值范围(结果用含a 的式子表示).3.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( )A . 1,2,3B . 1,1,C . 1,1,D . 1,2,y 1),Q (x 2,y 2)的对称中心的坐标为( 122x x + ,122y y + ).(1)如图,在平面直角坐标系中,若点P 1(0,-1),P 2(2,3)的对称中心是点A ,则点A 的坐标为________;(2)另取两点B (-1.6,2.1),C (-1,0).有一电子青蛙从点P 1处开始依次关于点A ,B ,C 作循环对称跳动,即第一次跳到点P 1关于点A 的对称点P 2处,接着跳到点P 2关于点B 的对称点P 3处,第三次再跳到点P 3关于点C 的对称点P 4处,第四次再跳到点P 4关于点A 的对称点P 5处,…,则点P 3,P 8的坐标分别为____、____;(3)求出点P 2012的坐标,并直接写出在x 轴上与点P 2012、点C 构成等腰三角形的点的坐标.【高效作业本】专题二 阅读理解专题1.如图,已知正方形ABCD ,顶点A (1,3)、B (1,1)、C (3,1).规定“把正方形ABCD 先沿x 轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2014次变换后,正方形ABCD 的对角线交点M 的坐标变为( )A.(—2012,2) B.(一2012,一2)C. (—2013,—2) D. (—2013,2)2.定义新运算:对于任意实数a,b都有a△b=ab﹣a﹣b+1,等式右边是通常的加法、减法及乘法运算,例如:2△4=2×4﹣2﹣4+1=8﹣6+1=3,请根据上述知识解决问题:若3△x的值大于5而小于9,求x的取值范围.一元二次方程两个根二次三项式因式分解x2-2x+1=0 x1=1,x2=1 x2-2x+1=(x-1)(x-1)x2-3x+2=0 x1=1,x2=2 x2-3x+2=(x-1)(x-2)3x2+x-2=0 x1=,x2=-1 3x2+x-2=3(x- )(x+1)2x2+5x+2=0 x1=____,x2=____ 2x2+5x+2=2(x+ )(x+2)4x2+13x+3=0 x1=____,x2=____ 4x2+13x+3=4(x+____)(x+____)4.阅读下面的例题:解方程x2-|x|-2=0解:(1)当x≥0时,原方程化为x2-x-2=0解得x1=2,x2=-1(不合题意,舍去)(2)当x<0时,原方程化为x2+x-2=0,解得x1=1(不合题意,舍去),x2=-2所以原方程的解是x1=2,x2=-2请参照例题,解方程:x2-|x-3|-3=0.【答案】专题二阅读理解专题答案1.分析:(1)观察图象即可写出一元二次不等式:x2-2x-3<0的解集;(2)先设函数解析式,根据a的值确定抛物线的开口向上,再找出抛物线与x轴相交的两点,就可以画出抛物线,根据y<0确定一元二次不等式x2-2x-3<0的解集.解:(1)观察图象,可得一元二次不等式x2-2x-3<0的解集是:-1<x<3(2)设y=x2-5x+6,则y是x的二次函数.∵a=1>0,∴抛物线开口向上.又∵当y=0时,x2-5x+6=0,解得x1=2,x2=3.∴由此得抛物线y=x2-5x+6的大致图象如图所示.观察函数图象可知:当2<x<3时,y<0.∴x2-5x+6<0的解集是:2<x<3点评:本题主要考查在直角坐标系中利用二次函数图象解不等式,可作图利用交点直观求解集.2.解:(1)∵x﹣y=3,∴x=y+3,又∵x>2,∴y+3>2,∴y>﹣1.又∵y<1,∴﹣1<y<1,…①同理得:2<x<4,…②由①+②得﹣1+2<y+x<1+4∴x+y的取值范围是1<x+y<5;(2)∵x﹣y=a,∴x=y+a,又∵x<﹣1,∴y+a<﹣1,∴y<﹣a﹣1,又∵y>1,∴1<y<﹣a﹣1,…①同理得:a+1<x<﹣1,…②由①+②得1+a+1<y+x<﹣a﹣1+(﹣1),∴x+y的取值范围是a+2<x+y<﹣a﹣2.本题考查了一元一次不等式组的应用,解答本题的关键是仔细阅读材料,理解解题过程,难度一般.3.