最新陕西省西安市2018-2019年最新中考数学模拟试卷(含答案)
- 格式:doc
- 大小:820.58 KB
- 文档页数:20
2019年陕西省西安市中考数学模拟试卷(二)一、选择题(共10小题,每小题3分,计30分)1.﹣的倒数是()A.3 B.C.﹣3 D.±2.如图,由6个相同的小正方体搭成的立体图形,若由图①变到图②,不改变的是()A.主视图B.左视图C.俯视图D.左视图和俯视图3.计算(﹣3a3)2的结果是()A.﹣3a6B.3a6C.﹣9a6D.9a64.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是()A.32°B.58°C.68°D.60°5.某外贸公司要出口一批食品罐头,标准质量为每听450克,现抽取10听样品进行检测,它们的质量与标准质量的差值(单位:克)如下:﹣10,+5,0,+5,0,0,﹣5,0,+5,+10,则这10听罐头质量的众数为()A.460 B.455 C.450 D.06.如果a<b,那么下列不等式中一定正确的是()A.a﹣2b<﹣b B.a2<ab C.ab<b2D.a2<b27.△ABC的三边AB,BC,CA的长分别为6cm,4cm,4cm,P为三边角平分线的交点,则△ABP,△BCP,△ACP的面积比等于()A.1:1:1 B.2:2:3 C.2:3:2 D.3:2:28.点A(m2+1,y A)在正比例函数y=﹣2x的图象上,则()B.y A<0 C.y A≤﹣2 D.y A≥﹣2A.y A>09.如图,在菱形ABCD中,∠A=60°,E、F分别是AB、AD的中点,DE、BF相交于点G,连接BD、CG.给出以下结论,其中正确的有()①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S△ADE=AB2.A.1个B.2个C.3个D.4个10.已知二次函数y=ax2+bx+c中,其函数y与自变量x之间的部分对应值如下表所示:点A(x1,y1)、B(x2,y2)在函数的图象上,则当1<x1<2,3<x2<4时,y1与y2的大小关系正确的是()A.y1>y2B.y1<y2C.y1≥y2D.y1≤y2二、填空题(共4小题,每小题3分,计18分)11.分解因式:4x2﹣16y2=.12.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A.在平面内,将长度为6的线段AB绕它的中点M,按逆时针方向旋转60°,则线段AB扫过的面积为.B.用科学计算器计算:sin42.5°=(精确到0.01).13.在平面直角坐标系中,若一条平行于x轴的直线l分别交双曲线y=﹣和y=于A,B两点,P 是x轴上的任意一点,则△ABP的面积等于.14.在Rt △ABC 中,∠BAC=30°,斜边AB=2,动点P 在AB 边上,动点Q 在AC 边上,且∠CPQ=90°,则线段CQ 长的最小值= .三、解答题(共11题,78分)15.(1)先化简,再求值:(x+2)2+x (2﹣x ),其中x=.(2)解分式方程:.16.解不等式组:,并把不等式组的解集在数轴上表示出来.17.在济南市开展的“美丽泉城,创卫我同行”活动中,某校倡议七年级学生利用双休日在各自社区参加义务劳动.为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制成不完整的统计图表,如图所示:(1)统计表中的x= ,y= ;(2)被调查同学劳动时间的中位数是 时;(3)请将频数分布直方图补充完整;(4)求所有被调查同学的平均劳动时间.18.如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.19.已知关于x的方程x2+ax+a﹣2=0(1)若该方程的一个根为1,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.20.黔东南州某校九年级某班开展数学活动,小明和小军合作用一副三角板测量学校的旗杆,小明站在B点测得旗杆顶端E点的仰角为45°,小军站在点D测得旗杆顶端E点的仰角为30°,已知小明和小军相距(BD)6米,小明的身高(AB)1.5米,小军的身高(CD)1.75米,求旗杆的高EF的长.(结果精确到0.1,参考数据:≈1.41,≈1.73)21.如图,一次函数y1=kx+b的图象与反比例函数y2=的图象相交于点A(2,5)和点B,与y轴相交于点C(0,7).(1)求这两个函数的解析式;(2)当x取何值时,y1<y2.22.甲、乙两同学用一副扑克牌中牌面数字分别是:3,4,5,6的4张牌做抽数学游戏.游戏规则是:将这4张牌的正面全部朝下,洗匀,从中随机抽取一张,抽得的数作为十位上的数字,然后,将所抽的牌放回,正面全部朝下、洗匀,再从中随机抽取一张,抽得的数作为个位上的数字,这样就得到一个两位数.若这个两位数小于45,则甲获胜,否则乙获胜.你认为这个游戏公平吗?请运用概率知识说明理由.23.已知:如图,P是⊙O外一点,过点P引圆的切线PC(C为切点)和割线PAB,分别交⊙O于A、B,连接AC,BC.(1)求证:∠PCA=∠PBC;(2)利用(1)的结论,已知PA=3,PB=5,求PC的长.24.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),B(4,0),C(0,2)三点.(1)求这条抛物线的解析式;(2)E为抛物线上一动点,是否存在点E使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由.25.如图,在直角梯形AOBC中,AC∥OB,且OB=6,AC=5,OA=4.(1)直接写出B、C两点的坐标;(2)以O、A、B、C中的三点为顶点可组成哪几个不同的三角形?(3)是否在边AC和BC(含端点)上分别存在点M和点N,使得△MON的面积最大时,它的周长还最短?若存在,请说明理由,并求出这时点M、N的坐标;若不存在,为什么?2019年陕西省西安市中考数学模拟试卷(二)参考答案与试题解析一、选择题(共10小题,每小题3分,计30分)1.﹣的倒数是()A.3 B.C.﹣3 D.±【考点】倒数.【分析】根据乘积为1的两个数互为倒数,可得答案.【解答】解:﹣的倒数是﹣3.故选:C.【点评】本题考查了倒数,乘积为1的两个数互为倒数.2.如图,由6个相同的小正方体搭成的立体图形,若由图①变到图②,不改变的是()A.主视图B.左视图C.俯视图D.左视图和俯视图【考点】简单组合体的三视图.【分析】根据主视图是从物体的正面看得到的视图,俯视图是从上面看得到的图形,左视图是左边看得到的图形,可得答案.【解答】解:主视图都是第一层三个正方形,第二层左边一个正方形,故A正确;故选:A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.计算(﹣3a3)2的结果是()A.﹣3a6B.3a6C.﹣9a6D.9a6【考点】幂的乘方与积的乘方.【分析】根据积的乘方和幂的乘方法则进行计算即可.【解答】解:(﹣3a3)2=9a6,故选D.【点评】本题考查了对积的乘方和幂的乘方法则的应用,主要考查学生运用法则进行计算的能力,注意:①积的乘方,把积的每个因式分别乘方,再把所得的幂相乘,②幂的乘方,底数不变,指数相乘.4.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是()A.32°B.58°C.68°D.60°【考点】平行线的性质;余角和补角.【专题】计算题.【分析】本题主要利用两直线平行,同位角相等及余角的定义作答.【解答】解:根据题意可知,∠2=∠3,∵∠1+∠2=90°,∴∠2=90°﹣∠1=58°.故选:B.【点评】主要考查了平行线的性质和互余的两个角的性质.互为余角的两角的和为90°.解此题的关键是能准确的从图中找出这两个角之间的数量关系,从而计算出结果.5.某外贸公司要出口一批食品罐头,标准质量为每听450克,现抽取10听样品进行检测,它们的质量与标准质量的差值(单位:克)如下:﹣10,+5,0,+5,0,0,﹣5,0,+5,+10,则这10听罐头质量的众数为()A.460 B.455 C.450 D.0【考点】众数.【分析】根据众数的概念求解.【解答】解:由题意得,质量与标准质量的差值众数为0,则众数为:450+0=450.故选C.【点评】本题考查了众数的知识,一组数据中出现次数最多的数据叫做众数.6.如果a<b,那么下列不等式中一定正确的是()A.a﹣2b<﹣b B.a2<ab C.ab<b2D.a2<b2【考点】不等式的性质.【分析】利用不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变进行分析即可.【解答】解:A、a<b两边同时减2b,不等号的方向不变可得a﹣2b<﹣b,故此选项正确;B、a<b两边同时乘以a,应说明a>0才得a2<ab,故此选项错误;C、a<b两边同时乘以b,应说明b>0才得a b<b2,故此选项错误;D、a<b两边同时乘以相同的数,故此选项错误;故选:A.【点评】此题主要考查了不等式的基本性质,关键是要注意不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.7.△ABC的三边AB,BC,CA的长分别为6cm,4cm,4cm,P为三边角平分线的交点,则△ABP,△BCP,△ACP的面积比等于()A.1:1:1 B.2:2:3 C.2:3:2 D.3:2:2【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边距离相等可得点P到△ABC三边的距离相等,然后根据等高的三角形的面积的比等于底边的比解答.【解答】解:∵P为三边角平分线的交点,∴点P到△ABC三边的距离相等,∵AB,BC,CA的长分别为6cm,4cm,4cm,∴△ABP,△BCP,△ACP的面积比=6:4:4=3:2:2.故选D.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,等高的三角形的面积的比等于底边的比,熟记性质并判断出点P到△ABC三边的距离相等是解题的关键.8.点A(m2+1,y A)在正比例函数y=﹣2x的图象上,则()B.y A<0 C.y A≤﹣2 D.y A≥﹣2A.y A>0【考点】一次函数图象上点的坐标特征.【专题】计算题.【分析】把A点坐标代入y=﹣2x得到y A=﹣2m2﹣2,然后利用非负数的性质易得y A≤﹣2.【解答】解:∵A(m2+1,y A)在正比例函数y=﹣2x的图象上,∴y A=﹣2(m2+1)=﹣2m2﹣2,∵﹣2m2≤0,∴﹣2m2﹣2≤﹣2,即y A≤﹣2.故选C.【点评】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b);直线上任意一点的坐标都满足函数关系式y=kx+b.9.如图,在菱形ABCD中,∠A=60°,E、F分别是AB、AD的中点,DE、BF相交于点G,连接BD、CG.给出以下结论,其中正确的有()①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S△ADE=AB2.A.1个B.2个C.3个D.4个【考点】菱形的性质;全等三角形的判定与性质;等边三角形的判定与性质.【分析】由条件可判定△ABD为等边三角形,可得出DE⊥AB、BF⊥AD,可求得∠FGE,可判断①;由条件可证得△DCG≌△BCG,可判断②;在△BDF和△CGB中可得出BD≠CG,可判断③;由等边三角形的面积可知S△ABD=AB2可判断④.可得出答案.【解答】解:∵四边形ABCD为菱形,∴AD=AB,且∠A=60°,∴△ABD为等边三角形,又∵E、F分别是AB、AD的中点,∴DE⊥AB,BF⊥AD,∴∠GFA=∠GEA=90°,∴∠BGD=∠FGE=360°﹣∠A﹣∠GFA﹣∠GEA=120°,∴①正确;∵四边形ABCD为菱形,∴AB∥CD,AD∥BC,∴∠CDG=∠CBG=90°,在Rt△CDG和Rt△CBG中,,∴Rt△CDG≌Rt△CBG(HL),∴DG=BG,∠DCG=∠BCG=∠DCB=30°,∴DG=BG=CG,∴DG+BG=CG,∴②正确;在Rt△BDF中,BD为斜边,在Rt△CGB中,CG为斜边,且BD=BC,在Rt△CGB中,显然CG>BC,即CG>BD,∴△BDF和△CGB不可能全等,∴③不正确;∵△ABD为等边三角形,∴S△ABD=AB2,∴S△ADE=S△ABD=AB2,∴④不正确;综上可知正确的只有两个,故选B.【点评】本题主要考查菱形的性质及等边三角形的性质,熟练掌握菱形的四边相等、对边平行及等边三角形的性质是解题的关键.10.已知二次函数y=ax2+bx+c中,其函数y与自变量x之间的部分对应值如下表所示:点A(x1,y1)、B(x2,y2)在函数的图象上,则当1<x1<2,3<x2<4时,y1与y2的大小关系正确的是()A.y1>y2B.y1<y2C.y1≥y2D.y1≤y2【考点】二次函数图象上点的坐标特征.【专题】计算题.【分析】由表格可知,当1<x<2时,0<y<1,当3<x<4时,1<y<4,由此可判断y1与y2的大小.【解答】解:∵当1<x<2时,函数值y小于1,当3<x<4时,函数值y大于1,∴y1<y2.故选B.【点评】本题考查了二次函数图象上点的坐标特点.关键是由表格判断自变量取值范围内,函数值的大小.二、填空题(共4小题,每小题3分,计18分)11.分解因式:4x2﹣16y2=4(x+2y)(x﹣2y).【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式4,进而利用平方差公式分解因式得出即可.【解答】解:4x2﹣16y2=4(x2﹣4y2)=4(x+2y)(x﹣2y).故答案为:4(x+2y)(x﹣2y).【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练掌握乘法公式是解题关键.12.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A.在平面内,将长度为6的线段AB绕它的中点M,按逆时针方向旋转60°,则线段AB扫过的面积为3.B.用科学计算器计算:sin42.5°=24.03(精确到0.01).【考点】扇形面积的计算;计算器—三角函数.【分析】A.线段AB扫过的面积是:半径是3,圆心角是60°的扇形的面积的2倍,利用扇形的面积公式即可求解.B.根据计算器的应用,对计算器给出的结果四舍五入可得答案.【解答】解:A.半径是3,圆心角是60°的扇形的面积是:=π,则线段AB扫过的面积是2×π=3π.故答案是:3π.B.sin42.5°≈3.60×0.676=2.44.故答案为2.44.【点评】本题考查了扇形的面积公式,正确理解公式是关键.13.在平面直角坐标系中,若一条平行于x轴的直线l分别交双曲线y=﹣和y=于A,B两点,P 是x轴上的任意一点,则△ABP的面积等于4.【考点】反比例函数系数k的几何意义.【分析】根据题意画出图形,分别过点A 、B 作AC ⊥x 轴,BD ⊥x 轴,由点A 、B 分别在双曲线y=﹣和y=上可知S 矩形ACOE =6,S 矩形BEOD =2,故S 矩形ACDB =S 矩形ACOE +S 矩形BEOD =6+2=8,故AB •AC=8,再由S △ABP =AB •AC 即可得出结论.【解答】解:如图所示:分别过点A 、B 作AC ⊥x 轴,BD ⊥x 轴,∵点A 、B 分别在双曲线y=﹣和y=上,∴S 矩形ACOE =6,S 矩形BEOD =2,∴S 矩形ACDB =S 矩形ACOE +S 矩形BEOD =6+2=8,即AB •AC=8,∴S △ABP =AB •AC=×8=4.故答案为:4.【点评】本题考查的是反比例函数系数k 的几何意义,根据题意画出图形,利用数形结合求解是解答此题的关键.14.在Rt △ABC 中,∠BAC=30°,斜边AB=2,动点P 在AB 边上,动点Q 在AC 边上,且∠CPQ=90°,则线段CQ 长的最小值= 2 .【考点】切线的性质;圆周角定理;相似三角形的判定与性质.【分析】以CQ 为直径作⊙O ,当⊙O 与AB 边相切动点P 时,CQ 最短,根据切线的性质求得OP ⊥AB ,进而根据已知求得△POQ 为等边三角形,得出∠APQ=30°,设PQ=OQ=OP=OC=r ,3r=AC=cos30°•AB=×=3,从而求得CQ 的最小值为2.【解答】解:以CQ 为直径作⊙O ,当⊙O 与AB 边相切动点P 时,CQ 最短,∴OP⊥AB,∵∠ACB=90°,∠A=30°,∴∠POA=60°,∵OP=OQ,∴△POQ为等边三角形,∴∠POQ=60°,∴∠APQ=30°,∴设PQ=OQ=AP=OC=r,3r=AC=cos30°•AB=×=3,∴CQ=2,∴CQ的最小值为2.故答案为2.【点评】本题考查了切线的性质,圆周角定理,解直角三角形函数等,熟练掌握性质定理是解题的关键.三、解答题(共11题,78分)15.(1)先化简,再求值:(x+2)2+x(2﹣x),其中x=.(2)解分式方程:.【考点】整式的混合运算—化简求值;解分式方程.【分析】(1)先算乘法,再合并同类项即可;(2)先去分母得出整式方程,求出方程的解,最后检验即可.【解答】解:(1)(x+2)2+x(2﹣x)=x2+4x+4+2x﹣x2=6x+4,当x=时,原式=6×+4=6;(2)方程两边都乘以(x+2)(x ﹣2)得:2x (x ﹣2)﹣3(x+2)=2(x+2)(x ﹣2),解得:x=,检验:把x=代入(x+2)(x ﹣2)≠0,所以,原方程的解为x=.【点评】本题考查了整式的混合运算和求值,解分式方程的应用,(1)小题主要考查学生的化简能力和计算能力,解(2)小题的关键是把分式方程转化成整式方程,难度适中.16.解不等式组:,并把不等式组的解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:由①得,x ≥﹣1,由②得,x <4,故此不等式组的解集为:﹣1≤x <4.在数轴上表示为:.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.17.在济南市开展的“美丽泉城,创卫我同行”活动中,某校倡议七年级学生利用双休日在各自社区参加义务劳动.为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制成不完整的统计图表,如图所示:(1)统计表中的x=40,y=0.18;(2)被调查同学劳动时间的中位数是 1.5时;(3)请将频数分布直方图补充完整;(4)求所有被调查同学的平均劳动时间.【考点】频数(率)分布直方图;频数(率)分布表;加权平均数;中位数.【分析】(1)首先根据劳动时间是0.5小时的有12人,频率是0.12即可求得总数,然后根据频率的计算公式求得x、y的值;(2)根据中位数的定义,即大小处于中间位置的数即可作出判断;(3)根据(1)的结果即可完成;(4)利用加权平均数公式即可求解.【解答】解:(1)调查的总人数是12÷0.12=100(人),则x=100×0.4=40(人),y==0.18;(2)被调查同学劳动时间的中位数是1.5小时;(3);(4)所有被调查同学的平均劳动时间是:=1.32(小时).【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.18.如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.【考点】全等三角形的判定与性质;旋转的性质.【专题】几何综合题.【分析】(1)由旋转的性质可得:CD=CE,再根据同角的余角相等可证明∠BCD=∠FCE,再根据全等三角形的判定方法即可证明△BCD≌△FCE;(2)由(1)可知:△BCD≌△FCE,所以∠BDC=∠E,易求∠E=90°,进而可求出∠BDC的度数.【解答】(1)证明:∵将线段CD绕点C按顺时针方向旋转90°后得CE,∴CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠BCD=90°﹣∠ACD=∠FCE,在△BCD和△FCE中,,∴△BCD≌△FCE(SAS).(2)解:由(1)可知△BCD≌△FCE,∴∠BDC=∠E,∠BCD=∠FCE,∴∠DCE=∠DCA+∠FCE=∠DCA+∠BCD=∠ACB=90°,∵EF∥CD,∴∠E=180°﹣∠DCE=90°,∴∠BDC=90°.【点评】本题考查了全等三角形的判定和性质、同角的余角相等、旋转的性质、平行线的性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.19.已知关于x的方程x2+ax+a﹣2=0(1)若该方程的一个根为1,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.【考点】根的判别式;一元二次方程的解;根与系数的关系.【专题】判别式法.【分析】(1)将x=1代入方程x2+ax+a﹣2=0得到a的值,再根据根与系数的关系求出另一根;(2)写出根的判别式,配方后得到完全平方式,进行解答.【解答】解:(1)将x=1代入方程x2+ax+a﹣2=0得,1+a+a﹣2=0,解得,a=;方程为x2+x﹣=0,即2x2+x﹣3=0,设另一根为x1,则1•x1=﹣,x1=﹣.(2)∵△=a2﹣4(a﹣2)=a2﹣4a+8=a2﹣4a+4+4=(a﹣2)2+4>0,∴不论a取何实数,该方程都有两个不相等的实数根.【点评】本题考查了根的判别式和根与系数的关系,要记牢公式,灵活运用.20.黔东南州某校九年级某班开展数学活动,小明和小军合作用一副三角板测量学校的旗杆,小明站在B点测得旗杆顶端E点的仰角为45°,小军站在点D测得旗杆顶端E点的仰角为30°,已知小明和小军相距(BD)6米,小明的身高(AB)1.5米,小军的身高(CD)1.75米,求旗杆的高EF的长.(结果精确到0.1,参考数据:≈1.41,≈1.73)【考点】解直角三角形的应用-仰角俯角问题.【专题】几何图形问题.【分析】过点A作AM⊥EF于M,过点C作CN⊥EF于N,则MN=0.25m.由小明站在B点测得旗杆顶端E点的仰角为45°,可得△AEM是等腰直角三角形,继而得出得出AM=ME,设AM=ME=xm,则CN=(x+6)m,EN=(x﹣0.25)m.在Rt△CEN中,由tan∠ECN==,代入CN、EN解方程求出x的值,继而可求得旗杆的高EF.【解答】解:过点A作AM⊥EF于M,过点C作CN⊥EF于N,∴MN=0.25m,∵∠EAM=45°,∴AM=ME,设AM=ME=xm,则CN=(x+6)m,EN=(x﹣0.25)m,∵∠ECN=30°,∴tan∠ECN===,解得:x≈8.8,则EF=EM+MF≈8.8+1.5=10.3(m).答:旗杆的高EF为10.3m.【点评】本题考查了解直角三角形的问题.该题是一个比较常规的解直角三角形问题,建立模型比较简单,但求解过程中涉及到根式和小数,算起来麻烦一些.21.如图,一次函数y1=kx+b的图象与反比例函数y2=的图象相交于点A(2,5)和点B,与y轴相交于点C(0,7).(1)求这两个函数的解析式;(2)当x取何值时,y1<y2.【考点】反比例函数与一次函数的交点问题.【专题】数形结合;待定系数法.【分析】(1)将点C、点A的坐标代入一次函数解析式可得k、b的值,将点A的坐标代入反比例函数解析式可得m的值,继而可得两函数解析式;(2)寻找满足使一次函数图象在反比例函数图象下面的x的取值范围.【解答】解:(1)将点(2,5)、(0,7)代入一次函数解析式可得:,解得:.