分析A、根据三角形三边关系可知,不能构成三角形,依此即可作出判定;B、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;C、解直角三角形可知是顶角120°,底角30°的等腰三角形,依此即可作出判定;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,依此即可作出判定.解:A、∵1+2=3,不能构成三角形,故选项错误;B、∵12+12=()2,是等腰直角三角形,故选项错误;C、底边上的高是=,可知是顶角120°,底角30°的等腰三角形,故选项错误;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确.故选:D.点评:考查了解直角三角形,涉及三角形三边关系,勾股定理的逆定理,等腰直角三角形的判定,“智慧三角形”的概念.(2)(-5.2,1.2);(2,3)(提示:P1(0,-1),P2(2,3),P3(-5.2,1.2),P4(3.2,-1.2),P5(-1.2,3.2),P6(-2,1),P7(0,-1),P8(2,3))(3)∵P1(0,-1)→P2(2,3)→P3(-5.2,1.2)→P4(3.2,-1.2)→P5(-1.2,3.2)→P6(-2,1)→P7(0,-1)→P8(2,3)→…,∴P7的坐标和P1的坐标相同,P8的坐标和P2的坐标相同,即坐标以6为周期循环.∵2012÷6=335…2.∴P2012的坐标与P2的坐标相同,即P2012(2,3);在x轴上与点P2012,点C构成等腰三角形的点的坐标为(-3 -1,0),(2,0),(3 -1,0),(5,0).【高效作业本】1.分析:首先求出正方形对角线交点坐标分别是(2,2),然后根据题意求得第1次、2次、3次变换后的点M的对应点的坐标,即可得规律.解答:∵正方形ABCD,点A(1,3)、B(1,1)、C(3,1).∴M的坐标变为(2,2)∴根据题意得:第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),第2次变换后的点M的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),第2014次变换后的点M的对应点的为坐标为(2-2014, 2),即(-2012, 2)故答案为A.点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n 次变换后的点M 的对应点的坐标为:当n 为奇数时为(2-n ,-2),当n 为偶数时为(2-n ,2)是解此题的关键.2.分析:首先根据运算的定义化简3△x ,则可以得到关于x 的不等式组,即可求解.解答:3△x=3x ﹣3﹣x+1=2x ﹣2,根据题意得:,解得:<x <.点评:本题考查了一元一次不等式组的解法,正确理解运算的定义是关键.3.(1)-12 -2 -14 -3 143 (2)ax2+bx +c =a(x -x1)(x -x2)4.解析:(1)当x -3≥3,原方程为 x 2-(x -3)-3=0∵x ≥3∴不符合题意,都舍去(2)当x -3<0时,即x <3,原方程化为x 2+(x -3)-3=0解得x 2+(x -3)=0解得x 1=-3或x 2=2(都符合题意)所以原方程的解是x 1=3或x 2=2.答案:x =-3或x =2。
2022年人教版中考数学一轮复习:四边形综合专项练习题21.如图,已知四边形ABCD是平行四边形,从①AB=AD,②AC=BD,③∠ABC=∠ADC中选择一个作为条件,补充后使四边形ABCD成为菱形,则其选择是(限填序号).2.如图1,平行四边形纸片ABCD的面积为120,AD=15.今沿两对角线将四边形ABCD剪成甲、乙.丙、丁四个三角形纸片.若将甲、丙合并(AD、CB重合)形成一个对称图形戊,如图2所示.则图形戊的两条对角线长度之和为.3.如图,菱形ABCD的两条对角线AC,BD交于点O,BE⊥AD于点E,若AC=8,BD=6,则BE的长为.4.如图,在▱ABCD中,∠A=70°,DB=DC,CE⊥BD于E,则∠BCE=.5.如图,在菱形ABCD中,AB=BD,点E、F分别在AB、AD上,且AE=DF,连接BF与DE交于点H,若CG=1,则S=.四边形BCDG6.如图,正方形瓷砖图案是四个全等且顶角为45°的等腰三角形.已知该瓷砖的面积是1m2,则中间小正方形的面积为m2.7.如图所示,在Rt△ABC外作等边△ADE,点E在AB边上,AC=5,∠ABC=30°,AD=3.将△ADE沿AB方向平移,得到△A′D′E′,连接BD′.给出下列结论:①AB=10;②四边形ADD′A′为平行四边形;③AB平分∠D′BC;④当平移的距离为4时,BD′=3.其中正确的是(填上所有正确结论的序号).8.如图,菱形ABCD的对角线AC,BD相交于点O,P为AB边上一动点(不与点A,B重合),PE⊥OA于点E,PF⊥OB于点F,若AB=4,∠BAD=60°,则EF的最小值为.9.如图,在正方形ABCD中,点E为BC边上一点,且CE=2BE,点F为对角线BD上一点,且BF=2DF,连接AE交BD于点G,过点F作FH⊥AE于点H,若HG=2cm,则正方形ABCD 的边长为cm.10.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为.11.如图,在正方形ABCD内有一点P,若AP=4,BP=7,DP=9,则∠APB的度数为.12.如图是两个边长分别为2a,a的正方形,则△ABC的面积是.13.如图,点P是正方形ABCD内一点,连接AP、BP、DP,若AP=1,PD=,∠APB=135°,则正方形ABCD的面积为.14.如图,正三角形ABC与正方形CDEF的顶点B,C,D三点共线,动点P沿着CA由C向A 运动.连接EP,若AC=10,CF=8.则EP的最小值是.15.如图,正方形ABCD中,H为CD上一动点(不含C、D),连接AH交BD于G,过点G作GE⊥AH交BC于E,过E作EF⊥BD于F,连接AE,EH.下列结论:①AG=EG;②∠EAH=45°;③BD=2GF;④GE平分∠FEC.正确的是(填序号).16.如图,平面内三点A、B、C,AB=4,AC=3,以BC为对角线作正方形BDCE,连接AD,则AD的最大值是.17.如图,在正方形ABCD中,点E在对角线AC上,EF⊥AB于点F,EG⊥BC于点G,连接FG,若AB=8,则FG的最小值为.18.如图,正方形ABCD的边长为2,点E是BC的中点,连接AE与对角线BD交于点G,连接CG并延长,交AB于点F,连接DE交CF于点H,连接AH.以下结论:①CF⊥DE;②=;③GH=;④AD=AH,其中正确结论的序号是.19.如图,矩形ABCD中,对角线AC、BD交于点O,AE⊥BD于E,若∠DAE=3∠BAE.则的值为.20.将矩形ABCD按如图所示的方式折叠,BE、EG、FG为折痕,若顶点A、C、D都落在点O 处,且点B、O、G在同一条直线上,同时点E、O、F在另一条直线上.(1)的值为.(2)若AD=4,则四边形BEGF的面积为.参考答案1.解:①∵四边形ABCD是平行四边形,AB=AD,∴平行四边形ABCD是菱形;②∵四边形ABCD是平行四边形,AC=BD,∴平行四边形ABCD是矩形;③∵四边形ABCD是平行四边形,∴∠ABC=∠ADC,因此∠ABC=∠ADC时,四边形ABCD还是平行四边形;故答案为:①.2.解:如图,连接AD、EF,则可得对角线EF⊥AD,且EF与平行四边形的高相等.∵平行四边形纸片ABCD的面积为120,AD=1520,∴BC=AD=15,EF×AD=×120,∴EF=8,又BC=15,∴则图形戊中的四边形两对角线之和为20+3=23,故答案为23.3.解:∵四边形ABCD是菱形,∴AO=CO=4,BO=DO=3,AC⊥BD,∴AD===5,=AD×BE=×AC×BD,∵S菱形ABCD∴BE=,故答案为:.4.解:∵四边形ABCD是平行四边形,∴∠BCD=∠A=70°,∵DB=DC,∴∠DBC=∠BCD=70°,∵CE⊥BD,∴∠CEB=90°,∴∠BCE=20°.故答案为:20°.5.解:过点C作CM⊥GB于M,CN⊥GD,交GD的延长线于N.∵四边形ABCD为菱形,∴AB=AD=CD=BC,∵AB=BD,∴AB=BD=AD=CD=BC,∴△ABD为等边三角形,△BCD是等边三角形,∴∠A=∠BDF=60°,∠ADC=60°,在△ADE和△DBF中,,∴△ADE≌△DBF(SAS),∴∠ADE=∠DBF,∵∠FBC =60°+∠DBF ,∠NDC =180°﹣(120°﹣∠ADE )=60°+∠ADE ,∴∠NDC =∠FBC ,在△CDN 和△CBM 中,,∴△CDN ≌△CBM (AAS ),∴CM =CN ,在Rt △CBM 与Rt △CDN 中,,∴Rt △CBM ≌Rt △CDN (HL ),∴S 四边形BCDG =S 四边形CMGN .S 四边形CMGN =2S △CMG ,∵∠CGM =60°,∴GM =CG =,CM =CG =,∴S 四边形BCDG =S 四边形CMGN =2S △CMG =2×××=, 故答案为:.6.