∴一次函数解析式为:y=﹣x+7;将点(2,5)代入反比例函数解析式:5=,∴m=10,∴反比例函数解析式为:y=.(2)由题意,得:,解得:或,∴点B的坐标为(5,2),由图象得:当0<x <2或x >5时,y 1<y 2.【点评】本题考查了反比例函数与一次函数的交点问题,解答本题的关键是联立解析式,求出交点坐标.22.甲、乙两同学用一副扑克牌中牌面数字分别是:3,4,5,6的4张牌做抽数学游戏.游戏规则是:将这4张牌的正面全部朝下,洗匀,从中随机抽取一张,抽得的数作为十位上的数字,然后,将所抽的牌放回,正面全部朝下、洗匀,再从中随机抽取一张,抽得的数作为个位上的数字,这样就得到一个两位数.若这个两位数小于45,则甲获胜,否则乙获胜.你认为这个游戏公平吗?请运用概率知识说明理由.【考点】游戏公平性.【分析】游戏是否公平,关键要看是否游戏双方赢的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等.【解答】解:这个游戏不公平,游戏所有可能出现的结果如下表:表中共有16种等可能结果,小于45的两位数共有6种.∴P (甲获胜)=,P (乙获胜)=.∵,∴这个游戏不公平.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.23.已知:如图,P是⊙O外一点,过点P引圆的切线PC(C为切点)和割线PAB,分别交⊙O于A、B,连接AC,BC.(1)求证:∠PCA=∠PBC;(2)利用(1)的结论,已知PA=3,PB=5,求PC的长.【考点】切线的性质;相似三角形的判定与性质.【专题】几何综合题.【分析】(1)连结OC,OA,先根据等腰三角形的性质得出∠ACO=∠CAO,再由PC是⊙O的切线,C为切点得出∠PCO=90°,∠PCA+∠ACO=90°,在△AOC中根据三角形内角和定理可知∠ACO+∠CAO+∠AOC=180°,由圆周角定理可知∠AOC=2∠PBC,故可得出∠ACO+∠PBC=90°,再根据∠PCA+∠ACO=90°即可得出结论;(2)先根据相似三角形的判定定理得出△PAC∽△PCB,由相似三角形的对应边成比例即可得出结论.【解答】(1)证明:连结OC,OA,∵OC=OA,∴∠ACO=∠CAO,∵PC是⊙O的切线,C为切点,∴PC⊥OC,∴∠PCO=90°,∠PCA+∠ACO=90°,在△AOC中,∠ACO+∠CAO+∠AOC=180°,∵∠AOC=2∠PBC,∴2∠ACO+2∠PBC=180°,∴∠ACO+∠PBC=90°,∵∠PCA+∠ACO=90°,∴∠PCA=∠PBC;(2)解:∵∠PCA=∠PBC,∠CPA=∠BPC,∴△PAC∽△PCB,∴=,∴PC2=PA•PB,∵PA=3,PB=5,∴PC==.【点评】本题考查的是切线的性质,根据题意作出辅助线,构造出圆心角是解答此题的关键.24.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),B(4,0),C(0,2)三点.(1)求这条抛物线的解析式;(2)E为抛物线上一动点,是否存在点E使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)本题需先根据已知条件,过C点,设出该抛物线的解析式为y=ax2+bx+2,再根据过A,B两点,即可得出结果;(2)由图象可知,以A、B为直角顶点的△ABE不存在,所以△ABE只可能是以点E为直角顶点的三角形.由相似关系求出点E的坐标.【解答】解:(1)∵该抛物线过点C(0,2),∴可设该抛物线的解析式为y=ax2+bx+2.将A(﹣1,0),B(4,0)代入,得,解得,∴抛物线的解析式为:y=﹣x2+x+2.(2)存在.由图象可知,以A、B为直角顶点的△ABE不存在,所以△ABE只可能是以点E为直角顶点的三角形.在Rt△BOC中,OC=2,OB=4,∴BC==2.在Rt△BOC中,设BC边上的高为h,则×2h=×2×4,∴h=.∵△BEA∽△COB,设E点坐标为(x,y),∴=,∴y=±2将y=2代入抛物线y=﹣x2+x+2,得x1=0,x2=3.当y=﹣2时,不合题意舍去.∴E点坐标为(0,2),(3,2).【点评】本题考查了二次函数的综合题,涉及相似三角形的性质的运用,勾股定理的运用,解题的关键是正确求出函数的解析式.25.如图,在直角梯形AOBC中,AC∥OB,且OB=6,AC=5,OA=4.(1)直接写出B、C两点的坐标;(2)以O、A、B、C中的三点为顶点可组成哪几个不同的三角形?(3)是否在边AC和BC(含端点)上分别存在点M和点N,使得△MON的面积最大时,它的周长还最短?若存在,请说明理由,并求出这时点M、N的坐标;若不存在,为什么?【考点】四边形综合题.【分析】(1)由OB=6,点B在x轴,得到B点的坐标,根据AC∥OB,AC=5,得到点C的坐标;(2)根据不在同一直线的三点能组成一个三角形,得到以O、A、B、C中的三点为顶点可组成4个不同的三角形;(3)过点M作MP∥OA,交ON于点P,过点N作NQ∥OB,分别交OA、MP于两点Q、G,则S△MON=S△OMP+S△NMP=MP•QG+MP•GN,因为QN、MP同时取得最大值是OB、OA,所以M 应该和A重合,从而求得M的坐标.【解答】解:(1)∵OB=6,OA=4,∴B(6,0)∵AC∥OB,AC=5,∴C(5,4);(2)以O、A、B、C中的三点为顶点可组成的三角形为△AOB△AOC△BOC△ABC四个不同的三角形;(3)如图,过点M作MP∥OA,交ON于点P,过点N作NQ∥OB,分别交OA、MP于两点Q、G,则S△MON=S△OMP+S△NMP=\frac{1}{2}MP•QG+\frac{1}{2}MP•GN,∵MP≤OA,QN≤OB,∴当点N与点B重合,M在AC上运动时,QN,MP同时取得最大值BO,OA,∴△MON的面积=OA•OB,∴M点与A点重合,∴M(0,4),△MON的周长=10+,当△OMN是等腰三角形时,点N与B重合,则OM=MN,∴M(3,4),∴△MON的面积=OA•OB,∴△MON的周长=16<10+,∴存在点M和点N,使得△MON的面积最大时,它的周长还最短,M(3,4).【点评】本题考查了直角梯形的性质,坐标和图形的性质,轴对称的性质,不在同一直线的三点能组成一个三角形等知识点,作出辅助线是本题的关键.。
陕西省西安市2019届中考数学模拟试卷(解析版)一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.的相反数是()A.﹣B.C.﹣D.1.414【分析】根据相反数的意义,可得答案.【解答】解:的相反数是﹣,故选:A.【点评】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.2.下列几何体中,左视图与主视图相同的是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,从正面看得到的图形是主视图,可得答案.【解答】解:的主视图与左视图都是下边是梯形上边是矩形,故选:A.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,从正面看得到的图形是主视图.3.下列计算正确的是()A.(﹣3a2b)3=﹣3a5b3B.ab2•(﹣4a3b)=﹣2a4b3C.4m3n2÷m3n2=0 D.a5﹣a2=a3【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【解答】解:∵(﹣3a2b)3=﹣27a6b3,故选项A错误,∵,故选项B正确,∵4m3n2÷m3n2=4,故选项C错误,∵a5﹣a2不能合并,故选项D错误,故选B.【点评】本题考查整式的混合运算,解答本题的关键是明确整式的混合运算的计算方法.4.如图,直线a、b被c所截,若a∥b,∠1=45°,∠3=100°,则∠2的度数为()A.70°B.65°C.60°D.55°【分析】先根据平行线的性质,得到∠4=∠1=45°,再根据∠3=∠2+∠4,即可得到∠2的度数.【解答】解:∵a∥b,∠1=45°,∴∠4=∠1=45°,∵∠3=∠2+∠4,∴100°=∠2+45°,∴∠2=55°,故选:D.【点评】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,内错角相等.5.如果y=(1﹣m)x是正比例函数,且y随x的增大而减小,则m的值为()A.m=﹣B.m=C.m=3 D.m=﹣3【分析】先根据正比例函数的定义列出关于m的不等式组,求出m的值即可.【解答】解:∵y=(1﹣m)x是正比例函数,且y随x的增大而减小,∴,∴m=,故选B.【点评】本题考查的是正比例函数的定义和性质,即形如y=kx(k≠0)的函数叫正比例函数.6.如图,已知△ABC中,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB于点D,交AC于点E,连接CD,则CD=()A.3 B.4 C.4.8 D.5【分析】直接利用勾股定理的逆定理得出△ABC是直角三角形,进而得出线段DE是△ABC的中位线,再利用勾股定理得出AD,再利用线段垂直平分线的性质得出DC的长.【解答】解:∵AB=10,AC=8,BC=6,∴BC2+AC2=AB2,∴△ABC是直角三角形,∵DE是AC的垂直平分线,∴AE=EC=4,DE∥BC,且线段DE是△ABC的中位线,∴DE=3,∴AD=DC==5.故选:D.【点评】此题主要考查了勾股定理以及其逆定理和三角形中位线的性质,正确得出AD的长是解题关键.7.如图,1﹣4月份,甲、乙两工厂月生产增长量的变化情况,则甲工厂和乙工厂生产增长量差值最大的月份是()A.1月份B.2月份C.3月份D.4月份【分析】折线最陡的一段线,就是增长量差值最大的月份.【解答】解:甲工厂和乙工厂生产增长量差值最大的月份是2月份,故选B.【点评】本题考查了折线统计图,根据图中的折线的变化和数据进行求解.8.已知一次函数y=kx+b﹣x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为()A.k>1,b<0 B.k>1,b>0 C.k>0,b>0 D.k>0,b<0【分析】先将函数解析式整理为y=(k﹣1)x+b,再根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【解答】解:一次函数y=kx+b﹣x即为y=(k﹣1)x+b,∵函数值y随x的增大而增大,∴k﹣1>0,解得k>1;∵图象与x轴的正半轴相交,∴图象与y轴的负半轴相交,∴b<0.故选:A.【点评】本题考查的是一次函数的图象与系数的关系,由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.熟知一次函数的增减性是解答此题的关键.9.如图,在矩形ABCD中,AB=4,BC=6,将矩形ABCD绕B逆时针旋转30°后得到矩形GBEF,延长DA交FG于点H,则GH的长为()A.8﹣4B.﹣4 C.3﹣4 D.6﹣3【分析】作辅助线,构建直角△AHM,先由旋转得BG的长,根据旋转角为30°得∠GBA=30°,利用30°角的三角函数可得GM和BM的长,由此得AM和HM的长,相减可得结论.【解答】解:如图,延长BA交GF于M,由旋转得:∠GBA=30°,∠G=∠BAD=90°,BG=AB=4,∴∠BMG=60°,tan∠30°==,∴,∴GM=,∴BM=,∴AM=﹣4,Rt△HAM中,∠AHM=30°,∴HM=2AM=﹣8,∴GH=GM﹣HM=﹣(﹣8)=8﹣4,故选A.【点评】本题考查了矩形的性质、旋转的性质、特殊角的三角函数及直角三角形30°的性质,熟练掌握直角三角形30°所对的直角边等于斜边的一半及特殊角的三角函数值,属于基础题.10.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是()A.1 B.2 C.3 D.4【分析】利用抛物线的对称性得到抛物线与x轴的另一个交点在点(﹣2,0)和(﹣1,0)之间,则当x=﹣1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=﹣=1,即b=﹣2a,则可对②进行判断;利用抛物线的顶点的纵坐标为n得到=n,则可对③进行判断;由于抛物线与直线y=n有一个公共点,则抛物线与直线y=n﹣1有2个公共点,于是可对④进行判断.【解答】解:∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(﹣2,0)和(﹣1,0)之间.∴当x=﹣1时,y>0,即a﹣b+c>0,所以①正确;∵抛物线的对称轴为直线x=﹣=1,即b=﹣2a,∴3a+b=3a﹣2a=a,所以②错误;∵抛物线的顶点坐标为(1,n),∴=n,∴b2=4ac﹣4an=4a(c﹣n),所以③正确;∵抛物线与直线y=n有一个公共点,∴抛物线与直线y=n﹣1有2个公共点,∴一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,所以④正确.故选C.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c):抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题(共4小题,每小题3分,计12分)11.﹣13+﹣12sin30°=﹣5.【分析】根据乘方的意义,开平方、特殊角三角函数值,可得答案.【解答】解:原式=﹣1+2﹣12×=﹣1+2﹣6=﹣5,故答案为:﹣5.【点评】本题考查了实数的运算,利用乘方的意义,开平方、特殊角三角函数值,注意﹣13的底数是1.12.(1)正三角形的边长为4,则它的面积为2(2)31+2sin18°≈31.62(保留两位小数)【分析】(1)求出等边三角形一边上的高,即可确定出三角形面积;【解答】解:如图,过A作AD⊥BC,∵AB=AB=BC=4,∴BD=CD=BC=2,在Rt△ABD中,根据勾股定理得:AD==2,则S△ABC=BC•AD=2;(2)31+2sin18°≈31+2×0.3090=31.62.故答案为:2,31.62.【点评】此题考查了等边三角形的性质,计算器﹣三角函数,熟练掌握等边三角形的性质是解本题的关键.13.如图所示,直线y=kx(k<0)与双曲线y=﹣交于M(x1,y1),N(x2,y2)两点,则x1y2﹣3x2y1的值为﹣.【分析】由反比例函数图象的特征,得到两交点坐标关于原点对称,故x1=﹣x2,y1=﹣y2,再代入x1y2﹣3x2y1,由k=xy得出答案.【解答】解:由图象可知点M(x1,y1),N(x2,y2)关于原点对称,即﹣x1=x2,﹣y1=y2,把M(x1,y1)代入双曲线y=﹣,得x1y1=﹣2,则x1y2﹣3x2y1=﹣x1y1+3x1y1=﹣6=﹣.故答案为:﹣.【点评】本题考查了正比例函数与反比例函数交点坐标的性质,解决问题的关键是利用两交点坐标关于原点对称.14.如图,在Rt△ABC中,∠C=90°,AB=13,AC=12,经过点C且与AB边相切的动圆与BC、CA分别相交于点M、N,则线段MN长度的最小值为.【分析】设MN的中点为P,⊙P与AB的切点为D,连接PD,连接CP,CD,则有PD⊥AB;由勾股定理可求得BC的长,由MN=PD+CP可得到MN≥CD,故此当MN=CD时,MN有最小值,此时点C、P、D在一条直线上,最后利用面积法可求得CD的长,从而得到MN的最小值.【解答】解:如图,设MN的中点为P,⊙P与AB的切点为D,连接PD,连接CP,CD,则有PD⊥AB;∵AB=13,AC=12,∴BC==5.∵PC+PD=MN,∴PC+PD≥CD,MN≥CD.∴当MN=CD时,MN有最小值.∵PD⊥AB,∴CD⊥AB.∵AB•CD=BC•AC,∴CD===.∴CD的最小值.∴MN的最小值为.故答案为:.【点评】此题主要考查了切线的性质,勾股定理的逆定理,三角形的三边关系,直角三角形的面积公式求解,得出CD=BC•AC÷AB是解题关键.三、解答题.(共11小题,满分78分,解答题后写出过程)15.(5分)1﹣1﹣2sin30°+|3.14﹣π|+(﹣1)0.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=1﹣1+π﹣3.14+1=π﹣2.14.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.(5分)解方程:﹣=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3﹣x2+x=x2﹣1,即2x2﹣x﹣4=0,解得:x=,经检验x=是分式方程的解.【点评】此题考查了解分式方程,利用转化的思想,解分式方程注意要检验.17.(5分)如图,已知锐角三角形ABC,求作⊙C,使⊙C与AB所在的直线相切于点D(保留作图痕迹,不写作法).【分析】根据切线的性质,过C先作AB的垂线,垂足为D,以C为圆心,由CD作半径的圆即和AB相切.【解答】解:作法:①过C作CE⊥AB于D,②以C为圆心,以CD为半径画圆,则⊙C就是所求作的圆.【点评】本题考查了切线的性质和复杂作图问题,明确过直线外一点作已知直线的垂线,并熟练掌握圆的切线的性质.18.(5分)某校为了了解七年级学生课外活动情况,随机调查了该校若干名学生,调查他们喜欢各类课外活动的情况(课外活动分为四类:A﹣﹣喜欢打乒乓球的人,B﹣﹣喜欢踢足球的人,C﹣﹣喜欢打篮球的人,D﹣﹣喜欢其他的人),并将调查结果绘制成如下两幅不完整的统计图.根据统计图信息完成下列问题:(1)调查的学生人数为120人.(2)补全条形统计图和扇形统计图.(3)若该校七年级共有600人,请估计七年级学生中喜欢打乒乓球的人数.【分析】(1)利用A人数除以所占百分比即可得到调查学生数;(2)首先计算出喜欢踢足球的人数,然后计算出喜欢踢足球的人所占百分比,再计算出喜欢其他的人所占百分比,然后补图即可;(3)利用总人数乘以样本中喜欢打乒乓球的人数所占百分比即可.【解答】解:(1)30÷25%=120,故答案为:120;(2)喜欢踢足球的人数:120﹣30﹣60﹣6=24,所占百分比:×100%=20%,喜欢其他的人所占百分比:×100%=5%,如图所示;(3)600×=150(人),答:七年级学生中喜欢打乒乓球的人数为150人.【点评】此题主要考查了条形统计图,以及利用样本估计总体,关键是读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.19.(7分)已知:如图,在矩形ABCD中,点E在边AD上,点F在边BC上,且AE=CF,作EG∥FH,分别与对角线BD交于点G、H,连接EH,FG.(1)求证:△BFH≌△DEG;(2)连接DF,若BF=DF,则四边形EGFH是什么特殊四边形?证明你的结论.【分析】(1)由平行四边形的性质得出AD∥BC,AD=BC,OB=OD,由平行线的性质得出∠FBH=∠EDG,∠OHF=∠OGE,得出∠BHF=∠DGE,求出BF=DE,由AAS即可得出结论;(2)先证明四边形EGFH是平行四边形,再由等腰三角形的性质得出EF⊥GH,即可得出四边形EGFH是菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠FBH=∠EDG,∵AE=CF,∴BF=DE,∵EG∥FH,∴∠OHF=∠OGE,∴∠BHF=∠DGE,在△BFH和△DEG中,,∴BFH≌△DEG(AAS);(2)解:四边形EGFH是菱形;理由如下:连接DF,如图所示:由(1)得:BFH≌△DEG,∴FH=EG,又∵EG∥FH,∴四边形EGFH是平行四边形,∵DE=BF,∠EOD=∠BOF,∠EDO=∠FBO,∴△EDO≌△FBO,∴OB=OD,∵BF=DF,OB=OD,∴EF⊥BD,∴EF⊥GH,∴四边形EGFH是菱形.【点评】本题考查了全等三角形的性质和判定,平行线的性质,菱形的判定,等腰三角形的性质,平行四边形的性质和判定等知识;熟练掌握平行四边形的判定与性质,证明三角形全等是解决问题的关键.20.(7分)已知某山区的平均气温与该山的海拔高度的关系见下表:(1)若海拔高度用x(米)表示,平均气温用y(℃)表示,试写出y与x之间的函数关系式;(2)若某种植物适宜生长在18℃~20℃(包含18℃,也包含20℃)山区,请问该植物适宜种植在海拔为多少米的山区?【分析】(1)分析数据可知:高度每增加100米,温度下降0.5℃.据此列关系式;(2)取y=18,20,分别求出高度x的值,再回答问题.【解答】解:(1)y=22﹣0.5×=22﹣0.005x;(2)当y=18时,即22﹣0.005x=18,解得x=800;当y=20时,即22﹣0.005x=20,解得x=400.∴若某种植物适宜生长在18℃~20℃(包含18℃,也包含20℃)山区,那么该植物适宜种植在海拔为400~800米的山区.【点评】此题考查一次函数的应用,正确表示函数关系式是关键.难度不大.21.(7分)如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,求建筑物的高.【分析】根据题意可得出△CDG∽△ABG,△EFH∽△ABH,再根据相似三角形的对应边成比例即可得出结论.【解答】解:∵AB⊥BH,CD⊥BH,EF⊥BH,∴AB∥CD∥EF,∴△CDG∽△ABG,△EFH∽△ABH,∴=,=,∵CD=DG=EF=2m,DF=52m,FH=4m,∴=,=,∴=,解得BD=52,∴=,解得AB=54.答:建筑物的高为54米.【点评】本题考查的是相似三角形的应用,熟知相似三角形的对应边成比例是解答此题的关键.22.(7分)“五一”小长假期间,某超市为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”、“30元”的字样.规定:顾客在本超市一次性购物满500元以上均可获得两次摸球的机会(摸出小球后放回).超市根据两小球所标金额的和返还相应的代金券.(1)顾客甲购物1000元,则他最少可获0元代金券,最多可获60元代金券.(2)请用树形图或列表方法,求出顾客甲获得不低于30元(含30元)代金券的概率.【分析】(1)至少得到的金额数为0+0=0元,至多得到的金额数为30+30=60元;(2)列举出所有情况,看该顾客所获得购物券的金额不低于30元的情况数占总情况数的多少即可.【解答】解:(1)至少得到的金额数为0+0=0元,至多得到的金额数为30+30=60元,故答案为0、60;(2)画树状图如下:共16种情况,不低于30元的情况数有10种,所以所求的概率为=.【点评】本题考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的关键.23.(8分)已知:如图,在△ABC中,D是AB边上一点,圆O过D、B、C三点,∠DOC=2∠ACD=90°.(1)求证:直线AC是圆O的切线;(2)如果∠ACB=75°,圆O的半径为2,求BD的长.【分析】(1)证明OC⊥AC即可.根据∠DOC是等腰直角三角形可得∠DCO=45°.又∠ACD=45°,所以∠ACO=90°,得证;(2)如果∠ACB=75°,则∠BCD=30°;又∠B=∠O=45°,解斜三角形BCD求解.所以作DE⊥BC,把问题转化到解直角三角形求解.先求CD,再求DE,最后求BD得解.【解答】(1)证明:∵OD=OC,∠DOC=90°,∴∠ODC=∠OCD=45°.∵∠DOC=2∠ACD=90°,∴∠ACD=45°.∴∠ACD+∠OCD=∠OCA=90°.∵点C在圆O上,∴直线AC是圆O的切线.(2)解:方法1:∵OD=OC=2,∠DOC=90°,∴CD=2.∵∠ACB=75°,∠ACD=45°,∴∠BCD=30°,作DE⊥BC于点E,则∠DEC=90°,∴DE=DCsin30°=.∵∠B=45°,∴DB=2.方法2:连接BO∵∠ACB=75°,∠ACD=45°,∴∠BCD=30°,∴∠BOD=60°∵OD=OB=2∴△BOD是等边三角形∴BD=OD=2.【点评】此题考查了切线的判定方法和解直角三角形,内容单一,难度不大.注意:解斜三角形通常通过作垂线把问题转化为解直角三角形求解.24.(10分)已知抛物线y=3ax2+2bx+c,(Ⅰ)若a=b=1,c=﹣1,求该抛物线与x轴公共点的坐标;(Ⅱ)若a=b=1,且当﹣1<x<1时,抛物线与x轴有且只有一个公共点,求c的取值范围;(Ⅲ)若a+b+c=0,且x1=0时,对应的y1>0;x2=1时,对应的y2>0,试判断当0<x<1时,抛物线与x轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.【分析】(Ⅰ)把a,b,c的值代入可得抛物线的解析式,求出两根即可;(Ⅱ)把a,b代入解析式可得△=4﹣12c≥0,等于0时可直接求得c的值;求出y的相应的值后可得c的取值范围;(Ⅲ)抛物线y=3ax2+2bx+c与x轴公共点的个数就是一元二次方程3ax2+2bx+c=0的实数根的个数,因此,本题的解答就是研究在不同的条件下一元二次方程3ax2+2bx+c=0根的判别式的符号,依据判别式的符号得出相应的结论.【解答】解:(Ⅰ)当a=b=1,c=﹣1时,抛物线为y=3x2+2x﹣1,方程3x2+2x﹣1=0的两个根为x1=﹣1,.∴该抛物线与x轴公共点的坐标是(﹣1,0)和(,0);(Ⅱ)当a=b=1时,抛物线为y=3x2+2x+c,且与x轴有公共点.对于方程3x2+2x+c=0,判别式△=4﹣12c≥0,有c≤.①当时,由方程3x2+2x+=0,解得x1=x2=﹣.此时抛物线为y=3x2+2x+与x轴只有一个公共点(﹣,0);(4分)②当时,x1=﹣1时,y1=3﹣2+c=1+c;x2=1时,y2=3+2+c=5+c.由已知﹣1<x<1时,该抛物线与x轴有且只有一个公共点,考虑其对称轴为,应有即,解得﹣5<c≤﹣1.综上,或﹣5<c≤﹣1.(6分)(Ⅲ)对于二次函数y=3ax2+2bx+c,由已知x1=0时,y1=c>0;x2=1时,y2=3a+2b+c>0,又∵a+b+c=0,∴3a+2b+c=(a+b+c)+2a+b=2a+b.∴2a+b>0.∵b=﹣a﹣c,∴2a﹣a﹣c>0,即a﹣c>0.∴a>c>0.(7分)∵关于x的一元二次方程3ax2+2bx+c=0的判别式△=4b2﹣12ac=4(a+c)2﹣12ac=4[(a﹣c)2+ac]>0,∴抛物线y=3ax2+2bx+c与x轴有两个公共点,顶点在x轴下方.(8分)又该抛物线的对称轴,由a+b+c=0,c>0,2a+b>0,得﹣2a<b<﹣a,∴.又由已知x1=0时,y1>0;x2=1时,y2>0,观察图象,可知在0<x<1范围内,该抛物线与x轴有两个公共点.(10分)【点评】借助图象,可将抽象的问题直观化;二次函数与x轴的交点的纵坐标为0;抛物线与x轴交点的个数就是一元二次方程根的个数.25.(12分)问题探究(1)请在图①的正方形ABCD的对角线BD上作一点P,使PA+PC最小;(2)如图②,点P为矩形ABCD的对角线BD上一动点,AB=2,BC=2,点E为BC边的中点,求作一点P,使PE+PC最小,并求这个最小值.问题解决(3)如图③,李师傅有一块边长为1000米的菱形ABCD采摘园,AC=1200米,BD为小路,BC的中点E为一水池,李师傅现在准备在小路BD上建一个游客临时休息纳凉室P,为了节省土地,使休息纳凉室P到水池E与大门C的距离之和最短,那么是否存在符合条件的点P?若存在,请作出的点P位置,并求出这个最短距离;若不存在,请说明理由.【分析】(1)利用正方形的对称性直接连接AC即可;(2)作出点C关于BD的对称性,连接C'E交BD于P,进而判断出△CEC'是直角三角形,利用勾股定理即可求出;(3)直接连接AE交BD于P,再过点E作EF⊥AC,构造出直角三角形,再利用三角形的中位线求出EF,进而利用勾股定理求出CF,最后在Rt△AEF中利用勾股定理即可.【解答】解:(1)如图①,连接AC交BD于P,则AP+CP最小=AC;(2)如图②,作点C关于BD的对称点C'交BD于F,连接C'E交BD于P,则PE+PC最小=C'E.∵BD是矩形ABCD的对角线,∴CD=AB=2,∠BCD=90°,在Rt△BCD中,CD=2,BC=2,∴tan∠CBD===,∴∠CBD=30°,由对称知,CC'=2CF,CC'⊥BD,∴∠CFD=90°,∴∠BCF=60°,∠DCF=30°,在Rt△CDF中,CD=2,∠DCF=30°,∴CF=,∴CC'=2CF=2,∵点E为BC边的中点,∴CE=BC=,∴CF=CE,连接EF,∴△CEF是等边三角形,∴EF=CF=C'F,∴△CEC'是直角三角形,在Rt△CEC'中,CC'=2,CE=,∴C'E=3,∴PE+PC最小为3;(3)如图③,菱形ABCD的对角线相交于点O,∴OC=OA=AC=600,AC⊥BD,在Rt△BOC中,OB==800,过点E作EF⊥AC于F,∴EF∥OB,∵点E是BC的中点,EF=OB=400,∵CE=BC=500,.................... 根据勾股定理得,CF==300,∴AF=AC ﹣CF=1200﹣300=900,连接AE 交BD 于P ,即:PC +PE 最小=AE , 在Rt △AEF 中,根据勾股定理得,AE==100,【点评】此题是四边形综合题,主要考查了正方形的性质,矩形的性质,菱形的性质,对称的性质,三角形的中位线,勾股定理;解(2)的关键是判断出△CEC'是直角三角形,解(3)的关键是构造出直角三角形AEF .。
2018—2019学年度下学期第二次模拟考试数学试卷一、选择题 1. 87-的相反数是( ) A. 78-B.78C.87-D.87 2. 下列图形中,经过折叠可以得到四棱柱的是( )3. 如图,直线a ∥b ,在RT △ABC 中,∠C=90°,AC ⊥b ,垂足为A ,则图中与∠1互余的角有( ) A.2个 B.3个 C.4个 D.5个第3题 第5题4. 若正比例函数y=kx 的图像经过第二、四象限,且过点A (2m ,1)和B (2,m ),则k 的值为( ) A. 21-B.2-C.1-D.1 5. 如图在RT △ABC 中∠ACB=90°,∠A=65°,CD ⊥AB ,垂足为D ,E 是BC 的中点,连接ED ,则∠DEC 的度数是( ) A.25° B.30° C.40° D.50° 6. 下列计算正确的是( )A. 532a a a =+B.y x xy x 3232312-=-⋅)(C. 22))((b a b a b a -=---D.36326)2(y x y x -=- 7. 设一次函数)(0≠+=k b kx y 的图像经过点(-1,3),且y 随x 的增大而增大,则该一次函数的图像一定不经过( ) A. 第一象限 B.第二象限 C.第三象限 D.第四象限8. 如图,在正方形ABCD 中,AB=2,若以CD 为边向其外作等腰直角△DCE ,连接BE ,则BE 的长为( )A.5 B.22 C.10 D.32第8题 第9题9. 如图,矩形ABCD 内接于⊙O ,点P 是AD 上一点,连接PB、PC ,若AD=2AB ,则sin ∠BPC 的值为( )A.55 B.552 C.23 D.1053 10. 已知抛物线m x m x y +++=)1(2,当x=1时,y>0,且当x<-2,y 的值随x 的增大而减小,则m 的取值范围是( ) A. m>-1 B.m<3 C.31≤<-m D.43≤<m 二、填空题11. 使1-x 有意义的x 的取值范围是12. 两个完全相同的正五边形都有一边在直线l 上,且 有一个公共顶点O ,其摆放方式如图所示,则∠AOB 等于 度。
2019年陕西省西安市碑林区铁三中学中考数学三模试卷一.选择题(满分30分,每小题3分)1.计算:(﹣3)0=()A.1 B.0 C.3 D.﹣2.有若干个完全相同的小正方体堆成一个如图所示几何体,若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加小正方体的个数为()A.2 B.3 C.4 D.53. AB∥CD,直线MN与AB、CD分别交于点E、F,FG平分∠EFD,EG⊥FG于点G,若∠CFN =110°,则∠BEG=()A.20°B.25°C.35°D.40°4.已知点A(﹣1,y1),点B(2,y2)在函数y=﹣3x+2的图象上,那么y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.不能确定5.在下列运算中,正确的是()A.(x﹣y)2=x2﹣y2B.(a+2)(a﹣3)=a2﹣6C.(a+2b)2=a2+4ab+4b2D.(2x﹣y)(2x+y)=2x2﹣y26.如图,在△ABC中,D是BC边的中点,AE是∠BAC的角平分线,AE⊥CE于点E,连接DE.若AB=7,DE=1,则AC的长度是()A.5 B.4 C.3 D.27.如图,四边形ABCD的顶点坐标分别为A(﹣4,0),B(﹣2,﹣1),C(3,0),D(0,3),当过点B的直线l将四边形ABCD分成面积相等的两部分时,直线l所表示的函数表达式为()A.y=x+B.y=x+C.y=x+1 D.y=x+8.如图,折叠菱形纸片ABCD,使得A′D′对应边过点C,若∠B=60°,AB=2,当A′E ⊥AB时,AE的长是()A.2B.2C.D.1+9.如图,点C为△ABD外接圆上的一点(点C不在上,且不与点B,D重合),且∠ACB=∠ABD=45°,若BC=8,CD=4,则AC的长为()A.8.5 B.5C.4D.10.抛物线y=ax2+bx+c经过点(﹣2,0),且对称轴为直线x=1,其部分图象如图所示.对于此抛物线有如下四个结论:①ac>0;②16a+4b+c=0;③若m>n>0,则x=1+m时的函数值大于x=1﹣n时的函数值;④点(﹣,0)一定在此抛物线上.其中正确结论的序号是()A.①②B.②③C.②④D.③④二.填空题(满分12分,每小题3分)11.的整数部分为a,则a2﹣3=.12.如图所示的五角星是轴对称图形,它的对称轴共有条.13.如图,双曲线的第一象限分支上有一动点P,点A(﹣2,﹣2),B(2,2),则PA ﹣PB的值=.14.如图,在▱ABCD中,E为AD边上一点,且AE=AB,若∠BED=160°,则∠D的度数为.三.解答题15.(5分)计算:.16.(5分)解方程:﹣=017.(5分)如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC分成面积相等的两部分(要求:尺规作图,保留作图,痕迹,不写作法).18.(5分)已知:如图AC,BD相交于点O,∠A=∠D,AB=CD,求证:△AOB≌△DOC.19.(7分)为了解某学校兴趣小组活动情况,随机抽取了部分同学进行调查,按A:艺术,B:科技,C:体育,D:其他四个项目进行统计,绘制了两幅统计图(均不完整),请根据统计图解答以下问题:(1)本次接受问卷调查的共有人:在扇形统计图中“D”选项所占的百分比为;(2)扇形统计图中,“B”选项所对应扇形圆心角为度;(3)请补全条形统计图;(4)若全校有2000人,请你估算一下全校喜欢艺术类学生的人数有多少?20.(7分)如图,某大楼的顶部竖有一块广告牌CD,小明在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)21.(7分)为了美化环境,建设宜居城市,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)试求出y与x的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉的种植面积的2倍.①试求种植总费用W元与种植面积x(m2)之间的函数关系式;②应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用W最少?最少总费用为多少元?22.(7分)2018年江苏省扬州市初中英语口语听力考试即将举行,某校认真复习,积极迎考,准备了A、B、C、D四份听力材料,它们的难易程度分别是易、中、难、难;a,b 是两份口语材料,它们的难易程度分别是易、难.(1)从四份听力材料中,任选一份是难的听力材料的概率是.(2)用树状图或列表法,列出分别从听力、口语材料中随机选一份组成一套完整的模拟试卷的所有情况,并求出两份材料都是难的一套模拟试卷的概率.23.(8分)如图1,△ABC是等腰三角形,O是底边BC中点,腰AB与⊙O相切于点D (1)求证:AC是⊙O的切线;(2)如图2,连接CD,若tan∠BCD=,⊙O的半径为,求BC的长.24.(10分)如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P 的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.25.(12分)如图,矩形OABC的两条边OA、OC分别在y轴和x轴上,已知点B坐标为(4,﹣3).把矩形OABC沿直线DE折叠,使点C落在点A处,直线DE与OC、AC、AB的交点分别为D、F、E.(1)线段AC=;(2)求点D坐标及折痕DE的长;(3)若点P在x轴上,在平面内是否存在点Q,使以P、D、E、Q为顶点的四边形是菱形?若存在,则请求出点Q的坐标;若不存在,请说明理由.参考答案一.选择题1.解:(﹣3)0=1.故选:A.2.解:若要保持俯视图和左视图不变,可以往第2排右侧正方体上添加1个,往第3排中间正方体上添加2个、右侧两个正方体上再添加1个,即一共添加4个小正方体,故选:C.3.解:∵∠CFN=110°,∴∠DFE=∠CFN=110°,∵FG平分∠EFD,∴∠EFG=∠EFD=55°,又EG⊥FG,即∠G=90°,∴∠GEF=35°,∵AB∥CD、∠EFD=110°,∴∠BEF=70°,∴∠BEG=∠BEF﹣∠GEF=35°,故选:C.4.解:∵k=﹣3<0∴y随x的增大而减小∵﹣1<2∴y1>y2故选:A.5.解:A、(x﹣y)2=x2﹣2xy+y2,故本选项错误;B、(a+2)(a﹣3)=a2﹣a﹣6,故本选项错误;C、(a+2b)2=a2+4ab+4b2,故本选项正确;D、(2x﹣y)(2x+y)=4x2﹣y2,故本选项错误;故选:C.6.解:延长CE,交AB于点F.∵AE平分∠BAC,AE⊥CE,∴∠EAF=∠EAC,∠AEF=∠AEC,在△EAF与△EAC中,,∴△EAF≌△EAC(ASA),∴AF=AC,EF=EC,又∵D是BC中点,∴BD=CD,∴DE是△BCF的中位线,∴BF=2DE=2.∴AC=AF=AB﹣BF=7﹣2=5;故选:A.7.解:由A(﹣4,0),B(﹣2,﹣1),C(3,0),D(0,3),∴AC=7,DO=3,∴四边形ABCD分成面积=AC×(|y B|+3)==14,可求CD的直线解析式为y=﹣x+3,设过B的直线l为y=kx+b,将点B代入解析式得y=kx+2k﹣1,∴直线CD与该直线的交点为(,),直线y=kx+2k﹣1与x轴的交点为(,0),∴7=×(3﹣)×(+1),∴k=或k=0,∴k=,∴直线解析式为y=x+;故选:D.8.解:如图所示,延长AB,D'A'交于点G,∵A'E⊥AB,∠EA'C=∠A=120°,∴∠BGC=120°﹣90°=30°,又∵∠ABC=60°,∴∠BCG=60°﹣30°=30°,∴∠BGC=∠BCG=30°,∴BC=BG=BA,设AE=x=A'E,则BE=AB﹣AE=2﹣x,A'G=2x,∴GE=BG+BE=2+2﹣x=4﹣x,∵Rt△A'GE中,A'E2+GE2=A'G2,∴x2+(4﹣x)2=(2x)2,解得:x=﹣2+2,(负值已舍去)∴AE=2﹣2,故选:B.9.解:延长CD到E,使得DE=BC,连接AE,如右图所示,∵∠ACB=∠ABD=45°,∠ACB=∠ADB,∴∠ADB=45°,∴∠BAD=90°,AB=AD,∵四边形ABCD是圆内接四边形,∠ADE+∠ADC=180°,∴∠ADC+∠ABC=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠BAC=∠DAE,∵∠BAC+∠CAD=∠BAD=90°,∴∠DAE+∠CAD=90°,∴∠CAE=90°,∵ACD=45°,BC=DE=8,CD=4,∴∠ACE=45°,CE=12,∴AC=AE=6,故选:D.10.解:∵抛物线开口向下,∴a<0,∵抛物线交y轴的正半轴,∴c>0,∴ac<0,故①错误;∵抛物线的对称轴为直线x=1,而点(﹣2,0)关于直线x=1的对称点的坐标为(4,0),∴16a+4b+c=0,故②正确;∵抛物线开口向下,对称轴为直线x=1,∴横坐标是1﹣n的点的对称点的横坐标为1+n,∵若m>n>0,∴1+m>1+n,∴x=1+m时的函数值小于x=1﹣n时的函数值,故③错误;∵抛物线的对称轴为﹣=1,∴b=﹣2a,∴抛物线为y=ax2﹣2ax+c,∵抛物线y=ax2+bx+c经过点(﹣2,0),∴4a+4a+c=0,即8a+c=0,∴c=﹣8a,∴﹣=4,∵点(﹣2,0)的对称点是(4,0),∴点(﹣,0)一定在此抛物线上,故④正确,故选:C.二.填空题(共4小题,满分12分,每小题3分)11.解:∵的整数部分为a,3<<4,∴a=3,∴a2﹣3=9﹣3=6.故答案为:6.12.解:五角星的对称轴共有5条,故答案为:5.13.解:设P点坐标为(a,),则PB==a+﹣2,PA==a++2,所以PA﹣PB=4.故答案为4.14.解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵AB=AE,∴∠ABE=∠AEB,∵∠BED=160°,∴∠AEB=20°,∴∠ABC=∠ABE+∠CBE=2∠AEB=40°,∴∠D=∠ABC=40°,故答案为:40°.三.解答题(共11小题,满分78分)15.解:原式=4+1﹣2+3﹣4,=2.16.解:去分母得:6x﹣(x+5)=0,去括号得:6x﹣x﹣5=0,合并同类项移项得:5x=5,系数化为1得:x=1,检验:把x=1代入x(x﹣1)=0,所以原方程无解.17.解:如图,作线段BC的中垂线,交BC于点D,则直线AD即为所求.18.证明:在△AOB和△DOC中,,所以,△AOB≌△DOC(AAS).19.解:(1)50÷50%=100人,10÷100=10%故答案为:100,10%.(2)360°×20%=72°,故答案为:72.(3)100﹣20﹣50﹣10=20人,补全条形统计图如图所示:(4)2000×=400人答:全校有2000人中喜欢艺术类学生的人数大约有400人.20.解:(1)Rt △ABF 中,i =tan ∠BAH ==,∴∠BAH =30°,∴BH =AB =5;(2)过B 作BG ⊥DE 于G , 由(1)得:BH =5,AH =5, ∴BG =AH +AE =5+15, Rt △BGC 中,∠CBG =45°,∴CG =BG =5+15.Rt △ADE 中,∠DAE =60°,AE =15,∴DE =AE =15. ∴CD =CG +GE ﹣DE =5+15+5﹣15=20﹣10≈2.7m . 答:宣传牌CD 高约2.7米.21.解:(1)当0≤x ≤300时,设y =k 1x ,根据题意得300k 1=39000,解得k 1=130,即y =130x ;当x >300时,设y =k 2x +b ,根据题意得,解得,即y =80x+15000,∴y=;(2)①当200≤x≤300时,w=130x+100(1200﹣x)=30x+120000;当x>300时,w=80x+15000+100(1200﹣x)=﹣20x+135000;②设甲种花卉种植为am2,则乙种花卉种植(1200﹣a)m2,∴,∴200≤a≤800当a=200 时.W min=126000 元当a=800时,W min=119000 元∵119000<126000∴当a=800时,总费用最少,最少总费用为119000元.此时乙种花卉种植面积为1200﹣800=400m2.答:应该分配甲、乙两种花卉的种植面积分别是800m2和400m2,才能使种植总费用最少,最少总费用为119000元.22.解:(1)∵A、B、C、D四份听力材料的难易程度分别是易、中、难、难,∴从四份听力材料中,任选一份是难的听力材料的概率是;故答案为:;(2)树状图如下:∴P(两份材料都是难)==.23.(1)证明:连接OD,OA,作OF⊥AC于F,如图,∵△ABC为等腰三角形,O是底边BC的中点,∴AO⊥BC,AO平分∠BAC,∵AB与⊙O相切于点D,∴OD⊥AB,而OF⊥AC,∴OF=OD,∴AC是⊙O的切线;(2)过D作DF⊥BC于F,连接OD,∵tan∠BCD=,∴=,设DF=a,OF=x,则CF=4a,OC=4a﹣x,∵O是底边BC中点,∴OB=OC=4a﹣x,∴BF=OB﹣OF=4a﹣2x,∵OD⊥AB,∴∠BDO=90°,∴∠BDF+∠FDO=90°,∵DF⊥BC,∴∠DFB=∠OFD=90°,∠FDO+∠DOF=90°,∴∠BDF=∠DOF,∴△DFO∽△BFD,∴,∴,解得:x1=x2=a,∵⊙O的半径为,∴OD=,∵DF2+FO2=DO2,∴(x)2+x2=()2,∴x1=x2=a=1,∴OC=4a﹣x=3,∴BC=2OC=6.24.解:(1)将A(1,0),C(﹣2,3)代入y=﹣x2+bx+c,得:,解得:,∴抛物线的函数关系式为y=﹣x2﹣2x+3;设直线AC的函数关系式为y=mx+n(m≠0),将A(1,0),C(﹣2,3)代入y=mx+n,得:,解得:,∴直线AC的函数关系式为y=﹣x+1.(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,如图1所示.设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),∴PE=﹣x2﹣2x+3,EF=﹣x+1,EF=PE﹣EF=﹣x2﹣2x+3﹣(﹣x+1)=﹣x2﹣x+2.∵点C的坐标为(﹣2,3),∴点Q的坐标为(﹣2,0),∴AQ=1﹣(﹣2)=3,=AQ•PF=﹣x2﹣x+3=﹣(x+)2+.∴S△APC∵﹣<0,∴当x=﹣时,△APC的面积取最大值,最大值为,此时点P的坐标为(﹣,).(3)当x=0时,y=﹣x2﹣2x+3=3,∴点N的坐标为(0,3).∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴抛物线的对称轴为直线x=﹣1.∵点C的坐标为(﹣2,3),∴点C,N关于抛物线的对称轴对称.令直线AC与抛物线的对称轴的交点为点M,如图2所示.∵点C,N关于抛物线的对称轴对称,∴MN=CM,∴AM+MN=AM+MC=AC,∴此时△ANM周长取最小值.当x=﹣1时,y=﹣x+1=2,∴此时点M的坐标为(﹣1,2).∵点A的坐标为(1,0),点C的坐标为(﹣2,3),点N的坐标为(0,3),∴AC==3,AN==,=AM+MN+AN=AC+AN=3+.∴C△ANM∴在对称轴上存在一点M(﹣1,2),使△ANM的周长最小,△ANM周长的最小值为3+.25.解:(1)∵四边形OABC是矩形,点B坐标为(4,﹣3).∴∠AOC=90°.OA=3,OC=4,∴AC==5.故答案为:5;(2)由折叠可得:DE⊥AC,AF=FC=,∵∠FCD=∠OCA,∠DFC=∠AOC=90°,∴△DFC∽△AOC.∴==,∴==,∴DF=,DC=,∴OD=OC﹣DC=4﹣=.∴D(,0);∵四边形OABC是矩形,∴AB∥DC,∴∠EAF=∠DCF,在△AFE和△CFD中,,∴△AFE≌△CFD(ASA).∴EF=DF.∴DE=2DF=2×=.即折痕DE的长为.(3)如图所示:由(2)可知,AE=CD=∴E(,﹣3),D(,0),(﹣,﹣3).①当DE为菱形的边时,DP=DE=,可得Q(,﹣3),Q1(0,﹣3),②当DE为菱形的对角线时,P与C重合,Q与A重合,Q2③当点Q在第一象限,E与Q关于x轴对称,Q(,3)综上所述,满足条件的点Q坐标为(,﹣3)或(﹣,﹣3)或(0,﹣3)或(,3).。