解:如图,作大正方形的对角线,作小正方形的对角线并延长交大正方形各边于中点, 设小正方形的边长为xm , 则大正方形的边长为x +x x =(1)xm , ∵瓷砖的面积是1m 2,∴大正方形的边长为1m ,即(1)x =1, 解得x =﹣1, ∴中间小正方形的面积为()2=3﹣2, 故答案为:3﹣2.7.解:∵∠ACB=90°,AC=5,∠ABC=30°,∴AB=2AC=10,故①正确;由平移的性质得:A'D'=AD,A'D'∥AD,∴四边形ADD′A′为平行四边形,故②正确;当平移的距离为4时,EE'=4,∴BE'=AB﹣AE﹣EE'=10﹣3﹣4=3,由平移的性质得:∠A'D'E'=∠A'E'D'=∠AED=60°,A'D'=D'E'=DE=AD=3,∴BE'=D'E',∴∠E'BD'=∠E'D'B=∠A'E'D'=30°,∴∠A'D'B=60°+30°=90°,∴BD'=A'D'=3,故④正确;由④得:当平移的距离为4时,∠E'BD'=∠ABC=30°,故③错误;故答案为:①②④.8.解:连接OP,∵四边形ABCD是菱形,∴AC⊥BD,∠CAB=DAB=30°,∵PE⊥OA于点E,PF⊥OB于点F,∴∠EOF=∠OEP=∠OFP=90°,∴四边形OEPF是矩形,∴EF=OP,∵当OP取最小值时,EF的值最小,∴当OP⊥AB时,OP最小,∵AB=4,∴OB=AB=2,OA=AB=2,∴S=OA•OB=AB•OP,△ABO∴OP==,∴EF的最小值为,故答案为:.9.解:如图,过F作FI⊥BC于I,连接FE,FA,∴FI∥CD,∵CE=2BE,BF=2DF,∴设BE=EI=IC=a,CE=FI=2a,AB=3a,∴则FE=FC=FA=a,∴H为AE的中点,∴AH=HE=AE=a,∴AG=AH+GH=a+2,∵四边形ABCD是正方形,∴BE∥AD,∴==,∴GE=AG=(a+2),∵GE=HE﹣GH=a﹣2,∴(a+2)=a﹣2,解得,a=,∴AB=3a=.故答案为:.10.解:设图1中分成的直角三角形的长直角边为a,短直角边为b,,得,∴图1中菱形的面积为:×4=48,故答案为48.11.解:∵四边形ABCD为正方形,∴∠ABC=90°,BA=BC,∴△BAP绕点A逆时针旋转90°可得△ADE,连接PE,由旋转的性质得,ED=BP=7,AE=AP=4,∠PBE=90°,∠AED=∠APB,∴△APE为等腰直角三角形,∴PE=AP=4,∠AEP=45°,在△PED中,∵PD=9,ED=7,PE=4,∴DE2+PE2=DP2,∴△PED为直角三角形,∠PED=90°,∴∠AED=90°+45°=135°,∴∠APB=135°,故答案为:135°.12.解:∵两个正方形的边长分别为2a,a,∴△ABC的的高为:2a+a,底边为:BC=a,∴△ABC的面积是:(2a+a)•a=a2.故答案为:a2.13.解:如图,将△APB绕点A逆时针旋转90°得到△AHD,连接PH,过点A作AE⊥DH交DH的延长线于E,∴△APB≌△AHD,∠PAH=90°,∴PB=DH,AP=AH=1,∠APB=∠AHD=135°,∴PH=AP=,∠APH=∠AHP=45°,∴∠PHD=90°,∴DH===2,∵∠AHD=135°,∴∠AHE=45°,∵AE⊥DH,∴∠AHE=∠HAE=45°,∴AE=EH,AH=AE,∴AE=EH=,∴DE=,∵AD2=AE2+DE2=13,∴正方形的面积为13,故答案为:13.14.解:如图,过点E作EP⊥AC,交FC于点G,当EP⊥AC时,EP取得最小值,∵正三角形ABC与正方形CDEF的顶点B,C,D三点共线,∴∠ACB=60°,∠FCD=90°,∴∠ACF=30°,∴∠CGP=∠EGF=60°,∵∠F=90°,∴∠FEG=30°,设PG=x,则CG=2x,∴FG=CF﹣CG=8﹣2x,∴EG=2FG=2(8﹣2x),∵FG=EF,∴8﹣2x=8×,∴x=4﹣,∴EP=EG+PG=2(8﹣2x)+x=16﹣3x=4+4.故答案为:4+4.15.解:连接GC,延长EG交AD于点L,∵四边形ABCD为正方形,∴AD∥CB,AD=CD,∠ADG=∠CDG=45°,∵DG=DG,∴△ADG≌△CDG(SAS),∴AG=GC,∠HCG=∠DAG,∵∠HCG+∠GCB=90°,∴∠DAG+∠GCB=90°,∵GE⊥AH,∴∠AGL=90°,∴∠ALG+∠LAG=90°,∵AD∥CB,∴∠ALG=∠GEC,∴∠GEC+∠LAG=90°,∴∠GEC=∠GCE,∴GE=GC,∴AG=EG,故①正确;∵GE⊥AH,∴∠AGE=90°,∵AG=EG,∴∠EAH=45°,故②正确;连接AC交BD于点O,则BD=2OA,∵∠AGF+∠FGE=∠GEF+∠EGF=90°,∴∠AGF=∠GEF,∵AG=GE,∠AOG=∠EFG=90°,∴△AOG≌△GFE(AAS),∴OA=GF,∵BD=2OA,∴BD=2GF,故③正确.过点G作MN⊥BC于点N,交AD于点M,交BC于点N,∵G是动点,∴GN的长度不确定,而FG=OA是定值,∴GE不一定平分∠FEC,故④错误;故答案为:①②③.16.解:将△ABD绕点D顺时针旋转90°,得△MCD,如图:由旋转不变性可得:CM=AB=4,AD=MD,且∠ADM=90°,∴△ADM是等腰直角三角形,∴AD=AM,AD最大,只需AM最大,而在△ACM中,AM<AC+CM,∴当且仅当A、C、M在一条直线上,即不能构成△ACM时,AM最大,且最大值为AC+CM =AC+AB=7,此时AD=AM=,故答案为:.17.解:连接BE,如图:∵四边形ABCD是正方形,∴∠ABC=90°,又EF⊥AB于点F,EG⊥BC,∴四边形FBGE是矩形,∴FG=BE,所以当BE最小时,FG就最小,根据垂线段最短,可知当BE⊥AC时,BE最小,当BE⊥AC时,在正方形ABCD中,△AEB是等腰直角三角形,在Rt△ABE中,根据勾股定理可得2BE2=AB2=64,解得BE=4,∴FG最小为4;故答案为4.18.解:∵四边形ABCD是边长为2的正方形,点E是BC的中点,∴AB=AD=BC=CD=2,BE=CE=,∠DCE=∠ABE=90°,∠ABD=∠CBD=45°,∴△ABE≌△DCE(SAS),∴∠CDE=∠BAE,DE=AE,∵AB=BC,∠ABG=∠CBG,BG=BG,∴△ABG≌△CBG(SAS),∴∠BAE=∠BCF,∴∠BCF=∠CDE,又∵∠CDE+∠CED=90°,∴∠BCF+∠CED=90°,∴∠CHE=90°,∴CF⊥DE,故①正确;∵CD=2,CE=,由勾股定理得,DE===5,=CD×CE=DE×CH,∵S△DCE∴CH=2,∵∠CHE=∠CBF,∠BCF=∠ECH,∴△ECH∽△FCB,∴=,∴=,∴CF=5,∴HF=CF﹣CH=3,∴=,故②正确;如图,过点A作AM⊥DE于点M,∵DC=2,CH=2,由勾股定理得,DH===4,∵∠CDH+∠ADM=90°,∠DAM+∠ADM=90°,∴∠CDH=∠DAM,又∵AD=CD,∠CHD=∠AMD=90°,∴△ADM≌△DCH(AAS),∴CH=DM=2,AM=DH=4,∴MH=DM=2,又∵AM⊥DH,∴AD=AH,故④正确;∵DE=5,DH=4,∴HE=1,∴ME=HE+MH=3,∵AM⊥DE,CF⊥DE,∴∠AME=∠GHE,∵∠HEG=∠MEA,∴△MEA∽△HEG,∴=,∴=,∴HG=,故③错误.综上,正确的有:①②④.故答案为:①②④.19.解:∵四边形ABCD是矩形,∴∠BAD=90°,OA=AC,OB=BD,AC=BD,∴OA=OB,∴∠OAB=∠OBA,∵∠DAE=3∠BAE,∴∠BAE=×90°=22.5°,∵AE⊥BD,∴∠OAB=∠OBA=90°﹣22.5°=67.5°,∴∠OAE=67.5°﹣22.5°=45°,∴△AOE是等腰直角三角形,∴OA=OE,设OE=a,则OB=OA=a,∴BE=OB﹣OE=(﹣1)a,BD=2OB=2a,∴DE=BD﹣BE=2a﹣(﹣1)a=(+1)a,∴==,故答案为:.20.