陕西省西安市莲湖区2019届九年级数学中考模拟试卷(一)一、单选题1. -2的绝对值是()A .B .C .D . 12. 如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是()A . 主视图B . 俯视图C . 左视图D . 一样大3. 正比例函数的自变量取值增加2,函数值就相应减少2,则的值为()A . 2B . -2C . -1D . 44. 如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A . 30°B . 40°C . 50°D . 60°5. 计算(1+ )÷ 的结果是()A . x+1B .C .D .6. 在△ABC中,∠BAC=115°,DE、FG分别为AB、AC的垂直平分线,则∠EAG的度数为( )A . 50°B . 40°C . 30°D . 25°7. 已知一次函数y=(m-4)x+2m+1的图象不经过第三象限,则m的取值范围是()A . m<4B . ≤m<4C . ≤m≤4D . m≤8. 填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是( )A . 110B . 158C . 168D . 1789. 如图,直径为10的⊙A经过点C(0,5)和点0(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC的余弦值为( )A .B .C .D .10. 在同一平面直角坐标系中,直线=2x+3与y=2x-5的位置关系是()A . 平行B . 相交C . 重合D . 垂直11. 已知二次函数y=(x ﹣1)﹣4,当y <0时,x 的取值范围是( )A . ﹣3<x <1B . x <﹣1或x >3C . ﹣1<x <3D . x <﹣3或x >112. 如图,函数y=ax +bx+c 的图象过点(﹣1,0)和(m ,0),请思考下列判断:①abc <0;②4a+c <2b ;③ =1﹣;④am +(2a+b )m+a+b+c <0;⑤|am+a|= 正确的是( )A . ①③⑤B . ①②③④⑤C . ①③④D . ①②③⑤二、填空题13. 不等式﹣9+3x≤0的非负整数解的和为________.14. 分解因式:m n﹣4mn ﹣4n=________.15. 如图,正五边形 内接于 ,若的半径为 ,则弧 的长为________.16. 如图,在平面直角坐标系中,直线y = x 与双曲线y = (k≠0)交于点A ,过点C (0,2)作AO 的平行线交双曲线于点B ,连接AB 并延长与y 轴交于点D (0,4),则k 的值为________.17. 如图,在边长为1的正方形ABCD 的各边上,截取AE =BF =CG =DH =x ,连接AF 、BG 、CH 、DE 构成四边形PQ RS.用x 的代数式表示四边形PQRS 的面积S.则S =________.三、解答题18. 如图,已知PA 、PB 是⊙O 的切线,A 、B 分别为切点,∠OAB=30°.(1) ∠APB=;(2) 当OA=2时,AP=.19. 计算:(1) | ﹣1|+(3.14﹣π)+ + .22220(2) + ÷20. 解方程:.21. 尺规作图(只保留作图痕迹,不要求写出作法).如图,已知∠α和线段a,求作△ABC,使∠A=∠α,∠C=90°,A B=a.22. 为了解学生参加户外活动的情况,某中学对学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:(1)求户外活动时间为1.5小时的学生有多少人?并补全条形统计图(2)每天户外活动时间的中位数是小时?(3)该校共有1800名学生,请估计该校每天户外活动超过1小时的学生人数有多少人?23. 如图,在四边形中,∥ , 交于点 , 交于点 ,且 ;求证:四边形是平行四边形.24. 如图,小华在晚上由路灯A走向路灯B.当他走到点P时,发现他身后影子的顶部刚好接触到路灯A的底部;当他向前再步行12m到达点Q时,发现他身前影子的顶部刚好接触到路灯B的底部.已知小华的身高是1.6m,两个路灯的高度都是9.6 m,且AP=QB.(1)求两个路灯之间的距离;(2)当小华走到路灯B的底部时,他在路灯A下的影长是多少?25. 在一条笔直的公路上依次有A,C,B三地,甲、乙两人同时出发,甲从A地骑自行车去B地,途经C地休息1分钟,继续按原速骑行至B地,甲到达B地后,立即按原路原速返回A地;乙步行从B地前往A地.甲、乙两人距A地的路程y(米)与时间x(分)之间的函数关系如图所示,请结合图象解答下列问题:(1) 请写出甲的骑行速度为米/分,点M 的坐标为;(2) 求甲返回时距A 地的路程y 与时间x 之间的函数关系式(不需要写出自变量的取值范围);(3) 请直接写出两人出发后,在甲返回A 地之前,经过多长时间两人距C 地的路程相等.26. 如图,AB 是⊙O 的直径,直线AT 切⊙O 于点A ,BT 交⊙O 于C ,已知∠B =30°,AT =,求⊙O 的直径AB 和弦BC 的长.27. 在平面直角坐标系xOy 中,抛物线y =ax +bx+c 经过点A ,B ,C ,已知A(﹣1,0),B(5,0),C(0,5)(1) 求抛物线与直线BC 的表达式;(2) 如图1,P 为线段BC 上一点,过点P 作y 轴平行线,交抛物线于点D ,当△BCD 的面积最大时,求点P 的坐标;(3) 如图2,抛物线顶点为E ,EF ⊥x 轴于点F ,N 是线段EF 上一动点,M(m ,0)是x 轴上一动点,若∠MNC =90°,直接写出实数m 的取值范围.28. 已知:如图,在梯形ABCD 中,AB ∥CD ,∠D =90°,AD =CD =2,点E 在边AD 上(不与点A 、D 重合),∠CE B =45°,EB 与对角线AC 相交于点F ,设DE =x.(1) 用含x 的代数式表示线段CF 的长;(2) 如果把△CAE 的周长记作C ,△BAF 的周长记作C ,设=y ,求y 关于x 的函数关系式,并写出它的定义域;(3) 当∠ABE 的正切值是 时,求AB 的长.参考答案1.2.3.4.5.6.2△CA E △BA F7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.。
陕西省西安市碑林区2019届中考数学三模试卷一、选择题1.的绝对值等于()A. ﹣2B. 2C.D.2.如图所示的几何体的俯视图是()A. B. C. D.3.下列计算正确的是()A. a2•a3=a6B. a6÷a3=a2C. (﹣2a2)3=﹣8a6D. 4x3﹣3x2=14.将一副三角板如图放置,使点A在DE上,BC∥DE,∠C=45°,∠D=30°,则∠ABD的度数为()A. 10°B. 15°C. 20°D. 25°5.正比例函数y=(2k+1)x,若y的值随x值增大而增大,则k的取值范围是()A. k>﹣B. k<﹣C. k=﹣D. k=06.如图,DE是△ABC的中位线,点F在DE上,且∠AFC=90°,若AC=10,BC=16,则DF的长为()A. 5B. 3C. 8D. 107.一次函数y= x+b(b>0)与y= x﹣1图象之间的距离等于3,则b的值为()A. 2B. 3C. 4D. 68.如图,正方形ABCD的对角线AC,BD相交于点O,DE平分∠ODA交OA于点E,若AB=4,则线段OE的长为()A. B. 4﹣2 C. D. ﹣29.如图,⊙O的半径OD⊥弦AB于点C,连接BO并延长交⊙O于点E,连接CE,若AB=4,CD=1,则CE的长为()A. B. 4 C. D.二、填空题10.分解因式:a2b+2ab2+b3=________.11.若正多边形的一个外角是45°,则该正多边形的边数是________.12.在Rt△ABC中,∠C=90°,∠A=42°,BC=3 ,则AC的长为________.(用科学计算器计算,结果精确到0.01)13.如图,在Rt△ABC中,∠ABC=90°,点B在x轴上,且B(﹣,0),A点的横坐标是1,AB=3BC,双曲线y= (m>0)经过A点,双曲线y=﹣经过C点,则m的值为________.14.如图,△APB中,AB=2 ,∠APB=90°,在AB的同侧作正△ABD、正△APE和△BPC,则四边形PCDE面积的最大值是________.三、解答题15.计算:+(π﹣2015)0+()﹣1﹣6tan30°.16.解方程:+ =1.17.如图,点P是⊙O上一点,请用尺规过点P作⊙O的切线(不写画法,保留作图痕迹).18.某中学组织全体学生参加了“服务社会献爱心”的活动,为了了解九年级学生参加活动情况,从九年级学生中随机抽取部分学生进行调查,统计了该天他们打扫街道,去敬老院服务和到社区文艺演出的人数,并绘制了如下不完整的条形统计图和扇形统计图,其中到社区文艺演出的人数占所调查的九年级学生人数的,请根据两幅统计图中的信息,回答下列问题:(1)本次调查共抽取了多少名九年级学生?(2)补全条形统计图.(3)若该中学九年级共有1400名学生,请你估计该中学九年级去敬老院的学生有多少名?19.如图,已知:在矩形ABCD中,点E在边CD上,点F在边BC上,且BF=CE,EF⊥AF,求证:AB=CF.20.如图,在航线l的两侧分别有观测点A和B,点B到航线l的距离BD为4km,点A位于点B北偏西60°方向且与B相距20km处.现有一艘轮船从位于点A南偏东74°方向的C处,沿该航线自东向西航行至观测点A的正南方向E处.求这艘轮船的航行路程CE的长度.(结果精确到0.1km)(参考数据:≈1.73,sin74°≈0.96,cos74°≈0.28,tan74°≈3.49)21.小李是某服装厂的一名工人,负责加工A,B两种型号服装,他每月的工作时间为22天,月收入由底薪和计件工资两部分组成,其中底薪900元,加工A型服装1件可得20元,加工B型服装1件可得12元.已知小李每天可加工A型服装4件或B型服装8件,设他每月加工A型服装的时间为x天,月收入为y元.(1)求y与x的函数关系式;(2)根据服装厂要求,小李每月加工A型服装数量应不少于B型服装数量的,那么他的月收入最高能达到多少元?22.某化妆品专卖店,为了吸引顾客,在“母亲节”当天举办了某种品牌化妆品有奖酬宾活动,凡购物满188元者,有两种奖励方案供选择,一是直接获得18元的礼金券,二是再得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色决定送礼金券的多少(如表)(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率.(2)如果一名顾客当天在本店购物满188元,若只考虑获得最多的礼品券,请你帮助分析选择哪种方案较为实惠.23.如图,PB为⊙O的切线,B为切点,过B作OP的垂线BA,垂足为C,交⊙O于点A,连接PA,AO,并延长AO交⊙O于点E,与PB的延长线交于点D.(1)求证:PA是⊙O的切线.(2)若tanD= ,DE=16,求PD的长.24.如图,抛物线y=﹣x2+x+6与x轴交于A,B两点,点A在点B的左侧,抛物线与y轴交于C,抛物线的顶点为D,直线l过点C交x轴于E(6,0).(1)写出顶点D的坐标和直线l的解析式.(2)点Q在x轴的正半轴上运动,过Q作y轴的平行线,交直线l于M,交抛物线于NN连接CN,将△CMN沿CN翻转,M的对应点为M′.探究:是否存在点Q,使得M′恰好落在y轴上?若存在,请求出Q的坐标;若不存在,请说明理由.25.综合题(1)如图①,点A,点B在线段l的同侧,请你在直线l上找一点P,使得AP+BP的值最小(不需要说明理由).(2)如图②,菱形ABCD的边长为6,对角线AC=6 ,点E,F在AC上,且EF=2,求DE+BF的最小值.(3)如图③,四边形ABCD中,AB=AD=6,∠BAD=60°,∠BCD=120°,四边形ABCD的周长是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.答案解析部分一、选择题</b>1.【答案】D【考点】绝对值【解析】【解答】∵|﹣|= ,∴﹣的绝对值是.故答案为:D.【分析】依据负数的绝对值是它的相反数求解即可.2.【答案】B【考点】简单几何体的三视图【解析】【解答】从上往下看,易得一个长方形,且其正中有一条纵向实线,故答案为:B.【分析】俯视图是从几何体的上面观察几何体所得的图形,需要注意能观察的线用实线表示,不能直接观察的线用虚线表示.3.【答案】C【考点】整式的混合运算【解析】【解答】A、原式=a5,A不符合题意;B、原式=a3,B不符合题意;C、原式=﹣8a6,C符合题意;D、原式不能合并,D不符合题意,故答案为:C【分析】对于A,依据同底数幂的乘法法则进行计算即可;对于B依据同底数幂的除法法则进行判断即可;对于C依据积的乘方法则进行判断即可;对于D,依据同类项的定义以及合并同类项法则进行判断即可.4.【答案】B【考点】平行线的性质【解析】【解答】∵Rt△ABC中,∠C=45°,∴∠ABC=45°,∵BC∥DE,∠D=30°,∴∠DBC=30°,∴∠ABD=45°﹣30°=15°,故答案为:B.【分析】先求得∠ABC的度数,然后依据平行线的性质可求得∠DBC的度数,最后,依据∠ABD=∠ABC-∠DBC求解即可.5.【答案】A【考点】正比例函数的图象和性质【解析】【解答】根据y随x的增大而增大,知:2k+1>0,即k>﹣.故答案为:A.【分析】由正比例函数的性质可知2k+1>0,然后解关于k的不等式求解即可.6.【答案】B【考点】三角形中位线定理【解析】【解答】∵DE是△ABC的中位线,∴DE= BC=8,∵∠AFC=90°,E是AC的中点,∴EF= AC=5,∴DF=DE﹣EF=3,故答案为:B.【分析】先依据三角形中位线的性质求得DE的长,然后在Rt△AFC中,依据直角三角形斜边上的中线等于斜边的一半可求得EF的长,最后,依据DF=DE-EF求解即可.7.【答案】C【考点】两条直线相交或平行问题【解析】【解答】解:设直线y= x﹣1与x轴交点为C,与y轴交点为A,过点A作AD⊥直线y=x+b于点D,如图所示.∵直线y= x﹣1与x轴交点为C,与y轴交点为A,∴点A(0,﹣1),点C(,0),∴OA=1,OC= ,AC= = ,∴cos∠ACO= = .∵∠BAD与∠CAO互余,∠ACO与∠CAO互余,∴∠BAD=∠ACO.∵AD=3,cos∠BAD= = ,∴AB=5.∵直线y= x+b与y轴的交点为B(0,b),∴AB=|b﹣(﹣1)|=5,解得:b=4或b=﹣6.∵b>0,∴b=4,故答案为:C.【分析】设直线y= x﹣1与x轴交点为C,与y轴交点为A,过点A作AD⊥直线y=x+b于点D,然后依据锐角三角函数的定义可得到AB点长,从而可确定出点B的坐标,故此可得到b的值.8.【答案】B【考点】正方形的性质【解析】【解答】如图,过E作EF⊥AD于F,则△AEH是等腰直角三角形,∵AB=4,△AOB是等腰直角三角形,∴AO=AB×cos45°=4× =2 ,∵DE平分∠ODA,EO⊥DO,EH⊥DH,∴OE=HE,设OE=x,则EH=AH=x,AE=2 ﹣x,∵Rt△AEH中,AH2+EH2=AE2,∴x2+x2=(2 ﹣x)2,解得x=4﹣2 (负值已舍去),∴线段OE的长为4﹣2 .故答案为:B.【分析】先过E作EH⊥AD于H,设OE=x,依据角平分线的性质可得到EH=AH=x,然后依据特殊锐角三角函数值可得到AE=2-x,接下来,在Rt△AHE中,依据列方程求解即可.9.【答案】A【考点】垂径定理【解析】【解答】连结BE,设⊙O的半径为R,如图,∵OD⊥AB,∴AC=BC= AB= ×=4,在Rt△AOC中,OA=R,OC=R﹣CD=R﹣1,∵OC2+AC2=OA2,∴(R﹣1)2+22=R2,解得R=2.5,∴OC=2.5﹣1=1.5,∴BE=2OC=3,∵AE为直径,∴∠ABE=90°,在Rt△BCE中,CE= = = .故答案为:A.【分析】设⊙O的半径为R,依据垂径定理得AC=BC=4,在Rt△AOC中,OA=R,OC=R-CD=R-1,然后依据勾股定理得到(R-1)2+22=R2,解方程可求得R的值,则OC=1.5,然后依据三角形的中位线定理可得到BE=2OC=3,再根据圆周角定理得到∠ABE=90°,最后,在Rt△BCE中利用勾股定理可计算出CE即可.二、填空题</b>10.【答案】b(a+b)2【考点】提公因式法与公式法的综合运用【解析】【解答】解:原式=b(a+b)2.故答案为:b(a+b)2.【分析】先提取公因式b,然后再依据完全平方公式进行分解即可.11.【答案】8【考点】多边形内角与外角【解析】【解答】解:∵多边形外角和是360度,正多边形的一个外角是45°,∴360°÷45°=8即该正多边形的边数是8.故答案为:8.【分析】正多边形的边数=360°÷一个外角的度数求解即可.12.【答案】8.16【考点】计算器—三角函数【解析】【解答】解:tan 42≈0.9004,=0.9004,AC≈8.16,故答案为:8.16.【分析】先用计算器求得tan 42的值,然后依据tan∠A=求解即可.13.【答案】【考点】反比例函数图象上点的坐标特征【解析】【解答】解:过点A 作AE ⊥x 轴于E ,过点C 作CF ⊥x 轴于F ,∵A 点的横坐标是1,且在双曲线y=上, ∴A (1,4m ),∵∠ABC=90°,∴∠ABC+∠CBF=∠ABC+∠BAC=90°,∴∠ABC=∠FCB ,∴△ABE ∽△BCF ,∴ = = =3,∴CF=,BF= ,∴C (﹣ ﹣, ),∵双曲线y=﹣经过C 点,∴ (﹣﹣ )=﹣2m ,∴m= ,故答案为:. 【分析】过点A 作AE ⊥x 轴垂足为E ,过点C 作CF ⊥x 轴,垂足为F ,先由点A 在反比例函数的图像上,可得到点A (1,4m ),接下来,再证明△ABE ∽△BCF ,依据相似三角形的性质可求得CF 和BF 的长,从而得到点C 的坐标,最后,依据点C 在双曲线上可得到关于m 的方程,从而可求得m 的值.14.【答案】2【考点】全等三角形的判定与性质【解析】【解答】解:如图,延长EP交BC于点F,∵∠APB=90°,∠APE=∠BPC=60°,∴∠EPC=150°,∴∠CPF=180°﹣150°=30°,∴PF平分∠BPC,又∵PB=PC,∴PF⊥BC,设Rt△ABP中,AP=a,BP=b,则CF= CP= b,a2+b2=8,∵△APE和△ABD都是等边三角形,∴AE=AP,AD=AB,∠EAP=∠DAB=60°,∴∠EAD=∠PAB,∴△EAD≌△PAB(SAS),∴ED=PB=CP,同理可得:△APB≌△DCB(SAS),∴EP=AP=CD,∴四边形CDEP是平行四边形,∴四边形CDEP的面积=EP×CF=a× b= ab,又∵(a﹣b)2=a2﹣2ab+b2≥0,∴2ab≤a2+b2=8,∴ab≤2,即四边形PCDE面积的最大值为2.故答案为:2.【分析】首先延长EP交BC于点F,从而可得到PF⊥BC,接下来,再证明四边形CDEP为平行四边形,然后依据平行四边形的性质得出四边形CDEP的面积=EP×CF=a×b=ab,最后根据a2+b2=8,可判断出ab的最大值,从而可得到问题的答案.三、解答题</b>15.【答案】解:原式=2 +1+2﹣6× =3.【考点】实数的运算,零指数幂,负整数指数幂,特殊角的三角函数值【解析】【分析】先依据二次根式的性质、零指数幂的性质、负整数指数幂的性质、特殊锐角三角函数值进行化简,最后,再进行计算即可.16.【答案】解:方程的两边同乘(x﹣1)(x+1),得(x+1)2﹣4=(x﹣1)(x+1),解得x=1.检验:把x=1代入(x﹣1)(x+1)=0.所以原方程的无解.【考点】解分式方程【解析】【分析】方程的最简公分母为(x﹣1)(x+1),然后方程两边同时乘以(x﹣1)(x+1)将分式方程化为整式方程,求得可求得x的值,最后,再进行检验即可.17.【答案】解:连接OP并延长,过P作OP的垂线,即为圆O的切线,如图所示:【考点】切线的性质,作图—复杂作图【解析】【分析】连接OP并延长,过P作OP的垂线,即为圆O的切线.18.【答案】(1)解:根据题意得:15÷ =50(名),则本次共抽取了50名九年级学生(2)解:去敬老院服务的学生有50﹣(25+15)=10(名),(3)解:根据题意得:1400× =280(名),则该中学九年级去敬老院的学生约有280名.【考点】用样本估计总体,扇形统计图,条形统计图【解析】【分析】(1)先依据条形统计图和扇形统计图可得到社区文艺演出的人数和所占的百分比,最后依据总数=频数除以占的百分比求解即可;(2)依据总人数等于各部分人数之和求出去敬老院服务的人数,补全条形统计图即可;(3)求出去敬老院的百分比,乘以1400即可得到结果.19.【答案】证明:∵四边形ABCD为矩形,∴∠B=∠C=90°,∵EF⊥AF,∴∠AFE=90°,∴∠BAF+∠BFA=∠BFA+∠CFE=90°,∴∠BAF=∠CFE,在△ABF和△FCE中∴△ABF≌△FCE(AAS),∴AB=CF.【考点】全等三角形的判定与性质,矩形的性质【解析】【分析】首先依据矩形的性质可得到∠B=∠C=90°,然后,再证明∠BAF=∠CFE,接下来,依据AAS可证明△ABF≌△FCE,最后,依据全等三角形对应边相等进行证明即可.20.【答案】解:如图,在Rt△BDF中,∵∠DBF=60°,BD=4km,∴BF= =8km,∵AB=20km,∴AF=12km,∵∠AEB=∠BDF,∠AFE=∠BFD,∴△AEF∽△BDF,∴= ,∴AE=6km,在Rt△AEF中,CE=AE•tan74°≈20.9km.故这艘轮船的航行路程CE的长度是20.9km.【考点】解直角三角形的应用-仰角俯角问题【解析】【分析】首先在Rt△BDF中,根据特殊锐角三角函数值和三角函数的定义可求得BF的长,进一步求出AF,然后,再证明△AEF∽△BDF,依据相似三角形的性质可求得AE的长,最后,在Rt△AEF中根据三角函数可求这艘轮船的航行路程CE的长度.21.【答案】(1)解:由题意得,y=20×4x+12×8×(22﹣x)+900,即y=﹣16x+3012(2)解:∵依题意,得4x≥ ×8×(22﹣x),∴x≥12.在y=﹣16x+3012中,∵﹣16<0,∴y随x的增大而减小.∴当x=12时,y取最大值,此时y=﹣16×12+3012=2820.答:当小李每月加工A型服装12天时,月收入最高,可达2820元.【考点】一次函数的应用【解析】【分析】(1)设他每月加工A型服装的时间为x天,则加工B型服装的时间为(22-x)天,然后依据题意列出y与x的关系式即可;(2)根据每月加工A型服装数量应不少于B型服装数量的列不等求解即可.22.【答案】(1)解:树状图为:∴一共有6种情况,摇出一红一白的情况共有4种,摇出一红一白的概率=(2)解:∵两红的概率P= ,两白的概率P= ,一红一白的概率P= ,∴摇奖的平均收益是:×12+ ×24+ ×12=20元.