解:(1)由折叠可得,AE=OE=DE,CG=OG=DG,∴E,G分别为AD,CD的中点,设CD=2a,AD=2b,则AB=OB=2a,DG=OG=CG=a,BG=3a,BC=AD=2b,∵∠C=90°,在Rt△BCG中,CG2+BC2=BG2,∴a2+(2b)2=(3a)2,∴b=a,∴===,由折叠可得:∠ABE=∠EBG,∠AEB=∠BEO,∠DEG=∠GEO,∵∠AEB=∠BEO+∠DEG=∠GEO=180°,∴∠BEG=90°,∵∠A=∠BEG=90°,∠ABE=∠EBG,∴△ABE∽△EBG,∴==,故答案为:;(2)∵AD=BC=2b=4,∴b=2,a=2,∴AB=OB=4,CG=2,AE=OE=2,∴BG=6,∵∠OBF =∠CBG ,由折叠可得∠BOF =∠BCG =90°, ∴△BOF ∽△BCG , ∴=, 即=,∴OF =,∴S 四边形EBFG =S △BEG +S △BFG =×6×2+×6×=9. 故答案为:9.。
选择、填空综合训练(时间:40分钟分值:54分)一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项.1.412的倒数是( )A.412B.-29C.-412D.292.已知a-b=3,a-c=1,则(b-c)2-2(b-c)+94的值为( )A.274B.412C.272D.4143.点P(a,b)在第四象限,且|a|>|b|,那么点Q(a+b,a-b)在( )A.第一象限B.第二象限C.第三象限D.第四象限4.如图,直线l经过第二、三、四象限,l的解析式是y=(m-2)x+n,则m的取值范围在数轴上表示为( )第4题图5.如图所示,△ABC的各个顶点都在正方形的格点上,则sin A的值为( )第5题图A.55B.255C.225D.1056.若实数a使关于x的一元二次方程(a+1)x2-3x+1=0有两个不相等的实数根,则实数a的取值范围是( )A.a<54B.a<54且a≠-1 C.a>54D.a>54且a≠-17.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是( )A.70°B.35°C.40°D.50°第7题图8.如图,△ABC是⊙O的内接三角形,连接OA,OB,OC.若∠AOB=40°,∠OBC=50°,AC=4,则⊙O的直径为( )第8题图A.433B.4 C.833D.89.如图,在矩形纸片ABCD中,AD=9,AB=7,点F是BC上一点,点E在AD上,将矩形纸片沿直线EF折叠,点A落在点A′处,点B恰好落在边CD上的点B′处,A′B′交AD于点G,若CB′=3,则四边形EFB′G的面积等于( )第9题图A.353B.553C.352D.145610.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(-1,0),与y 轴的交点B 在(0,-2)和(0,-1)之间(不包括这两点),对称轴为直线x =1,下列结论:①abc >0;②4a +2b +c >0;③13<a <23;④b >c.其中含所有正确结论的选项是( )第10题图A .①②③B .①③④C .②③④D .①②④二、填空题:本大题共8小题,每小题3分,共24分.11.在平面直角坐标系内,把点P 先向左平移2个单位长度,再向上平移4个单位长度后得到的点的坐标是(-5,3),则点P 的坐标是 .12.一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数不大于4的概率是 .13.若14的小数部分为a ,整数部分为b ,则a ·(14+b)的值为 .14.函数y =2-m x的图象与直线y =x 没有交点,那么m 的取值范围是 . 15.如图,在平行四边形ABCD 中,AB =8,BC =10,∠ABC =60°,BE 平分∠ABC 交AD 于点E ,AF 平分∠BAD 交BC 于点F ,交BE 于点G ,连接DG ,则DG 的长为 .第15题图16.如图,在△ABC 中,∠A =70°,BC =4,以BC 的中点D 为圆心,2为半径作弧,分别交边AB ,AC 于E ,F ,则EF ︵的长为 .第16题图17.如图,在△ABC中,AB=AC=12厘米,∠B=∠C,BC=9厘米,点D为AB的中点.如果点P在线段BC上以v厘米/秒的速度由B点向C点运动,同时,点Q 在线段CA上由C点向A点运动.若点Q的运动速度为3厘米/秒,则当△BPD与△CQP全等时,v的值为.