∵20>18,∴我选择摇奖【考点】列表法与树状图法【解析】【分析】(1)首先依据题意画出树状图,然后找出所有可能的情况以及符合条件的情况数,最后,依据概率公式进行计算即可;(2)首先计算出相应的平均收益,然后,再比较大小即可.23.【答案】(1)证明:连接OB,则OA=OB,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分线,∴PA=PB,在△PAO和△PBO中,∵,∴△PAO≌△PBO(SSS)∴∠PBO=∠PAO,PB=PA,∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠PAO=90°,即PA⊥OA,∴PA是⊙O的切线;(2)∵tanD= ,∴设AP=5x,AD=12x,则PD=13x,∴BD=8x,由切割线定理得,BD2=DE•AD,即(8x)2=16×(12x),∴x=3,∴PD=39.【考点】切线的判定与性质,解直角三角形【解析】【分析】(1)连接OB,首先依据等腰三角形的三线合一的性质得到OP是线段AB的垂直平分线,然后,依据线段垂直平分线的性质可得到PA=PB,接下来,再证明△PAO≌△PBO,进而可得∠PBO=∠PAO,然后根据切线的性质可得∠PBO=90°,进而可得:∠PAO=90°,进而可证:PA是⊙O的切线;(2)设AP=5x,AD=12x,则PD=13x,求得BD=8x,然后依据切割线定理可得到关于x的方程,从而可求得x的值,于是可得到PD的长.24.【答案】(1)解:当x=0时,y=﹣x2+x+6=6,则C(0,6),y=﹣x2+x+6=﹣(x﹣)2+ ,则D点坐标为(,),设直线l的解析式为y=kx+b,把C(0,6),E(6,0)代入得,解得,∴直线l的解析式为y=﹣x+6(2)解:存在.直线CN交x轴于P,作PH⊥l于H,如图,利用折叠的性质得CN平分∠MCM′,则根据角平分线的性质得PO=PH,设OP=t,则PH=t,PE=6﹣t,∵OC=OE,∴△OCE为等腰直角三角形,∴∠PEH=45°,∴△PEH为等腰直角三角形,∴PE= PH,即6﹣t= t,解得t=6(+1),∴P(6(+1),0),设直线PC的解析式为y=mx+n,把C(0,6),P(6(+1),0)代入得,解得,∴直线PC的解析式为y=﹣(+1)x+6,解方程组得或,∴N(2+ ,2﹣3 ),∴QN⊥x轴,∴Q(2+ ,0).【考点】二次函数的应用【解析】【分析】(1)jy轴上点的横坐标为0,将x=0代入抛物线的解析式可求得对应的y的值,从而可得到点C的纵坐标,再利用配方法得到D点坐标,然后利用待定系数法求直线l的解析式;(2)直线CN交x轴于P,作PH⊥l垂足为H,首先利用折叠的性质得CN平分∠MCM′,则根据角平分线的性质得PO=PH,设OP=t,则PH=t,PE=6-t,证明△PEH为等腰直角三角形,从而得到关于t的方程,然后可求得t的值,于是可得到点P的坐标,接着利用待定系数法求出直线PC的解析式,最后将抛物线的解析式与直线PC的解析式组成方程组求解即可.25.【答案】(1)解:如图①中,′作点A关于直线l的对称点A′,连接A′B交直线l于P,连接PA.则点P即为所求的点.(2)解:如图②中,作DM∥AC,使得DM=EF=2,连接BM交AC于F,∵DM=EF,DM∥EF,∴四边形DEFM是平行四边形,∴DE=FM,∴DE+BF=FM+FB=BM,根据两点之间线段最短可知,此时DE+FB最短,∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=3 ,在Rt△ADO中,OD= =3,∴BD=6,∵DM∥AC,∴∠MDB=∠BOC=90°,∴BM= = =2 .∴DE+BF的最小值为2 .(3)解:如图③中,连接AC、BD,在AC上取一点,使得DM=DC.∵∠DAB=60°,∠DCB=120°,∴∠DAB+∠DCB=180°,∴A、B、C、D四点共圆,∵AD=AB,∠DAB=60°,∴△ADB是等边三角形,∴∠ABD=∠ACD=60°,∵DM=DC,∴△DMC是等边三角形,∴∠ADB=∠MDC=60°,CM=DC,∴∠ADM=∠BDC,∵AD=BD,∴△ADM≌△BDC,∴AM=BC,∴AC=AM+MC=BC+CD,∵四边形ABCD的周长=AD+AB+CD+BC=AD+AB+AC,∵AD=AB=6,∴当AC最大时,四边形ABCD的周长最大,∴当AC为△ABC的外接圆的直径时,四边形ABCD的周长最大,易知AC的最大值=4 ,∴四边形ABCD的周长最大值为12+4 .【考点】菱形的性质【解析】【分析】(1)′作点A关于直线l的对称点A′,连接A′B交直线l于P,连接PA.则点P即为所求的点;(2)作DM∥AC,使得DM=EF=2,连接BM交AC于F,首先依据平行四边形的性质可得到DE=FM,从而可证明DE+BF=FM+FB=BM,根据两点之间线段最短可知,此时DE+FB最短,最后,在Rt△BDM 中,依据勾股定理求得BM的长即可;(3)连接AC、BD,在AC上取一点,使得DM=DC.先证明AC=CD+CB,再证明当AC为△ABC的外接圆的直径时,四边形ABCD的周长最大.。
2019年西工大附中第四次中考模拟试题(卷)一、选择题 1.12-的绝对值是( ) A.2- B.2 C.12-D.12 2.如图所示的几何体,它的左视图是( )A. B. C. D.3.下列各运算中,计算正确的是( )A.1234a a a ÷=B.()32639a a =C.()222a b a b +=+ D.2236a a a ⋅= 4.如图,已知//,,140AB CD AD CD =∠=︒,则2∠的度数为( )A.60︒B.65︒C.70︒D.75︒5.若正比例函数y kx =的图象上一点(除原点外)到x 轴的距离与到y 轴的距离之比为3,且y 值随着x 值的增大而减小,则k 的值为( ) A. 13- B.3- C.13D.3 6.如图在ABC ∆中,AC BC =,过点C 作CD AB ⊥,垂足为点D ,过D 作//DE BC 交AC 于点E ,若6,5BD AE ==,则sin EDC ∠的值为( )A.35 B.725C.45D.2425 7.已知一次函122y x =-+数的图象,绕x 轴上一点(),0P m 旋转180︒,所得的图象经过()0,1-,则m 的值为( )A.2-B.1-C.1D.28.如图,已知矩形ABCD 中,2BC AB =,点E 在BC 边上,连接DE AE 、,若EA 平分BED ∠,则ABE CDES S ∆∆的值为( )A.22B.32C.33D.23-9.如图已知O e 的内接五边形ABCDE ,连接BE CE 、,若,130AB BC CE EDC ==∠=︒,则ABE ∠的度数为( )A.25︒B.30︒C.35︒D.40︒10.抛物线()2221y x a x a a =+++-,则抛物线的顶点不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限二、填空题11.不等式442x x ->-的解集为_________. 12.如图,在正六边形ABCDE 中,AC 于FB 相交于点G ,则AG GC 值为________.13.若反比例函数1k y x+=的图象与一次函数y x k =+的图象有一个交点为(),4m -则这个反比例函数的表达式为__________.14.如图,已知//9060 BC 24AD BC B C AD ∠=︒∠=︒==,,,,点M 为边BC 中点,点E F 、在线段AB CD 、上运动,点P 在线段MC 上运动,连接EF EP PF 、、,则EPF ∆周长的最小值为_________.三、解答题15.计算:114sin 3012-⎛⎫︒- ⎪⎝⎭16.解方程:2318133x x x x x-+=-- 17.如图,已知矩形ABCD 中,连接AC ,请利用尺规作图法在对角线AC 上求作一点E ,使得ABC CDE ∆∆:,(保留作图痕迹不写做法)18.如图,已知ABC ∆是等边三角形,点D 在AC 边上一点,连接BD ,以BD 为边在AB 的左侧作等边DEB ∆,连接AE ,求证AB 平分EAC ∠.19.某校初三进行了第三次模拟考试,该校领导为了了解学生的数学考试情况,抽样调查了部分学生的数学成绩,并将抽样的数据进行了如下整理.(1)填空m =_______,n =________,数学成绩的中位数所在的等级_________.(2)如果该校有1200名学生参加了本次模拟测,估计D 等级的人数;(3)已知抽样调查学生的数学成绩平均分为102分,求a 等级学生的数学成绩的平均分数 ①如下分数段整理样本②根据上表绘制扇形统计图20. 如图,小华和同伴在春游期间,发现在某地小山坡的点E 处有一棵盛开的桃花的小桃树,他想利用平面镜测量的方式计算一下小桃树到山脚下的距离,即DE 的长度小华站在点B的位置,让同伴移动平面镜至点C 处,此时小华在平面镜内可以看到点E ,且 2.7BE =米,11.5CD =米,120CDE ∠=︒,已知小华的身高为1.8米,请你利用以上的数据求出DE 的长度. (结果保留根号)21. 小丽和哥哥小明分别从家和图书馆同时出发,沿同一条路相向而行,小丽开始跑步,遇 到哥哥后改为步行,到达图书馆恰好用35分钟,小明匀速骑自行车直接回家,骑行10分钟后遇到了妹妹,再继续骑行5分钟,到家两人距离家的路程()y m 与各自离开出发的时间()min x 之间的函数图像如图所示:(1)求两人相遇时小明离家的距离,(2)求小丽离距离图书馆500m 时所用的时间.22. 某超市在春节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣和优惠, 在每个转盘中指针指向每个区域的可能性均相同,若指针指向分界线,则重新转动转盘,区域对应的优惠方式如下,123,,A A A 区域分别对应9折8折和7折优惠,1234,,,B B B B 区域对应不优惠?本次活动共有两种方式。
2019年陕西省西安市中考数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.﹣2的绝对值是()A.2B.C.D.12.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.3.下列计算正确的是()A.a•a2=a2B.(a2)2=a4C.3a+2a=5a2D.(a2b)3=a2•b34.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.30°B.40°C.50°D.60°5.已知y关于x成正比例,且当x=2时,y=﹣6,则当x=1时,y的值为()A.3B.﹣3C.12D.﹣126.如图,在△ABC中,AB=AC,AD、CE分别是△ABC的中线和角平分线.若∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°7.在同一平面直角坐标系中,直线y=2x+3与y=2x﹣5的位置关系是()A.平行B.相交C.重合D.垂直8.如图,矩形ABCD中,AB=3,AD=9,点E在边AD上,AE=1,过E、D两点的圆的圆心O 在边AD的上方,直线BO交AD于点F,作DG⊥BO,垂足为G.当△ABF与△DFG全等时,⊙O的半径为()A.B.C.D.9.如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,AC=4,则OD的长为()A.1B.1.5C.2D.2.510.已知抛物线y=ax2+bx+c(a<0)经过点(﹣1,0),且满足4a+2b+c>0,有下列结论:①a+b >0;②﹣a+b+c>0;③b2﹣2ac>5a2.其中,正确结论的个数是()A.0B.1C.2D.3二.填空题(共4小题,满分12分,每小题3分)11.不等式﹣9+3x≤0的非负整数解的和为.12.如果3sinα=+1,则∠α=.(精确到0.1度)13.如图,在平面直角坐标系中,直线y=x与双曲线y=(k≠0)交于点A,过点C(0,2)作AO的平行线交双曲线于点B,连接AB并延长与y轴交于点D(0,4),则k的值为.14.已知等边三角形ABC边长为2,两顶点A、B分别在平面直角坐标系的x轴负半轴、y轴的正半轴上滑动,点C在第四象限,连结OC,则线段OC长的最小值是.三.解答题(共11小题)15.计算:+tan60°﹣(sin45°)﹣1﹣|1﹣|16.计算:+17.已知:△ABC中,∠A=36°,AB=AC,用尺规求作一条过点B的直线,使得截出的一个三角形与△ABC相似.(保留作图痕迹,不写作法)18.某校为了解本校学生每周参加课外辅导班的情况,随机调査了部分学生一周内参加课外辅导班的学科数,并将调查结果绘制成如图1、图2所示的两幅不完整统计图(其中A:0个学科,B:1个学科,C:2个学科,D:3个学科,E:4个学科或以上),请根据统计图中的信息,解答下列问题:(1)请将图2的统计图补充完整;(2)根据本次调查的数据,每周参加课外辅导班的学科数的众数是个学科;(3)若该校共有2000名学生,根据以上调查结果估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有人.19.如图,在▱CBCD中,E是对角线BD上的一点,过点C作CF∥DB,且CF=DE,连接AE,BF,EF.(1)求证:△ADE≌△BCF;(2)若∠ABE+∠BFC=180°,则四边形ABFE是什么特殊四边形?说明理由.20.如图,小华在晚上由路灯A走向路灯B.当他走到点P时,发现他身后影子的顶部刚好接触到路灯A的底部;当他向前再步行12m到达点Q时,发现他身前影子的顶部刚好接触到路灯B的底部.已知小华的身高是1.6m,两个路灯的高度都是9.6m,且AP=QB.(1)求两个路灯之间的距离.(2)当小华走到路灯B的底部时,他在路灯A下的影长是多少?21.由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)22.汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局单打,两局双打,五局比赛必须全部打完..........,赢得三局及以上的队获胜.假如甲,乙两队每局获胜的机会相同.(1)若前四局双方战成2:2,那么甲队最终获胜的概率是;(2)现甲队在前两局比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?23.如图,AB是⊙O的直径,直线AT切⊙O于点A,BT交⊙O于C,已知∠B=30°,AT=,求⊙O的直径AB和弦BC的长.24.在平面直角坐标系xOy中抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,3).(1)求抛物线的表达式;(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BCD的面积最大时,求点P的坐标;(3)如图2,抛物线顶点为E,EF⊥x轴于F点,N是线段EF上一动点,M(m,0)是x轴上一动点,若∠MNC=90°,直接写出实数m的取值范围.25.如图,△BCD内接于⊙O,直径AB经过弦CD的中点M,AE交BC的延长线于点E,连接AC,∠EAC=∠ABD=30°.(1)求证:△BCD是等边三角形;(2)求证:AE是⊙O的切线;(3)若CE=2,求⊙O的半径.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据差的绝对值是大数减小数,可得答案.【解答】解:﹣2的绝对值是2﹣.故选:A.【点评】本题考查了实数的性质,差的绝对值是大数减小数.2.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选:B.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.【分析】根据同底数幂的乘法底数不变指数相加,幂的乘方底数不变指数相乘,合并同类项系数相加字母及指数不变,积的乘方等于乘方的积,可得答案.【解答】解:A、同底数幂的乘法底数不变指数相加,故A错误;B、幂的乘方底数不变指数相乘,故B正确;C、合并同类项系数相加字母及指数不变,故C错误;D、积的乘方等于乘方的积,故D错误;故选:B.【点评】本题考查了幂的乘方与积的乘方,熟记法则并根据法则计算是解题关键.4.【分析】先根据三角形外角的性质求出∠BEF的度数,再根据平行线的性质得到∠2的度数.【解答】解:如图,∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,∴∠BEF=∠1+∠F=50°,∵AB∥CD,∴∠2=∠BEF=50°,故选:C.【点评】本题主要考查了平行线的性质,解题的关键是掌握三角形外角的性质.5.【分析】先利用待定系数法求出y=﹣3x,然后计算x=1对应的函数值.【解答】解:设y=kx,∵当x=2时,y=﹣6,∴2k=﹣6,解得k=﹣3,∴y=﹣3x,∴当x=1时,y=﹣3×1=﹣3.故选:B.【点评】本题考查了待定系数法求正比例函数的解析式:设正比例函数解析式为y=kx(k≠0),然后把一个已知点的坐标代入求出k即可.6.【分析】根据等腰三角形的性质得到∠BAD=∠CAD=20°,∠ABC=∠ACB,根据三角形内角和定理求出∠ACB,根据角平分线的定义计算即可.【解答】解:∵AB=AC,AD是△ABC的中线,∴∠BAD=∠CAD=20°,∠ABC=∠ACB,∴∠ACB==70°,∵CE是△ABC的角平分线,∴∠ACE=∠ACB=35°,故选:B.【点评】本题考查的是等腰三角形的性质,三角形的中线和角平分线以及三角形内角和定理,掌握等腰三角形的三线合一是解题的关键.7.【分析】根据直线y=2x+3与y=2x﹣5中的k都等于2,于是得到结论.【解答】解:∵直线y=2x+3与y=2x﹣5的k值相等,∴直线y=2x+3与y=2x﹣5的位置关系是平行,故选:A.【点评】本题考查了两条直线相交或平行问题,知道两直线的k值相等时两直线平行是解题的关键.8.【分析】根据全等三角形的性质得到BF=DF,根据矩形的性质得到∠A=90°,根据勾股定理得到AF=4,连接OE,OD,则OE=OD,过O作OH⊥AD于H,则HE=HD=4,根据相似三角形的性质得到OH=,根据勾股定理列方程即可得到结论.【解答】解:∵△ABF与△DFG全等,∴BF=DF,∵AD=9,∴BF=9﹣AF,∵四边形ABCD是矩形,∴∠A=90°,∴AB2+AF2=BF2,即32+AF2=(9﹣AF)2,解得:AF=4,∵AE=1,∴EF=3,DE=8,连接OE,OD,则OE=OD,过O作OH⊥AD于H,则HE=HD=4,∴FH=1,∵∠A=∠OHF=90°,∠AFB=∠OFH,∴△ABF∽△HOF,∴,即,∴OH=,在Rt△ODH中,OD==,故选:B.【点评】本题考查了矩形的性质,全等三角形的性质,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.9.【分析】由OD⊥BC,根据垂径定理,可得CD=BD,即可得OD是△ABC的中位线,则可求得OD的长.【解答】解:∵OD⊥BC,∴CD=BD,∵OA=OB,AC=4∴OD=AC=2.故选:C.【点评】此题考查了垂径定理以及三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.10.【分析】利用题意画出二次函数的大致图象,利用对称轴的位置得到﹣>,则可对①进行判断;利用a<0,b>0,c>0可对②进行判断;由a﹣b+c=0,即b=a+c,则4a+2(b+c)+c >0,所以2a+c>0,变形b2﹣2ac﹣5a2=﹣(2a+c)(2a﹣c),则可对③进行判断.【解答】解:如图,∵抛物线过点(﹣1,0),且满足4a+2b+c>0,∴抛物线的对称轴x=﹣>,∴b>﹣a,即a+b>0,所以①正确;∵a<0,b>0,c>0,∴﹣a+b+c>0,所以②正确;∵a﹣b+c=0,即b=a+c,∴4a+2(b+c)+c>0,∴2a+c>0,∴b2﹣2ac﹣5a2=(a+c)2﹣2ac﹣5a2=﹣(2a+c)(2a﹣c),而2a+c>0,2a﹣c<0,∴∴b2﹣2ac﹣5a2>0,即b2﹣2ac>5a2.所以③正确.故选:D.【点评】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二.填空题(共4小题,满分12分,每小题3分)11.【分析】根据不等式的性质求出不等式的解集,找出不等式的非负整数解相加即可.【解答】解:﹣9+3x≤0,3x≤9,∴x≤3,∴不等式﹣9+3x≤0的非负整数解有0,1,2,3,即0+1+2+3=6.故答案为:6.【点评】本题主要考查对解一元一次不等式,不等式的性质,一元一次不等式的整数解等知识点的理解和掌握,能根据不等式的解集找出不等式的非负整数解是解此题的关键.12.【分析】根据计算器可以计算出∠α的度数,从而可以解答本题.【解答】解:∵3sinα=+1,∴sinα=,解得,∠α≈65.5°,故答案为:65.5°.【点评】本题考查计算器﹣三角函数,解答本题的关键是会用计算器求三角函数的值.13.【分析】根据“直线y=x与双曲线y=(k≠0)交于点A,过点C(0,2)作AO的平行线交双曲线于点B”,得到BC的解析式,根据“OD=4,OC=2,BC∥AO”,得到△BCD~△AOD,结合点A和点B的坐标,根据点A和点B都在双曲线上,得到关于m的方程,解之,得到点A 的坐标,即可得到k的值.【解答】解:∵OA的解析式为:y=,又∵AO∥BC,点C的坐标为:(0,2),∴BC的解析式为:y=,设点B的坐标为:(m,m+2),∵OD=4,OC=2,BC∥AO,∴△BCD~△AOD,∴点A的坐标为:(2m,m),∵点A和点B都在y=上,∴m()=2m•m,解得:m=2,即点A的坐标为:(4,),k=4×=,故答案为:.【点评】本题考查了反比例函数与一次函数的交点问题,正确掌握代入法和三角形相似的判定定理是解题的关键.14.【分析】利用等边三角形的性质得出C点位置,进而求出OC的长.【解答】解:如图所示:过点C作CE⊥AB于点E,当点C,O,E在一条直线上,此时OC最短,∴△ABC是等边三角形,∴CE过点O,E为BD中点,则此时EO=AB=1,故OC的最小值为:OC=CE﹣EO=BC sin60°﹣×AB=﹣1.故答案为:﹣1.【点评】此题主要考查了勾股定理以及等边三角形的性质,得出当点C,O,E在一条直线上,此时OC最短是解题关键.三.解答题(共11小题)15.【分析】将特殊锐角的三角函数值代入,同时化简二次根式、计算绝对值,再进一步计算可得.【解答】解:原式=3+﹣()﹣1﹣(﹣1)=3+﹣﹣+1=2+1.【点评】本题主要考查实数的运算,解题的关键是熟练掌握实数的混合运算顺序和运算法则及特殊锐角的三角函数值.16.【分析】原式先计算除法运算,再计算加减运算即可求出值.【解答】解:原式=+•=+=+=.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.17.【分析】根据三角形相似的作图解答即可.【解答】解:如图,直线BD即为所求.【点评】此题主要考查相似图形的作法,关键是根据三角形相似的作图.18.【分析】(1)由A的人数及其所占百分比求得总人数,总人数减去其它类别人数求得B的人数即可补全图形;(2)根据众数的定义求解可得;(3)用总人数乘以样本中D和E人数占总人数的比例即可得.【解答】解:(1)∵被调查的总人数为20÷20%=100(人),则辅导1个学科(B类别)的人数为100﹣(20+30+10+5)=35(人),补全图形如下:(2)根据本次调查的数据,每周参加课外辅导班的学科数的众数是1个学科,故答案为:1;(3)估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有2000×=300(人),故答案为:300.【点评】此题主要考查了条形统计图的应用以及扇形统计图应用、利用样本估计总体等知识,利用图形得出正确信息求出样本容量是解题关键.19.【分析】(1)根据平行四边形的性质和全等三角形的判定证明即可;(2)根据平行四边形的性质和全等三角形的判定以及菱形的判定解答即可.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ADB=∠DBC,∵CF∥DB,∴∠BCF=∠DBC,∴∠ADB=∠BCF在△ADE与△BCF中,∴△ADE≌△BCF(SAS).(2)四边形ABFE是菱形理由:∵CF∥DB,且CF=DE,∴四边形CFED是平行四边形,∴CD=EF,CD∥EF,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴AB=EF,AB∥EF,∴四边形ABFE是平行四边形,∵△ADE≌△BCF,∴∠AED=∠BFC,∵∠AED+∠AEB=180°,∴∠ABE=∠AEB,∴AB=AE,∴四边形ABFE是菱形.【点评】此题考查平行四边形的性质,关键是根据平行四边形的性质和全等三角形的判定以及菱形的判定解答.20.【分析】(1)如图1,先证明△APM∽△ABD,利用相似比可得AP=AB,再证明△BQN∽△BAC,利用相似比可得BQ=AB,则AB+12+AB=AB,解得AB=18(m);(2)如图1,他在路灯A下的影子为BN,证明△NBM∽△NAC,利用相似三角形的性质得=,然后利用比例性质求出BN即可.【解答】解:(1)如图1,∵PM∥BD,∴△APM∽△ABD,=,即=,∴AP=AB,∵NQ∥AC,∴△BNQ∽△BCA,∴=,即=,∴BQ=AB,而AP+PQ+BQ=AB,∴AB+12+AB=AB,∴AB=18.答:两路灯的距离为18m;(2)如图1,他在路灯A下的影子为BN,∵BM∥AC,∴△NBM∽△NAC,∴=,即=,解得BN=3.6.答:当他走到路灯B时,他在路灯A下的影长是3.6m.【点评】本题考查了相似三角形的应用:通常利用相似三角形的性质即相似三角形的对应边的比相等和“在同一时刻物高与影长的比相等”的原理解决.21.【分析】(1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,根据销售收入为300万元列出方程,求出方程的解即可得到结果;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,根据公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元列出不等式,求出不等式的解集确定出y的范围,再根据利润=售价﹣成本列出W与y的一次函数,根据y的范围确定出W的最大值即可.【解答】解:(1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,根据题意得:18x+12(20﹣x)=300,解得:x=10,则20﹣x=20﹣10=10,则甲、乙两种型号的产品分别为10万只,10万只;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,根据题意得:13y+8.8(20﹣y)≤239,解得:y≤15,根据题意得:利润W=(18﹣12﹣1)y+(12﹣8﹣0.8)(20﹣y)=1.8y+64,当y=15时,W最大,最大值为91万元.【点评】此题考查了一元一次方程的应用,以及一次函数的应用,弄清题中的等量关系是解本题的关键.22.【分析】(1)直接利用概率公式求解;(2)画树状图展示所有8种等可能的结果数,再找出甲至少胜一局的结果数,然后根据概率公式求.【解答】解:(1)甲队最终获胜的概率是;故答案为;(2)画树状图为:共有8种等可能的结果数,其中甲至少胜一局的结果数为7,所以甲队最终获胜的概率=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.23.【分析】连接AC ,如图所示,由AT 与圆O 相切,得到BA 垂直于AT ,在直角三角形ABT 中,利用锐角三角函数定义求出AB 的长,根据AB 为圆O 的直径,利用直径所对的圆周角为直角得到∠ACB =90°,在直角三角形ABC 中,利用锐角三角函数定义即可求出BC 的长.【解答】解:连接AC ,如图所示:∵直线AT 切⊙O 于点A ,∴∠BAT =90°,在Rt △ABT 中,∠B =30°,AT =,∴tan30°=,即AB ==3;∵AB 是⊙O 的直径,∴∠ACB =90°,在Rt △ABC 中,∠B =30°,AB =3,∴cos30°=,则BC =AB •cos30°=.【点评】此题考查了切线的性质,锐角三角函数定义,以及圆周角定理,熟练掌握切线的性质是解本题的关键.24.【分析】(1)由y =﹣x 2+bx +c 经过点A 、B 、C ,A (﹣1,0),C (0,3),利用待定系数法即可求得此抛物线的解析式;(2)首先令﹣x 2+2x +3=0,求得点B 的坐标,然后设直线BC 的解析式为y =kx +b ′,由待定系数法即可求得直线BC 的解析式,再设P (a ,3﹣a ),即可得D (a ,﹣a 2+2a +3),即可求得PD 的长,由S △BDC =S △PDC +S △PDB ,即可得S △BDC =﹣(a ﹣)2+,利用二次函数的性质,即可求得当△BDC 的面积最大时,求点P 的坐标;(3)直角三角形斜边上的中线等于斜边的一半列出关系式m =(n ﹣)2﹣,然后根据n 的取值得到最小值.【解答】解:(1)由题意得:,解得:, ∴抛物线解析式为y =﹣x 2+2x +3;(2)令﹣x 2+2x +3=0,∴x 1=﹣1,x 2=3,即B (3,0),设直线BC 的解析式为y =kx +b ′,∴,解得:,∴直线BC 的解析式为y =﹣x +3,设P (a ,3﹣a ),则D (a ,﹣a 2+2a +3),∴PD =(﹣a 2+2a +3)﹣(3﹣a )=﹣a 2+3a ,∴S △BDC =S △PDC +S △PDB=PD •a +PD •(3﹣a )=PD •3=(﹣a 2+3a )=﹣(a ﹣)2+,∴当a =时,△BDC 的面积最大,此时P (,);(3)由(1),y =﹣x 2+2x +3=﹣(x ﹣1)2+4,∴E (1,4),设N (1,n ),则0≤n ≤4,取CM 的中点Q (,),∵∠MNC =90°,∴NQ =CM ,∴4NQ 2=CM 2,∵NQ 2=(1﹣)2+(n ﹣)2,∴4[=(1﹣)2+(n ﹣)2]=m 2+9,整理得,m =n 2﹣3n +1,即m =(n ﹣)2﹣,∵0≤n ≤4,当n =上,M 最小值=﹣,n =4时,M 最小值=5,综上,m 的取值范围为:﹣≤m ≤5.【点评】此题考查了待定系数法求函数的解析式、相似三角形的判定与性质、二次函数的最值问题、判别式的应用以及等腰直角三角形的性质等知识.此题综合性很强,难度较大,注意掌握数形结合思想、分类讨论思想与方程思想的应用.25.【分析】(1)由AB 是⊙O 的直径,M 是CD 的中点知AB ⊥CD ,BD =BC ,结合∠ABD =∠ABC =30°,即∠CBD =60°即可得证;(2)先证AE ∥CD ,由AB ⊥CD 知AE ⊥AB ,据此即可得证;(3)由AB 是直径知∠ACB =∠ACE =90°,由∠EAC =30°知AE =2CE =4,∠ABE =30°知BE =2AE =8,根据勾股定理可得直径AB 的长,从而得出答案.【解答】证明:(1)∵AB 是⊙O 的直径,M 是CD 的中点,∴AB ⊥CD ,∴BD =BC ,∴∠ABD =∠ABC =30°,即∠CBD =60°,∴△BCD 是等边三角形;(2)∵∠EAC =∠ABD ,∠ABD =∠ACD ,∴∠EAC=∠ACD,∴AE∥CD,由(1)知AB⊥CD,∴AE⊥AB,∵点A在⊙O上,∴∴AE是⊙O的切线;(3)∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACE=90°,∵∠EAC=30°,∴AE=2CE=4,在Rt△EAB中,∠ABE=30°,∴BE=2AE=8,∴AB===4,∴⊙O的半径为2.【点评】本题是圆的综合问题,解题的关键是掌握等边三角形的判定、圆心角定理、圆周角定理和勾股定理等知识.。
陕西省西安市蓝田县2019届中考数学四模试卷(解析版)一、选择题:共10小题,每小题3分,共30分,每小题只有一个选项是符合题意的.1.﹣8的立方根是()A.2 B.﹣2 C.±2 D.【分析】利用立方根的定义即可求解.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故选B【点评】本题主要考查了平方根和立方根的概念.如果一个数x的立方等于a,即x的三次方等于a(x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.读作“三次根号a”其中,a叫做被开方数,3叫做根指数.2.如图,是一根粉笔的示意图,它的主视图是()A.B.C.D.【分析】找出从几何体的正面看所得到的视图即可.【解答】解:粉笔的主视图是等腰梯形,故选:C.【点评】此题主要考查了简单几何体的三视图,关键是掌握视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.3.下列运算正确的是()A.2xy﹣3xy=﹣1 B.x5÷x=x5C.m3•m2=m6D.(﹣m3n4)2=m6n8【分析】根据合并同类项法则,同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;积的乘方和幂的乘方的性质对各选项分析判断即可得解.【解答】解:A、2xy﹣3xy=﹣xy,故本选项错误;B、x5÷x=x5﹣1=x4,故本选项错误;C、m3•m2=m3+2=m5,故本选项错误;D、(﹣m3n4)2=(﹣m3)2•(n4)2=m6n8,故本选项正确.故选D.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、积的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.4.如图,已知直线a⊥c,直线b⊥c,若∠1=65°,则∠2的度数为()A.20°B.25°C.50°D.65°【分析】先根据题意得出a∥b,再由平行线的性质得出∠3的度数,由余角的定义即可得出结论.【解答】解:∵直线a⊥c,直线b⊥c,∴a∥b,∠3=90°.∵∠1=∠4=65°,∴∠2=90°﹣65°=25°.故选B.【点评】本题考查的是平行线的判定与性质,熟知平行线的判定定理是解答此题的关键.5.已知正比例函数y=(﹣2k+2)x,若y随x的增大而增大,则k的取值范围是()A.k≤1 B.k≥1 C.k<1 D.k>1【分析】根据正比例函数图象的增减性可求出k的取值范围.【解答】解:根据y随x的增大而增大,知:﹣2k+2>0,解得k<1.故选C.【点评】考查了正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.6.如图,在菱形ABCD中,对角线AC、BD相交于点O,点E、F分别是边AB、BC的中点,连接EF,若EF=3,BD=6,则菱形ABCD的面积为()A.6B.9C.18D.36【分析】根据EF是△ABC的中位线,根据三角形中位线定理求的AC的长,然后根据菱形的面积公式求解.【解答】解:∵E、F是AB和BC的中点,即EF是△ABC的中位线,∴AC=2EF=6,则S菱形ABCD=AC•BD=×6×6=18,故选C.【点评】本题考查了三角形的中位线定理和菱形的面积公式,理解中位线定理求的AC的长是关键.7.直线y=2x﹣3与y=﹣x+3的交点在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】将y=2x﹣3与y=﹣x+3联立方程组,求出方程组的解,然后即可判断交点在第几象限,本题得以解决.【解答】解:,解得,,∴直线y=2x﹣3与y=﹣x+3的交点是(2,1),∵点(2,1)在第一象限,∴直线y=2x﹣3与y=﹣x+3的交点在第一象限,故选A.【点评】本题考查两条直线相交或平行问题,解答本题的关键求出两条直线的交点,明确各个象限内点的坐标的正负情况.8.如图,在▱ABCD中,对角线AC、BD相交于点O,分别过点A、C作BD的垂线,垂足分别为点E、F,则图中共有全等三角形()A.5对B.6对C.7对D.8对【分析】先根据平行四边形的性质得AD=BC,AB=CD,OA=OC,OB=OD,则根据全等三角形的判定方法易得△OAD≌△OCB,△OAB≌△OCD,△ABC≌△CDA,△ABD≌△CDB,再由AE⊥BD,CF⊥BD,则根据全等三角形的判定方法易得△OAE≌△OCF,△ABE≌△CDF,△AED≌△CFB.【解答】解:∵四边形ABCD为平行四边形,∴AD=BC,AB=CD,OA=OC,OB=OD,∴△OAD≌△OCB,△OAB≌△OCD,△ABC≌△CDA,△ABD≌△CDB,∵AE⊥BD,CF⊥BD,∴△OAE≌△OCF,△ABE≌△CDF,△AED≌△CFB.故选C.【点评】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.9.如图,在⊙O中,AB是⊙O的弦,点C是优弧上一点,连接OA、OC.若∠AOC=100°,则∠B的度数为()A.150°B.130°C.100°D.50°【分析】在优弧AC上取一点D,连接AD、CD.由∠D=∠AOC=50°,∠B+∠D=180°,即可解决问题【解答】解:在优弧AC上取一点D,连接AD、CD.∵∠D=∠AOC=50°,又∵∠B+∠D=180°,∴∠B=130°,故选B.【点评】本题考查圆周角定理、圆内接四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造圆内接四边形解决问题,属于中考常考题型.10.抛物线y=x2+bx+c与x轴只有一个公共点,且过点A(m+1,n),B(m﹣9,n),则n=()A.16 B.18 C.20 D.25【分析】根据点A、B的坐标易求该抛物线的对称轴是x=m﹣4.故设抛物线解析式为y=(x﹣m+4)2,直接将A (m+1,n)代入,通过解方程来求n的值即可.【解答】解:∵抛物线y=x2+bx+c过点A(m+1,n),B(m﹣9,n),∴对称轴是x=m﹣4.又∵抛物线y=x2+bx+c与x轴只有一个交点,∴设抛物线解析式为y=(x﹣m+4)2,把A(m+1,n)代入,得n=(m+1﹣m+4)2,即n=25.故选D.【点评】本题考查了抛物线与x轴的交点.解答该题的技巧性在于找到抛物线的顶点坐标,根据顶点坐标设抛物线的解析式.二、填空题:共5小题,每小题3分,共12分.11.比较大小:﹣2>﹣(填“>”,“<”或“=”)【分析】先计算两数的绝对值得到|﹣2|﹣2,|﹣|=,由于>2,根据负数的绝对值越大,这个数反而越小即可得到﹣2与﹣的大小关系.【解答】解:∵|﹣2|﹣2,|﹣|=,而>2,∴﹣2>﹣.故答案为>.【点评】本题考查了实数大小比较:所有正数大于0,所有负数小于0;负数的绝对值越大,这个数反而越小.12.如图,已知正五边形ABCDE,AF∥CD,交DB的延长线于点F,则∠DFA=36°.【分析】首先求得正五边形内角∠C的度数,然后根据CD=CB求得∠CDB的度数,然后利用平行线的性质求得∠DFA 的度数即可.【解答】解:∵正五边形的外角为360°÷5=72°,∴∠C=180°﹣72°=108°,∵CD=CB,∴∠CDB=36°,∵AF∥CD,∴∠DFA=∠CDB=36°.故答案为:36°.【点评】本题考查了多边形的内角和外角及平行线的性质,解题的关键是求得正五边形的内角.13.小蓝周末去广场放风筝,如图,当风筝飞到点C处时的线长BC约为25m,此时小蓝正好站在点A处,并测得∠CBD=61°,牵引底端B距离地面1.5m,则此时风筝距离地面的高度CE约为23.3m(用科学计算器计算,结果精确到0.1m).【分析】根据锐角三角函数可以求得CD的长,从而可以求得CE的长,本题得以解决.【解答】解:由题意可得,BC=25m,BA=DE=1.5m,∠CBD=61°,∵sin∠CBD=,∴CD=BC•sin∠CBD=25×sin61°≈25×0.87≈21.8,∴CE=CD+DE=21.8+1.5=23.3m,故答案为:23.3.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数解答.14.如图,在平面直角坐标系中,点A是反比例函数y=(x<0)的图象上一点,过点A作AB⊥x轴,垂足为B,点C 是y轴上任意一点,连接AC、BC,若△ABC的面积为2,则k的值为﹣4.【分析】连结OA,如图,利用三角形面积公式得到S△OAB=S△CAB=2,再根据反比例函数的比例系数k的几何意义得到|k|=2,然后去绝对值即可得到满足条件的k的值.【解答】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△CAB=2,而S△OAB=|k|,∴|k|=2,∵k<0,∴k=﹣4.故答案为:﹣4.【点评】本题考查了反比例函数的比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x 轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.15.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为2.【分析】首先证明点P在以AB为直径的⊙O上,连接OC与⊙O交于点P,此时PC最小,利用勾股定理求出OC即可解决问题.【解答】解:∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠PAB=∠PBC∴∠BAP+∠ABP=90°,∴∠APB=90°,∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小,在RT△BCO中,∵∠OBC=90°,BC=4,OB=3,∴OC==5,∴PC=OC﹣OP=5﹣3=2.∴PC最小值为2.故答案为2.【点评】本题考查点与圆位置关系、圆周角定理、最短问题等知识,解题的关键是确定点P位置,学会求圆外一点到圆的最小、最大距离,属于中考常考题型.三、解答题:共11小题,共78分,解答应写出过程.16.(5分)计算:(π﹣3.14)0+|﹣3|﹣2(tan60°+cos30°).【分析】首先计算乘方和乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:(π﹣3.14)0+|﹣3|﹣2(tan60°+cos30°)=1+3﹣2×(+)=4﹣3【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.17.(5分)解方程:.【分析】本题考查解分式方程的方程,因为x2﹣4=(x+2)(x﹣2),所以可确定原方程的最简公分母为(x+2)(x ﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,注意一定要检验.【解答】解:去分母,得x(x+2)﹣(x2﹣4)=2,去括号,得x2+2x﹣x2+4=2,整理,得2x=﹣2,解得x=﹣1,检验:将x=﹣1代入(x+2)(x﹣2)=﹣3≠0,∴x=﹣1是原方程的解.【点评】解分式方程的关键是两边同乘最简公分母,将分式方程转化为整式方程,易错点是忽视检验.18.(5分)如图,已知△ABC,请利用尺规求作一直线AD,使其平分△ABC的面积(不写作法,保留作图痕迹).【分析】首先作出BC的垂直平分线,可确定BC的中点记作D,再根据三角形的中线平分三角形的面积画出直线AD即可.【解答】解:作法:作边BC的中垂线EF,交BC于D,作直线AD,则直线AD平分△ABC的面积.【点评】此题主要考查了作图﹣﹣复杂作图,关键是掌握线段垂直平分线的作法,掌握三角形的中线平分三角形的面积.19.(5分)手机党,简称MP,是对使用手机进行互联网交流人群的称谓.他们做任何事都离不开手机,有些甚至过分依赖手机而形成了“手机瘾”.某校团组织为了解初三毕业生的手机使用情况,随机调查了部分初三毕业生的手机使用时间,并将调查结果分成了以下五类如图,已知∠ABC=90°,点D是AB延长线上一点,AD=BC,过点A作AF ⊥AB,且AF=BD,连接CD、DF.求证:CD⊥DF.【分析】利用垂直的定义得到一对直角相等,利用SAS得到三角形AFD与三角形BDC全等,利用全等三角形的对应角相等得到∠ADF=∠BCD,利用等式的性质及垂直定义即可得证.【解答】证明:∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC=90°,在△AFD和△BDC中,,∴△AFD≌△BDC(SAS),∴∠ADF=∠BCD,∵∠BDC+∠BCD=90°,∴∠BDC+∠ADF=90°,即∠CDF=90°,∴CD⊥DF.【点评】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.21.(7分)雯雯和笑笑想利用皮尺和所学的几何知识测量学校操场上旗杆的高度,他们的测量方案如下:当雯雯站在旗杆正前方地面上的点D处时,笑笑在地面上找到一点G,使得点G、雯雯的头顶C以及旗杆的顶部A三点在同一直线上,并测得DG=2.8m;然后雯雯向前移动1.5m到达点F处,笑笑同样在地面上找到一点H,使得点H、雯雯的头顶E以及旗杆的顶部A三点在同一直线上,并测得GH=1.7m,已知图中的所有点均在同一平面内,AB⊥BH,CD⊥BH,EF⊥BH,雯雯的身高CD=EF=1.6m.请你根据以上测量数据,求该校旗杆的高度AB.【分析】由题意知,CD=EF=1.6m,DG=2.8m,DF=1.5m,GH=1.7m,根据题意可得△CDG∽△ABG,△EFH∽△ABH,根据相似三角形的性质得到=,=,可得=,求得BD=21m,得到=,解得AB=13.6m,从而求解.【解答】解:由题意知,CD=EF=1.6m,DG=2.8m,DF=1.5m,GH=1.7m,∴FH=2.8﹣1.5+1.7=3m,∵AB⊥BH,CD⊥BH,EF⊥BH,∴△CDG∽△ABG,△EFH∽△ABH,∴=,=,∴=,即=,解得BD=21m,∴=,解得AB=13.6m.即该校旗杆的高度AB为13.6m.【点评】本题考查了相似三角形的应用、相似三角形的判定与性质;根据题意得出方程是解决问题的关键,本题难度适中.22.(7分)2019届西安的雾霾天气趋于严重,某商城根据市场需求,从厂家一次购进了A、B两种空气净化器180台,已知销售每台A种空气净化器的利润为200元,销售每台B种空气净化器的利润为300元,设该商城购进A种空气净化器x台,销售完这批空气净化器所获得的总利润为y元.(1)求出y与x之间的函数关系式;(2)若该商城规定B种空气净化器的进货量不超过A种空气净化器的2倍,则该商城购进A型、B型空气净化器各多少台时,才能使销售完这批空气净化器所获得的总利润最大?并求出最大利润.【分析】(1)根据题目条件“销售每台A种空气净化器的利润为200元,销售每台B种空气净化器的利润为300元”即可得到y与x之间的函数关系式;(2)由题目条件“商城规定B种空气净化器的进货量不超过A种空气净化器的2倍”可求出自变量x的取值范围,进而利用一次函数的性质可得到所获得的总利润.