第17题图18.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;…,已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S 的式子表示这组数据的和是.选择、填空综合训练(时间:40分钟分值:54分)一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项.1.412的倒数是( D )A.412B.-29C.-412D.292.已知a-b=3,a-c=1,则(b-c)2-2(b-c)+94的值为( D )A.274B.412C.272D.4143.点P(a,b)在第四象限,且|a|>|b|,那么点Q(a+b,a-b)在( A )A.第一象限B.第二象限C.第三象限D.第四象限4.如图,直线l经过第二、三、四象限,l的解析式是y=(m-2)x+n,则m的取值范围在数轴上表示为( C )第4题图5.如图所示,△ABC的各个顶点都在正方形的格点上,则sin A的值为( A )第5题图A.55B.255C.225D.1056.若实数a使关于x的一元二次方程(a+1)x2-3x+1=0有两个不相等的实数根,则实数a的取值范围是( B )A.a<54B.a<54且a≠-1 C.a>54D.a>54且a≠-17.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是( C )A.70°B.35°C.40°D.50°第7题图8.如图,△ABC是⊙O的内接三角形,连接OA,OB,OC.若∠AOB=40°,∠OBC=50°,AC=4,则⊙O的直径为( C )第8题图A.433B.4 C.833D.89.如图,在矩形纸片ABCD中,AD=9,AB=7,点F是BC上一点,点E在AD上,将矩形纸片沿直线EF折叠,点A落在点A′处,点B恰好落在边CD上的点B′处,A′B′交AD于点G,若CB′=3,则四边形EFB′G的面积等于( D )第9题图A.353B.553C.352D.145610.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(-1,0),与y轴的交点B在(0,-2)和(0,-1)之间(不包括这两点),对称轴为直线x=1,下列结论:①abc>0;②4a+2b+c>0;③13<a<23;④b>c.其中含所有正确结论的选项是( B )第10题图A.①②③B.①③④C.②③④D.①②④二、填空题:本大题共8小题,每小题3分,共24分.11.在平面直角坐标系内,把点P 先向左平移2个单位长度,再向上平移4个单位长度后得到的点的坐标是(-5,3),则点P 的坐标是 (-3,-1) .12.一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数不大于4的概率是 23. 13.若14的小数部分为a ,整数部分为b ,则a ·(14+b)的值为 5 .14.函数y =2-m x的图象与直线y =x 没有交点,那么m 的取值范围是 m >2 . 15.如图,在平行四边形ABCD 中,AB =8,BC =10,∠ABC =60°,BE 平分∠ABC 交AD 于点E ,AF 平分∠BAD 交BC 于点F ,交BE 于点G ,连接DG ,则DG 的长为 219 .第15题图16.如图,在△ABC 中,∠A =70°,BC =4,以BC 的中点D 为圆心,2为半径作弧,分别交边AB ,AC 于E ,F ,则EF ︵的长为 49π .第16题图17.如图,在△ABC 中,AB =AC =12厘米,∠B =∠C ,BC =9厘米,点D 为AB 的中点.如果点P 在线段BC 上以v 厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若点Q 的运动速度为3厘米/秒,则当△BPD 与△CQP 全等时,v 的值为 2.25或3 .第17题图18.观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;…,已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S,用含S 的式子表示这组数据的和是 2S2-S .。