【解答】解:(1)由题意得:y=200x+300(180﹣x)=﹣100x+54000;(2)由题意得:180﹣x≤2x,解得:x≥60,∵﹣100<0,∴y=﹣100x+54000随x的增大而减小,∴当x=60时,y最大值=﹣100×60+54000=48000,此时180﹣x=120,答:该商城分别购进A型、B型空气净化器各60台、120台台时,才能使销售完这批空气净化器所获得的总利润最大,最大利润为48000元.【点评】本题考查一次函数的应用以及一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.23.(7分)爸爸下班回家呆了一张同事送的《加勒比海盗5》的电影票,结果两小儿子都想要去看,于是爸爸提议用如图所示的两个转盘(其中转盘A被等分成4个扇形,且4个扇形内依次标有数字:1,2,3,4;转盘B被等分成3个扇形,且3个扇形内依次标有数字:﹣1,﹣2,﹣3)做游戏来决定谁去.规则如下:同时转动两个转盘,转盘停止后,分别记下指针所指扇形内的数字,若所得的数字之和为0或1,则哥哥去,否则弟弟去.若指针恰好指向两个扇形的边界,则需重转一次,直到指针指向某一扇形内为止.(1)用列表法或画树状图法求哥哥去看电影的概率;(2)这个游戏规则对兄弟二人公平吗?为什么?【分析】(1)画树状图列出所有等可能结果,找到和为0或1的结果数,根据概率公式求解可得;(2)根据概率之和为1求得弟弟去看电影的概率,即可判断该游戏规则的公平性.【解答】解:(1)画树状图如下:由树状图可知,共有12种等可能结果,其中和为0或1的有6种结果,∴哥哥去看电影的概率为=;(2)弟弟去看电影的概率为1﹣=,∵哥哥去看电影的概率=弟弟去看电影的概率,∴这个游戏规则对兄弟二人公平.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.24.(8分)如图,点D是以AB为直径的半圆O上一点,连接BD,点C是的中点,过点C作直线BD的垂线,垂足为点E.求证:(1)CE是半圆O的切线;(2)BC2=AB•BE.【分析】(1)连接OC,根据圆周角定理得到∠ABC=∠DBC,根据等腰三角形的性质得到∠OCB=∠OBC,等量代换得到∠OCB=∠CBD,推出OC∥BD,根据平行线的性质得到OC⊥CE,于是得到结论;(2)连接AC,由AB是⊙O的直径,得到∠ACB=90°,根据相似三角形的性质即可得到结论.【解答】证明:(1)连接OC,∵点C是的中点,∴=,∴∠ABC=∠DBC,∵OC=OB,∴∠OCB=∠OBC,∴∠OCB=∠CBD,∴OC∥BD,∵CE⊥BE,∴OC⊥CE,∴CE是半圆O的切线;(2)连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∵CE⊥BE,∴∠E=90°,∴∠E=∠ACB,∵∠ABC=∠CBD,∴△ABC∽△CBE,∴,∴BC2=AB•BE.【点评】本题考查了相似三角形的判定和性质,切线的判定,圆周角定理,正确的作出辅助线是解题的关键.25.(10分)如图,已知点A(﹣1,0)、B(4,0)是抛物线y=ax2+bx﹣4与x轴的两个交点,点C是抛物线与y轴的交点,连接AC,抛物线的对称轴与x轴交于点M.(1)求抛物线的解析式及点M的坐标;(2)在抛物线的对称轴上是否存在一点N,使得以点M、N、B为顶点的三角形与△AOC相似?若存在,求出点N 的坐标;若不存在,请说明理由.【分析】(1)用待定系数法求出二次函数解析式即可;(2)先求出AO,CO,BM,然后点N在在x轴上方的抛物线上的对称轴上分两种情况①当△AOC∽△BMN时,②当△AOC∽△NMB时,得到比例式求出点N的坐标,再利用对称性求出在x轴下方的物线线的对称轴上的点N.【解答】解:(1)∵抛物线y=ax2+bx﹣4与x轴交于点A(﹣1,0)和点B(4,0),∴,∴,∴抛物线解析式为y=x2﹣3x﹣4,∴抛物线对称轴为x=,∴M(,0);(2)∵抛物线解析式为y=x2﹣3x﹣4与y轴相交于点C,∴C(0,﹣4),OC=4,∵OA=1,OB=4,∴MB=,设x轴上方抛物线的对称轴上存在点N(,n),∴MN=n,①当△AOC∽△BMN时,∴=,∴n=10,∴N(,10),根据对称性可知,在x轴下方的抛物线对称轴上N(,﹣10),也能使得以点M,N,B为顶点的三角形与△AOC相似;②当△AOC∽△NMB时,,∴=,∴n=,∴N(,),∴根据对称性可知,在x轴下方的抛物线对称轴上N(,﹣),也能使得以点M,N,B为顶点的三角形与△AOC相似;综上所述,符合题意的点N(,10),(,﹣10),(,),(,﹣).【点评】此题是二次函数综合题,主要考查了待定系数法,相似三角形的性质,解本题的关键是分情况求出点N的坐标.26.(12分)问题探究:(1)如图1,点A是线段BC外一动点,若AB=a,BC=b,求线段AC长的最大值(用含a,b的式子表示);(2)如图2,点A是线段BC外一动点,且AB=1,BC=4,分别以AB、AC为边作等边△ABD、等边△ACE,连接CD、BE.①求证:CD=BE;②求线段BE长的最大值;问题解决:(3)如图3,在平面直角坐标系中,已知点A(2,0)、B(5,0),点P、M是线段AB外的两个动点,且PA=2,PM=PB,∠BPM=90°,求线段AM长的最大值及此时点P的坐标.【分析】(1)利用三边关系AC≤AB+BC即可解决问题;(2)①根据SAS即可证明;②线段BE长的值最大值即为线段CD长的最大值,求出线段CD长的最大值即可;(3)将△APM绕点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,可知线段AM的长的最大值即为线段BN长的最大值,由(1)的结论可知,当点N在线段BA的延长线上时,线段BN的值最大,且此时的最大值为AB+AN的值,由此即可解决问题;【解答】解:(1)∵点A是线段BC外一动点,且AB=a,BC=b,则AC≤AB+BC,且当点A位于CB的延长线上时,线段AC的长取得最大值,此时AC的长的最大值为:AB+BC=a+b.(2)①∵△ABC,△ACE都是等边三角形,∴AD=AB,AC=AE,∠BAD=∠EAC=60°,∴∠DAC=∠BAE,在△CAD和△EAB中,,∴△CAD≌△EAB,∴CD=BE.②∵CD=BE,∴线段BE长的值最大值即为线段CD长的最大值,此时BE的最大值为:BD+BC=AB+BC=5.(3)连接BM.∵PB=PM,∠MPB=90°,∴可以将△APM绕点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∴线段AM的长的最大值即为线段BN长的最大值,由(1)的结论可知,当点N在线段BA的延长线上时,线段BN的值最大,且此时的最大值为AB+AN的值.∵A(2,0),B(5,0),∴OA=2,OB=5,AB=3,∴AN=AP=2,∴最大值为2+3;如图4中,作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE=AN=,∴OE=OA﹣AE=2﹣,∴P(2﹣,),即线段AM的最大值为2+3,此时P的坐标为(2﹣,).【点评】本题考查三角形综合题、全等三角形的判定和性质、等腰直角三角形的性质、三角形的三边关系等知识,具体的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.。
陕西省西安市碑林区2019届中考数学零模试卷一、选择题1.的绝对值是()A. ﹣4B.C. 4D. 0.42.下列几何体中,正视图是矩形的是()A. B. C. D.3.下列运算正确的是()A. a3+a4=a7B. (2a4)3=8a7C. 2a3•a4=2a7D. a8÷a2=a44.如图,AB∥CD,DB⊥BC,∠1=40°,则∠2的度数是()A. 40°B. 50°C. 60°D. 140°5.在一次函数y= ax﹣a中,y随x的增大而减小,则其图象可能是()A. B. C. D.6.如图,在△ABC中,AB=AC=13,BC=10,点D为BC的中点,DE⊥AB,垂足为点E,则DE等于()A. B. C. D.7.如图,直线l:y=x+2与y轴交于点A,将直线l绕点A旋转90°后,所得直线的解析式为()A. y=x﹣2B. y=﹣x+2C. y=﹣x﹣2D. y=﹣2x﹣18.如图,在平行四边形ABCD中,∠C=120°,AD=2AB=4,点H、G分别是边AD、BC上的动点.连接AH、HG,点E为AH的中点,点F为GH的中点,连接EF.则EF的最大值与最小值的差为()A. 1B. ﹣1C.D. 2﹣9.如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于()A. 80°B. 50°C. 40°D. 20°10.二次函数y=(x﹣1)2+(x﹣3)2与y=(x+a)2+(x+b)2的图象关于y轴对称,则(a+1)2+(1+b)2的值为()A. 9B. 10C. 20D. 25二、填空题11.分解因式:x2﹣4(x﹣1)=________.12.一个七边形的外角和是________.13.计划在楼层间修建一个坡角为35°的楼梯,若楼层间高度为2.7m,为了节省成本,现要将楼梯坡角增加11°,则楼梯的斜面长度约减少________ m.(用科学计算器计算,结果精确到0.01m).14.如图,在平面直角坐标系中,点M、N分别为反比例函数y= 和y= 的图象上的点,顺次连接M、O、N,∠MON=90°,∠ONM=30°,则k=________.15.如图,△APB中,AB=2,∠APB=90°,在AB的同侧作正△ABD、正△APE和正△BPC,则四边形PCDE面积的最大值是________.三、解答题16.(﹣)﹣2﹣(2018﹣π)0﹣| ﹣2|+2sin60°.17.化简:.18.如图,已知线段a和b,a>b,求作直角三角形ABC,使直角三角形的斜边AB=a,直角边AC=b.(用尺规作图,保留作图痕迹,不要求写作法)19.咸阳市教育局为了了解七年级学生参加社会实践活动情况,随机抽取了泰郡区部分七年级学生2015﹣2016学年第一学期参加社会实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图.请根据图中提供的信息,回答下列问题:(1)a=________%,并写出该扇形所对圆心角的度数为________,并补全条形图________.(2)在本次抽样调查中,众数和中位数分别是多少?(3)如果该区共有七年级学生约4000人,请你估计活动时间不少于6天的学生人数大约有多少?20.如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.(1)求证:AE=DF;(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.21.给窗户装遮阳棚,其目的为最大限度地遮挡夏天炎热的阳光,又能最大限度地使冬天温暖的阳光射入室内,现请你为我校新建成的高中部教学楼朝南的窗户设计一个直角形遮阳蓬BCD,如图,已知窗户AB高度为h=2米,本地冬至日正午时刻太阳光与地面的最小夹角α=32°,夏至日正午时刻太阳光与地面的最大夹角β=79°,请分别计算直角形遮阳蓬BCD中BC,CD的长(结果精确到0.1米)22.市园林处为了对一段公路进行绿化,计划购买A,B两种风景树共900棵.A,B两种树的相关信息如表:若购买A种树x棵,购树所需的总费用为y元.(1)求y与x之间的函数关系式.(2)若希望这批树的成活率不低于94%,且使购树的总费用最低,应选购A、B两种树各多少棵?此时最低费用为多少?23.现有一项资助贫困生的公益活动由你来主持,每位参与者需交赞助费5元,活动规则如下:如图是两个可以自由转动的转盘,每个转盘被分成6个相等的扇形,参与者转动这两个转盘,转盘停止后,指针各自指向一个数字,(若指针在分格线上,则重转一次,直到指针指向某一数字为止),若指针最后所指的数字之和为12,则获得一等奖,奖金20元;数字之和为9,则获得二等奖,奖金10元;数字之和为7,则获得三等奖,奖金为5元;其余均不得奖;此次活动所集到的赞助费除支付获奖人员的奖金外,其余全部用于资助贫困生的学习和生活;(1)分别求出此次活动中获得一等奖、二等奖、三等奖的概率;(2)若此次活动有2000人参加,活动结束后至少有多少赞助费用于资助贫困生?24.如图所示,以Rt△ABC的直角边AB为直径作圆O,与斜边交于点D,E为BC边上的中点,连接DE.(1)求证:DE是⊙O的切线;(2)连接OE,AE,当∠CAB为何值时,四边形AOED是平行四边形?并在此条件下求sin∠CAE的值.25.如图已知点A (﹣2,4)和点B (1,0)都在抛物线y=mx2+2mx+n上.(1)求m、n;(2)向右平移上述抛物线,记平移后点A的对应点为A′,点B的对应点为B′,若四边形A A′B′B为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AB′的交点为点C,试在x轴上找点D,使得以点B′,C,D为顶点的三角形与△ABC相似.26.已知△ABC,以AC为边在△ABC外作等腰△ACD,其中AC=AD.(1)如图1,若∠DAC=2∠ABC,AC=BC,四边形ABCD是平行四边形,则∠ABC=________;(2)如图2,若∠ABC=30°,△ACD是等边三角形,AB=3,BC=4.求BD的长;(3)如图3,若∠ABC=30°,∠ACD=45°,AC=2,B、D之间距离是否有最大值?如有求出最大值;若不存在,说明理由.答案解析部分一、选择题1.【答案】B【考点】绝对值【解析】【解答】的绝对值是.故答案为:B【分析】依据负数的绝对值是它的相反数求解即可.2.【答案】B【考点】简单几何体的三视图【解析】【解答】A、球的正视图是圆,A不符合题意;B、圆柱的正视图是矩形,B符合题意;C、圆锥的正视图是等腰三角形,C不符合题意;D、圆台的正视图是等腰梯形,D不符合题意;故答案为:B.【分析】正视图是从几何体的正面观察所得得到的图形.3.【答案】C【考点】同底数幂的乘法【解析】【解答】A、不是同底数幂的乘法指数不能相减,A不符合题意;B、积的乘方等于乘方的积,B不符合题意;C、单项式乘单项式系数乘系数同底数的幂相乘,C符合题意;D、同底数幂的除法底数不变指数相减,D不符合题意.故答案为:C.【分析】依据同类项与合并同类项法则可对A作出判断;依据积的乘方法则可对B作出判断;依据单项式乘单项式法则可对C作出判断;依据同底数幂的除法法则可对D作出判断.4.【答案】B【考点】平行线的性质【解析】【解答】∵AB∥CD,∠1=40°,∴∠3=∠1=40°,∵DB⊥BC,∴∠2=90°﹣∠3=90°﹣40°=50°.故答案为:B.【分析】首先依据平行线的性质可求得∠3的度数,然后在Rt△CBD中,依据直角三角形两锐角互余求解即可.5.【答案】B【考点】一次函数的图象【解析】【解答】由y= ax﹣a中,y随x的增大而减小,得a<0,﹣a>0,故答案为:B.【分析】先依据一次函数的性质可得到a<0,从而可求得a的范围,然后可得到-a>0,最后,依据一次函数的性质确定出函数图象经过的象限,从而可得到问题的答案.6.【答案】C【考点】全等三角形的性质,等腰三角形的性质【解析】【解答】连接AD,∵AB=AC,D是BC的中点,∴AD⊥BC,BD=CD= ×10=5∴AD= =12.∵△ABC的面积是△ABD面积的2倍.∴2• AB•DE= •BC•AD,DE= = .故答案为:C.【分析】连接AD,依据等腰三角形的性质可得到AD⊥BC,然后依据勾股定理可求得AD的长,然后再△ABD 中利用面积法可求得DE的长.7.【答案】B【考点】一次函数图象与几何变换【解析】【解答】∵直线l:y=x+2与y轴交于点A,∴A(0,2).设旋转后的直线解析式为:y=﹣x+b,则:2=0+b,解得:b=2,故解析式为:y=﹣x+2.故答案为:B.【分析】先求得点A的坐标为(0,2),由题意可知旋转前后的两条直线相互垂直,依据相互垂直的两条直线的一次项系数乘积为-1可设设旋转后的直线解析式为:y=﹣x+b,最后,将点A的坐标代入求得b的值即可. 8.【答案】C【考点】三角形中位线定理,平行四边形的性质【解析】【解答】如图,取AD的中点M,连接CM、AG、AC,作AN⊥BC于N.∵四边形ABCD是平行四边形,∠BCD=120°,∴∠D=180°﹣∠BCD=60°,AB=CD=2,∵AM=DM=DC=2,∴△CDM是等边三角形,∴∠DMC=∠MCD=60°,AM=MC,∴∠MAC=∠MCA=30°,∴∠ACD=90°,∴AC=2 ,在Rt△ACN中,∵AC=2 ,∠ACN=∠DAC=30°,∴AN= AC= ,∵AE=EH,GF=FH,∴EF= AG,易知AG的最大值为AC的长,最小值为AN的长,∴AG的最大值为2 ,最小值为,∴EF的最大值为,最小值为,∴EF的最大值与最小值的差为.故答案为:C.【分析】取AD的中点M,连接CM、AG、AC,作AN⊥BC于N.首先证明出△CDM是等边三角形,从而可得到∠ACD=90°,然后再求出AC,AN,依据三角形中位线定理,可知EF=AG,然后求出AG的最大值以及最小值,从而可得到EF的最大值和最小值.9.【答案】D【考点】垂径定理,圆周角定理【解析】【解答】∵⊙O的直径CD过弦EF的中点G,∴(垂径定理),∴∠DCF= ∠EOD(等弧所对的圆周角是圆心角的一半),∴∠DCF=20°.故答案为:D.【分析】依据垂径定理的推理可知,最后,再依据圆周角定理可求得∠DCF的度数.10.【答案】C【考点】二次函数图象与几何变换【解析】【解答】∵二次函数y=(x﹣1)2+(x﹣3)2与y=(x+a)2+(x+b)2的图象关于y轴对称,∴y=(x+a)2+(x+b)2的解析式为:y=(﹣x﹣1)2+(﹣x﹣3)2=(x+1)2+(x+3)2,∴a=1,b=3.∴(a+1)2+(1+b)2=22+42=20.故答案为:C.【分析】依据关于y轴对称点的横坐标互为相反数,纵坐标相等可得到y=(x+a)2+(x+b)2的函数关系式,从而可得到a、b的值,然后代入计算即可.二、填空题11.【答案】(x﹣2)2【考点】因式分解-运用公式法【解析】【解答】解:x2﹣4(x﹣1)=x2﹣4x+4=(x﹣2)2.故答案为:(x﹣2)2.【分析】先去括号,然后依据完全平方公式进行分解即可.12.【答案】360°【考点】多边形内角与外角【解析】【解答】解:一个七边形的外角和是360°,故答案为:360°.【分析】依据任意多边形的外角和为360°求解即可.13.【答案】0.95【考点】解直角三角形的应用-坡度坡角问题【解析】【解答】解:∵坡角为35°,楼层间高度为2.7m,∴楼梯的斜面长度= = ≈4.703(m),∵将楼梯坡角增加11°后,楼梯的斜面长度= ≈3.755(m),∴楼梯的斜面长度约减少4.703﹣3.755≈0.95(m),故答案为:0.95【分析】根据三角函数的定义分别求出坡角为35°和46°时,楼梯的斜面长度,然后再相减即可.14.【答案】﹣6【考点】反比例函数图象上点的坐标特征【解析】【解答】解:分别过M,N作MA⊥x轴于A,NB⊥x轴于B,∵∠MON=90°,∠ONM=30°,∴=tan30°= ,∵N在第四象限,∴k<0,∵∠BON=∠OMA=90°﹣∠MOA,∠MAO=∠OBM=90°,∴△MOA∽△ONB,∴= = = ,∴BN= OA,OB= MA,∴k=﹣BM•OB=﹣3OA•MA=﹣3×2=﹣6,故答案为:﹣6.【分析】过点M作MA⊥x轴垂足为A,过点N作NB⊥x轴垂足为B,根据30°的正切函数值得到=tan30°,然后再证明△MOA∽△ONB,依据相似三角形的性质可求得BN=OA,OB=MA,由k的几何意义可知k=-BM•OB=-3OA•MA,从而可求得问题的答案.15.【答案】1【考点】全等三角形的判定与性质,等边三角形的性质,平行四边形的判定与性质【解析】【解答】解:延长EP交BC于点F,∵∠APB=90°,∠APE=∠BPC=60°,∴∠EPC=150°,∴∠CPF=180°﹣150°=30°,∴PF平分∠BPC,又∵PB=PC,∴PF⊥BC,设Rt△ABP中,AP=a,BP=b,则CF= CP= b,a2+b2=22=4,∵△APE和△ABD都是等边三角形,∴AE=AP,AD=AB,∠EAP=∠DAB=60°,∴∠EAD=∠PAB,∴△EAD≌△PAB(SAS),∴ED=PB=CP,同理可得:△APB≌△DCB(SAS),∴EP=AP=CD,∴四边形CDEP是平行四边形,∴四边形CDEP的面积=EP×CF=a× b= ab,又∵(a﹣b)2=a2﹣2ab+b2≥0,∴2ab≤a2+b2=4,∴ab≤1,即四边形PCDE面积的最大值为1.故答案为:1【分析】延长EP交BC于点F,先证明PF⊥BC,然后,再证明四边形CDEP为平行四边形,则四边形CDEP的面积=EP×CF,设Rt△ABP中,AP=a,BP=b,则CF=CP=b,依据勾股定理可知:a2+b2=22=4,于是可判定出ab的最大值.三、解答题16.【答案】解:原式=4﹣1﹣2+ + =1+2 .【考点】实数的运算,零指数幂,负整数指数幂,特殊角的三角函数值【解析】【分析】先依据负整数指数幂的性质、零指数幂的性质、绝对值的性质、特殊锐角三角函数值进行化简,然后,再依据实数的加减法则进行计算即可.17.【答案】解:原式=(﹣)•= ﹣==﹣2【考点】分式的混合运算【解析】【分析】先将除法转化为乘法,然后再利用平方差公式进行分解,接下来,利用乘法的分配律进行计算,最后,再合并同类项即可.18.【答案】解:如图,△ABC为所求作的直角三角形.【考点】作图—复杂作图【解析】【分析】作线段AC=b,再过点C作AC的垂线,然后以点A为圆心,以a为半径画弧交此垂线于B,则△ABC就是所要求作的三角形.19.【答案】(1)10;36°;(2)解:抽样调查中总人数为100人,结合条形统计图可得:众数是5,中位数是6.(3)解:根据题意得:4000×(25%+10%+5%+20%)=2400(人),活动时间不少于6天的学生人数大约有2400人.【考点】用样本估计总体,扇形统计图,条形统计图【解析】【解答】解:(1)扇形统计图中a=1﹣5%﹣40%﹣20%﹣25%=10%,该扇形所对圆心角的度数为360°×10%=36°,参加社会实践活动的天数为8天的人数是:×10%=10(人),(2)抽样调查中总人数为100人,结合条形统计图可得:众数是5,中位数是6.(3)根据题意得:4000×(25%+10%+5%+20%)=2400(人),活动时间不少于6天的学生人数大约有2400人.故答案为:(1)10;36°;(2)众数是5,中位数是6;(3)2400人.【分析】(1)再扇形统计图中各扇形所占的百分比之和为1,故此可求得a的值,然后依据圆心角的度数=360°×百分比求解即可;,用360°乘以它所占的百分比,根据6天的人数和所占的百分比求出总人数,再乘以8天的人数所占的百分比,即可补全统计图;(2)这组数据中出现次数最多的数据为这组数据的众数,将这组数据按照从小到大的顺序排列,中间两个数据的平均数就是这组数据的中位数;(3)用总人数乘以活动时间不少于6天的人数所占的百分比即可求出答案.20.【答案】(1)证明:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∴AE=DF;(2)证明:若AD平分∠BAC,四边形AEDF是菱形.由(1)可知:四边形AEDF为平行四边形.∴∠FDA=∠EAD.又∵AD平分∠BAC,∴∠EAD=∠FAD,∴∠DAF=∠FDA.