专题2 纪念抗战胜利70周年热点新题预测一、选择题1. 2015年9月3日,我国在天安门广场隆重举行抗日战争暨世界反法西斯战争胜利70周年纪念活动。
此次活动得到了国际社会的广泛响应和积极支持,这表明()①和平与发展是当今世界的两大主题②中国是主宰世界和平与发展的大国③一个和平、合作、负责任的大国形象已被国际社会所公认④正义是人类良知的声音A. ①②③B. ②③④C. ①②④D. ①③④2. 在发表重要讲话时强调,世界各国应该共同维护以联合国宪章宗旨和原则为核心的国际秩序和国际体系,积极构建以合作共赢为核心的新型国际关系,共同推进世界和平与发展的崇高事业。
这是因为()①和平与发展是当今时代的主题②中国人民向往和平,反对战争③中国是一个负责任的大国④世界的发展主要依赖于中国的发展A. ①②④B. ②③④C. ①②③D. ①③④3. 2015年9月3日晚,人民大会堂万人礼堂金碧辉煌,流光溢彩。
向中外观众了展示了主题为“胜利与和平”的纪念中国人民抗日战争暨世界反法西斯战争胜利70周年文艺晚会。
这有利于()①激发爱国热情,振奋民族精神②传承中华民族的一切传统文化③增强民族自尊心、自信心和自豪感④促进社会主义精神文明建设A.①②③ B.①③④C.②③④ D.①②③④4. 在中国人民抗日战争的进程中,形成了伟大的抗战精神,它是中国人民弥足珍贵的精神财富。
因为伟大的抗战精神()A. 是中华民族精神发展的不竭动力B. 使中华民族精神的内涵更加丰富C. 与我们当今的时代精神内容相同D. 是社会主义现代化建设的物质保障5. 主席在纪念中国人民抗日战争暨世界反法西斯战争胜利70周年大会上发表重要讲话,集中体现了“五个大国”思想内涵,即大国领袖、大国道路、大国思维、大国胸怀、大国意志。
这充分表明()A. 中国积极主动承担国际责任B. 中国已成为世界上最强大的国家C. 我国在国际舞台上占主导地位D. 中国是维护世界和平的决定力量6. 大阅兵不是简单的庆祝仪式,而是对历史的纪念与沉思,对未来的展望与宣示。
第2课时声现象中考回顾1.(2022·四川成都中考)如图所示,用不同的力敲响音叉,将叉股接触悬挂的小球,都能看到小球被弹开。
关于该实验,下列说法不正确的是()A.该实验说明发声的音叉在振动B.声音通过空气传到人的耳朵里C.敲音叉的力越大,声音的响度越大D.敲音叉的力越大,声音的音调越高答案:D2.(2022·天津中考)音乐会上,艺术家们用编钟、二胡、古筝等乐器演奏乐曲,听众能够分辨出不同乐器的声音,是根据声音的()A.响度B.音调C.音色D.速度答案:C3.(2022·四川内江中考)下列关于声音的说法正确的是()A.音调的高低与声源振动的频率有关B.优美的小提琴声一定是乐音C.声音的传播速度与介质无关D.医院对人体的B超检查利用的是次声波答案:A4.(2021·天津中考)在医院、学校附近,常常有禁止鸣笛的标志,如图所示。
这种控制噪声的措施属于()A.防止噪声产生B.阻断噪声传播C.减小噪声传播速度D.通过监测减弱噪声答案:A5.(2022·云南中考)如图所示,编钟是我国的传统乐器,用相同的力敲击大小不同的钟,它们发出声音的(选填“音调”或“音色”)不同。
生活中,可以用超声波清洗仪器、眼镜等,这说明超声波能传递。
答案:音调能量模拟预测1.(多选)关于声现象,下列说法不正确的是()A.声音不一定由物体的振动产生B.声音不可以在真空中传播C.声源振动的频率越高,音调越高D.音调越高,说明声源振动的幅度越大答案:AD2.拿一张硬纸片,让它在木梳齿上划过,一次快些,一次慢些,是为了研究()A.音调B.响度C.音色D.声音的大小答案:A解析:音调是指声音的高低,它是由物体振动快慢即频率决定的。
硬纸片在木梳齿上划过,一次快些,一次慢些,振动快慢不同,音调不同,这是为了研究音调。
3.当我们在山谷中大声呼喊时,往往会重复听到自己的呼喊声,这是由于()A.山谷中有磁场,能将呼喊声录制再播放B.有很多人在模仿我们呼喊C.喊声在山谷中不断反射,经不同时间回到我们耳中D.山谷中有不同的声音传播介质,使喊声以不同的速度传到我们耳中答案:C解析:当我们在山谷中大声呼喊时,发出的声音在向前传播的过程中遇到障碍物会发生反射,反射回来的声音再次进入人的耳朵,这就是我们听到的回声,故选项C正确。