∴AF=DF.∴平行四边形AEDF为菱形.【考点】全等三角形的判定与性质,菱形的判定【解析】【分析】(1)先依据平行四边形的定义可知四边形AEDF是平行四边形,然后再依据平行四边形的对边相等进行证明即可;(2)由(1)可知四边形AEDF是平行四边形,则∠FDA=∠EAD.,再利用AD是角平分线,易证∠DAF=∠FDA,利用等角对等边,可得AF=DF,从而可证▱AEDF为菱形.21.【答案】解:根据内错角相等可知,∠BDC=α,∠ADC=β.在Rt△BCD中,tanα= .①在Rt△ADC中,tanβ= .②由①、②可得:.把h=2,tan32°=0.64,tan79°=7.60代入上式,得BC≈0.2(米),CD≈0.3(米).所以直角遮阳蓬BCD中BC与CD的长分别是0.2米和0.3米.【考点】解直角三角形的应用【解析】【分析】在Rt△BCD和Rt△ADC中,依据正切函数的定义列出方程组,从而可求得BC和CD的长. 22.【答案】(1)解:由题意,得:y=80x+100(900﹣x)化简,得:y=﹣20x+90000(0≤x≤900且为整数);(2)解:由题意得:92%x+98%(900﹣x)≥94%×900,解得:x≤600.∵y=﹣20x+90000随x的增大而减小,∴当x=600时,购树费用最低为y=﹣20×600+90000=78000.当x=600时,900﹣x=300,故此时应购A种树600棵,B种树300棵,最低费用为78000元.【考点】一次函数的应用【解析】【分析】(1)设购买A种树x棵,购买B种树(900-x)棵,根据购树的总费用=买A种树的费用+买B 种树的费用可得出y与x的函数关系式;(2)先根据A种树成活的数量+B种树成活的数量≥树的总量×平均成活率列出不等式,得出x的取值范围,然后根据一次函数的性质判断出最佳的方案.23.【答案】(1)解:列表得:∴一共有36种情况,此次活动中获得一等奖、二等奖、三等奖的分别有1,4,6种情况,∴P(一等奖)= ;P(二等奖)= ,P(三等奖)=(2)解:(×20+ ×10+ ×5)×2000=5000,5×2000﹣5000=5000,∴活动结束后至少有5000元赞助费用于资助贫困生.【考点】列表法与树状图法【解析】【分析】(1)先依据题意列出表格,列举出符合题意的各种情况的个数,再根据概率公式解答即可.(2)总费用减去奖金即为所求的金额.24.【答案】(1)证明:连接OD与BD.∵△BDC是Rt△,且E为BC中点,∴∠EDB=∠EBD.又∵OD=OB且∠EBD+∠DBO=90°,∴∠EDB+∠ODB=90°.∴DE是⊙O的切线.(2)解:∵∠EDO=∠B=90°,若要四边形AOED是平行四边形,则DE∥AB,D为AC中点,又∵BD⊥AC,∴△ABC为等腰直角三角形.∴∠CAB=45°.过E作EH⊥AC于H,设BC=2k,则EH= ,∴sin∠CAE= .【考点】平行四边形的判定,切线的判定【解析】【分析】(1)连接OD与BD,依据直径所对的圆周角为直径可得到∠ADB=90°,然后可证明△BCD为直角三角形,依据直角三角形斜边上中线的性质可得到DE=EB,从而可证明∠EDB=∠EBO,然后再由∠ODB=∠OBD可证明∠ODE=∠EBO=90°;(2)要证AOED是平行四边形,则DE∥AB,然后再证明△ABC为等腰直角三角形,从而可得到∠CAB=45°,再利用此结论,过E作EH⊥AC于H,求出EH、AE,即可求得sin∠CAE的值.25.【答案】(1)解:由于抛物线经过A (﹣2,4)和点B (1,0),则有:,解得;故m=﹣,n=4.(2)解:由(1)得:y=﹣x2﹣x+4=﹣(x+1)2+ ;由A (﹣2,4)、B (1,0),可得AB= =5;若四边形A A′B′B为菱形,则AB=BB′=5,即B′(6,0);故抛物线需向右平移5个单位,即:y=﹣(x+1﹣5)2+ =﹣(x﹣4)2+ .(3)解:由(2)得:平移后抛物线的对称轴为:x=4;∵A(﹣2,4),B′(6,0),∴直线AB′:y=﹣x+3;当x=4时,y=1,故C(4,1);所以:AC=3 ,B′C= ,BC= ;由(2)知:AB=BB′=5,即∠BAC=∠BB′C;若以点B′、C、D为顶点的三角形与△ABC相似,则:①∠B′CD=∠ABC,则△B′CD∽△ABC,可得:,即,B′D=3,此时D(3,0);②∠B′DC=∠ABC,则△B′DC∽△ABC,可得:,即,B′D= ,此时D(,0);综上所述,存在符合条件的D点,且坐标为:D(3,0)或(,0).【考点】二次函数的应用【解析】【分析】(1)将点A和点B的坐标代入抛物线的解析式可求得m,n的值,从而可得到抛物线的解析式;(2)先求得直线AB的解析式,根据平移的性质可得到四边形A A′B′B为平行四边形,若四边形A A′B′B 为菱形,则AB=BB′,由此可确定平移的距离,根据“左加右减”的平移规律即可求得平移后的抛物线解析式.(3)先求得直线AB′的解析式,然后可求得点C点的坐标,接下来,再求出AB、BC、AC、B′C的长;在(2)题中已经证得AB=BB′,那么∠BAC=∠BB′C,即A、B′对应,若以点B′、C、D为顶点的三角形与△ABC相似,可分两种情况考虑:①∠B′CD=∠ABC,此时△B′CD∽△ABC,②∠B′DC=∠ABC,此时△B′DC∽△ABC,最后,再根据上述两种不同的相似三角形所得不同的比例线段,即可求得不同的BD长,从而可求得D点的坐标.26.【答案】(1)45°(2)解:如图2,以AB为边在△ABC外作等边三角形△ABE,连接CE.∵△ACD是等边三角形,∴AD=AC,∠DAC=60°.∵∠BAE=60°,∴∠DAC+∠BAC=∠BAE+∠BAC.即∠EAC=∠BAD∴△EAC≌△BAD.∴EC=BD.∵∠BAE=60°,AE=AB=3,∴△AEB是等边三角形,∴∠EBA=60°,EB=3,∵∠ABC=30°,∴∠EBC=90°.∵∠EBC=90°,EB=3,BC=4,∴EC=5.∴BD=5.(3)解:如图3中,在△ACD的外部作等边三角形△ACO,以O为圆心OA为半径作⊙O.∵∠ABC= ∠AOC=30°,∴点B在⊙O上运动,作OE⊥DA交DA的延长线于E.在Rt△AOE中,OA=AC=2,∠EAO=30°,∴OE= OA=1,AE= ,在Rt△ODE中,DE=AE+AD=2+ ,∴DO= = = + ,当B、O、D共线时,BD的值最大,最大值为OB+OD=2+ + .【考点】等边三角形的判定与性质【解析】【解答】解:(1)解:(1)如图1中,∵AD∥BC,∴∠DAC=∠BCA.∠DAB+∠ABC=180°.∵AC=BC,∴∠ABC=∠BAC.∵∠DAC=2∠ABC,∴2∠ABC+2∠ABC=180°,∴∠ABC=45°(2)如图2,以AB为边在△ABC外作等边三角形△ABE,连接CE.∵△ACD 是等边三角形,∴AD=AC ,∠DAC=60°.∵∠BAE=60°,∴∠DAC+∠BAC=∠BAE+∠BAC .即∠EAC=∠BAD∴△EAC ≌△BAD .∴EC=BD .∵∠BAE=60°,AE=AB=3,∴△AEB 是等边三角形,∴∠EBA=60°,EB=3,∵∠ABC=30°,∴∠EBC=90°.∵∠EBC=90°,EB=3,BC=4,∴EC=5.∴BD=5.(3)如图3中,在△ACD 的外部作等边三角形△ACO ,以O 为圆心OA 为半径作⊙O .∵∠ABC= ∠AOC=30°,∴点B 在⊙O 上运动,作OE ⊥DA 交DA 的延长线于E .在Rt △AOE 中,OA=AC=2,∠EAO=30°,∴OE= OA=1,AE= ,在Rt △ODE 中,DE=AE+AD=2+ ,∴DO= = = + ,当B 、O 、D 共线时,BD 的值最大,最大值为OB+OD=2+ + . 故答案为:(1)45;(2)5;(3)2++.【分析】(1)依据等角对等边的性质可得到∠D=∠ACD ,然后平行四边形的性质得∠D=∠ABC ,接下来,在△ACD 中,由内角和定理求解即可;(2)在△ABC外作等边△BAE,连接CE,利用旋转法证明△EAC≌△BAD,可证∠EBC=90°,BE=AB=3,在Rt△BCE中,由勾股定理求CE,由三角形全等得BD=CE;(3)在△ACD的外部作等边三角形△ACO,以O为圆心OA为半径作⊙O.首先说明点B在⊙O上运动,当B、O、D共线时,BD的值最大,求出OD即可解决问题.。
陕西省西安市2019届中考数学模拟试卷(解析版)一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.的相反数是()A.﹣B.C.﹣D.1.414【分析】根据相反数的意义,可得答案.【解答】解:的相反数是﹣,故选:A.【点评】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.2.下列几何体中,左视图与主视图相同的是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,从正面看得到的图形是主视图,可得答案.【解答】解:的主视图与左视图都是下边是梯形上边是矩形,故选:A.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,从正面看得到的图形是主视图.3.下列计算正确的是()A.(﹣3a2b)3=﹣3a5b3B.ab2•(﹣4a3b)=﹣2a4b3C.4m3n2÷m3n2=0 D.a5﹣a2=a3【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【解答】解:∵(﹣3a2b)3=﹣27a6b3,故选项A错误,∵,故选项B正确,∵4m3n2÷m3n2=4,故选项C错误,∵a5﹣a2不能合并,故选项D错误,故选B.【点评】本题考查整式的混合运算,解答本题的关键是明确整式的混合运算的计算方法.4.如图,直线a、b被c所截,若a∥b,∠1=45°,∠3=100°,则∠2的度数为()A.70°B.65°C.60°D.55°【分析】先根据平行线的性质,得到∠4=∠1=45°,再根据∠3=∠2+∠4,即可得到∠2的度数.【解答】解:∵a∥b,∠1=45°,∴∠4=∠1=45°,∵∠3=∠2+∠4,∴100°=∠2+45°,∴∠2=55°,故选:D.【点评】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,内错角相等.5.如果y=(1﹣m)x是正比例函数,且y随x的增大而减小,则m的值为()A.m=﹣B.m=C.m=3 D.m=﹣3【分析】先根据正比例函数的定义列出关于m的不等式组,求出m的值即可.【解答】解:∵y=(1﹣m)x是正比例函数,且y随x的增大而减小,∴,∴m=,故选B.【点评】本题考查的是正比例函数的定义和性质,即形如y=kx(k≠0)的函数叫正比例函数.6.如图,已知△ABC中,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB于点D,交AC于点E,连接CD,则CD=()A.3 B.4 C.4.8 D.5【分析】直接利用勾股定理的逆定理得出△ABC是直角三角形,进而得出线段DE是△ABC的中位线,再利用勾股定理得出AD,再利用线段垂直平分线的性质得出DC的长.【解答】解:∵AB=10,AC=8,BC=6,∴BC2+AC2=AB2,∴△ABC是直角三角形,∵DE是AC的垂直平分线,∴AE=EC=4,DE∥BC,且线段DE是△ABC的中位线,∴DE=3,∴AD=DC==5.故选:D.【点评】此题主要考查了勾股定理以及其逆定理和三角形中位线的性质,正确得出AD的长是解题关键.7.如图,1﹣4月份,甲、乙两工厂月生产增长量的变化情况,则甲工厂和乙工厂生产增长量差值最大的月份是()A.1月份B.2月份C.3月份D.4月份【分析】折线最陡的一段线,就是增长量差值最大的月份.【解答】解:甲工厂和乙工厂生产增长量差值最大的月份是2月份,故选B.【点评】本题考查了折线统计图,根据图中的折线的变化和数据进行求解.8.已知一次函数y=kx+b﹣x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为()A.k>1,b<0 B.k>1,b>0 C.k>0,b>0 D.k>0,b<0【分析】先将函数解析式整理为y=(k﹣1)x+b,再根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【解答】解:一次函数y=kx+b﹣x即为y=(k﹣1)x+b,∵函数值y随x的增大而增大,∴k﹣1>0,解得k>1;∵图象与x轴的正半轴相交,∴图象与y轴的负半轴相交,∴b<0.故选:A.【点评】本题考查的是一次函数的图象与系数的关系,由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.熟知一次函数的增减性是解答此题的关键.9.如图,在矩形ABCD中,AB=4,BC=6,将矩形ABCD绕B逆时针旋转30°后得到矩形GBEF,延长DA交FG于点H,则GH的长为()A.8﹣4B.﹣4 C.3﹣4 D.6﹣3【分析】作辅助线,构建直角△AHM,先由旋转得BG的长,根据旋转角为30°得∠GBA=30°,利用30°角的三角函数可得GM和BM的长,由此得AM和HM的长,相减可得结论.【解答】解:如图,延长BA交GF于M,由旋转得:∠GBA=30°,∠G=∠BAD=90°,BG=AB=4,∴∠BMG=60°,tan∠30°==,∴,∴GM=,∴BM=,∴AM=﹣4,Rt △HAM 中,∠AHM=30°,∴HM=2AM=﹣8,∴GH=GM ﹣HM=﹣(﹣8)=8﹣4,故选A .【点评】本题考查了矩形的性质、旋转的性质、特殊角的三角函数及直角三角形30°的性质,熟练掌握直角三角形30°所对的直角边等于斜边的一半及特殊角的三角函数值,属于基础题.10.如图是抛物线y=ax 2+bx +c (a ≠0)的部分图象,其顶点坐标为(1,n ),且与x 轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a ﹣b +c >0;②3a +b=0;③b 2=4a (c ﹣n );④一元二次方程ax 2+bx +c=n ﹣1有两个不相等的实数根.其中正确结论的个数是( )A .1B .2C .3D .4【分析】利用抛物线的对称性得到抛物线与x 轴的另一个交点在点(﹣2,0)和(﹣1,0)之间,则当x=﹣1时,y >0,于是可对①进行判断;利用抛物线的对称轴为直线x=﹣=1,即b=﹣2a ,则可对②进行判断;利用抛物线的顶点的纵坐标为n 得到=n ,则可对③进行判断;由于抛物线与直线y=n 有一个公共点,则抛物线与直线y=n﹣1有2个公共点,于是可对④进行判断.【解答】解:∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(﹣2,0)和(﹣1,0)之间.∴当x=﹣1时,y>0,即a﹣b+c>0,所以①正确;∵抛物线的对称轴为直线x=﹣=1,即b=﹣2a,∴3a+b=3a﹣2a=a,所以②错误;∵抛物线的顶点坐标为(1,n),∴=n,∴b2=4ac﹣4an=4a(c﹣n),所以③正确;∵抛物线与直线y=n有一个公共点,∴抛物线与直线y=n﹣1有2个公共点,∴一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,所以④正确.故选C.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c):抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题(共4小题,每小题3分,计12分)11.﹣13+﹣12sin30°=﹣5.【分析】根据乘方的意义,开平方、特殊角三角函数值,可得答案.【解答】解:原式=﹣1+2﹣12×=﹣1+2﹣6=﹣5,故答案为:﹣5.【点评】本题考查了实数的运算,利用乘方的意义,开平方、特殊角三角函数值,注意﹣13的底数是1.12.(1)正三角形的边长为4,则它的面积为2(2)31+2sin18°≈31.62(保留两位小数)【分析】(1)求出等边三角形一边上的高,即可确定出三角形面积;【解答】解:如图,过A作AD⊥BC,∵AB=AB=BC=4,∴BD=CD=BC=2,在Rt△ABD中,根据勾股定理得:AD==2,则S△ABC=BC•AD=2;(2)31+2sin18°≈31+2×0.3090=31.62.故答案为:2,31.62.【点评】此题考查了等边三角形的性质,计算器﹣三角函数,熟练掌握等边三角形的性质是解本题的关键.13.如图所示,直线y=kx(k<0)与双曲线y=﹣交于M(x1,y1),N(x2,y2)两点,则x1y2﹣3x2y1的值为﹣.【分析】由反比例函数图象的特征,得到两交点坐标关于原点对称,故x1=﹣x2,y1=﹣y2,再代入x1y2﹣3x2y1,由k=xy得出答案.【解答】解:由图象可知点M(x1,y1),N(x2,y2)关于原点对称,即﹣x1=x2,﹣y1=y2,把M(x1,y1)代入双曲线y=﹣,得x1y1=﹣2,则x1y2﹣3x2y1=﹣x1y1+3x1y1=﹣6=﹣.故答案为:﹣.【点评】本题考查了正比例函数与反比例函数交点坐标的性质,解决问题的关键是利用两交点坐标关于原点对称.14.如图,在Rt△ABC中,∠C=90°,AB=13,AC=12,经过点C且与AB边相切的动圆与BC、CA分别相交于点M、N,则线段MN长度的最小值为.【分析】设MN的中点为P,⊙P与AB的切点为D,连接PD,连接CP,CD,则有PD⊥AB;由勾股定理可求得BC的长,由MN=PD+CP可得到MN≥CD,故此当MN=CD时,MN有最小值,此时点C、P、D在一条直线上,最后利用面积法可求得CD的长,从而得到MN的最小值.【解答】解:如图,设MN的中点为P,⊙P与AB的切点为D,连接PD,连接CP,CD,则有PD⊥AB;∵AB=13,AC=12,∴BC==5.∵PC+PD=MN,∴PC+PD≥CD,MN≥CD.∴当MN=CD时,MN有最小值.∵PD⊥AB,∴CD⊥AB.∵AB•CD=BC•AC,∴CD===.∴CD的最小值.∴MN的最小值为.故答案为:.【点评】此题主要考查了切线的性质,勾股定理的逆定理,三角形的三边关系,直角三角形的面积公式求解,得出CD=BC•AC÷AB是解题关键.三、解答题.(共11小题,满分78分,解答题后写出过程)15.(5分)1﹣1﹣2sin30°+|3.14﹣π|+(﹣1)0.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=1﹣1+π﹣3.14+1=π﹣2.14.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.(5分)解方程:﹣=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3﹣x2+x=x2﹣1,即2x2﹣x﹣4=0,解得:x=,经检验x=是分式方程的解.【点评】此题考查了解分式方程,利用转化的思想,解分式方程注意要检验.17.(5分)如图,已知锐角三角形ABC,求作⊙C,使⊙C与AB所在的直线相切于点D(保留作图痕迹,不写作法).【分析】根据切线的性质,过C先作AB的垂线,垂足为D,以C为圆心,由CD作半径的圆即和AB相切.【解答】解:作法:①过C作CE⊥AB于D,②以C为圆心,以CD为半径画圆,则⊙C就是所求作的圆.【点评】本题考查了切线的性质和复杂作图问题,明确过直线外一点作已知直线的垂线,并熟练掌握圆的切线的性质.18.(5分)某校为了了解七年级学生课外活动情况,随机调查了该校若干名学生,调查他们喜欢各类课外活动的情况(课外活动分为四类:A﹣﹣喜欢打乒乓球的人,B﹣﹣喜欢踢足球的人,C﹣﹣喜欢打篮球的人,D﹣﹣喜欢其他的人),并将调查结果绘制成如下两幅不完整的统计图.根据统计图信息完成下列问题:(1)调查的学生人数为120人.(2)补全条形统计图和扇形统计图.(3)若该校七年级共有600人,请估计七年级学生中喜欢打乒乓球的人数.【分析】(1)利用A人数除以所占百分比即可得到调查学生数;(2)首先计算出喜欢踢足球的人数,然后计算出喜欢踢足球的人所占百分比,再计算出喜欢其他的人所占百分比,然后补图即可;(3)利用总人数乘以样本中喜欢打乒乓球的人数所占百分比即可.【解答】解:(1)30÷25%=120,故答案为:120;(2)喜欢踢足球的人数:120﹣30﹣60﹣6=24,所占百分比:×100%=20%,喜欢其他的人所占百分比:×100%=5%,如图所示;(3)600×=150(人),答:七年级学生中喜欢打乒乓球的人数为150人.【点评】此题主要考查了条形统计图,以及利用样本估计总体,关键是读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.19.(7分)已知:如图,在矩形ABCD中,点E在边AD上,点F在边BC上,且AE=CF,作EG∥FH,分别与对角线BD交于点G、H,连接EH,FG.(1)求证:△BFH≌△DEG;(2)连接DF,若BF=DF,则四边形EGFH是什么特殊四边形?证明你的结论.【分析】(1)由平行四边形的性质得出AD∥BC,AD=BC,OB=OD,由平行线的性质得出∠FBH=∠EDG,∠OHF=∠OGE,得出∠BHF=∠DGE,求出BF=DE,由AAS即可得出结论;(2)先证明四边形EGFH是平行四边形,再由等腰三角形的性质得出EF⊥GH,即可得出四边形EGFH是菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠FBH=∠EDG,∵AE=CF,∴BF=DE,∴∠OHF=∠OGE,∴∠BHF=∠DGE,在△BFH和△DEG中,,∴BFH≌△DEG(AAS);(2)解:四边形EGFH是菱形;理由如下:连接DF,如图所示:由(1)得:BFH≌△DEG,∴FH=EG,又∵EG∥FH,∴四边形EGFH是平行四边形,∵DE=BF,∠EOD=∠BOF,∠EDO=∠FBO,∴△EDO≌△FBO,∴OB=OD,∵BF=DF,OB=OD,∴EF⊥BD,∴EF⊥GH,∴四边形EGFH是菱形.【点评】本题考查了全等三角形的性质和判定,平行线的性质,菱形的判定,等腰三角形的性质,平行四边形的性质和判定等知识;熟练掌握平行四边形的判定与性质,证明三角形全等是解决问题的关键.20.(7分)已知某山区的平均气温与该山的海拔高度的关系见下表:(1)若海拔高度用x(米)表示,平均气温用y(℃)表示,试写出y与x之间的函数关系式;(2)若某种植物适宜生长在18℃~20℃(包含18℃,也包含20℃)山区,请问该植物适宜种植在海拔为多少【分析】(1)分析数据可知:高度每增加100米,温度下降0.5℃.据此列关系式;(2)取y=18,20,分别求出高度x的值,再回答问题.【解答】解:(1)y=22﹣0.5×=22﹣0.005x;(2)当y=18时,即22﹣0.005x=18,解得x=800;当y=20时,即22﹣0.005x=20,解得x=400.∴若某种植物适宜生长在18℃~20℃(包含18℃,也包含20℃)山区,那么该植物适宜种植在海拔为400~800米的山区.【点评】此题考查一次函数的应用,正确表示函数关系式是关键.难度不大.21.(7分)如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,求建筑物的高.【分析】根据题意可得出△CDG∽△ABG,△EFH∽△ABH,再根据相似三角形的对应边成比例即可得出结论.【解答】解:∵AB⊥BH,CD⊥BH,EF⊥BH,∴AB∥CD∥EF,∴△CDG∽△ABG,△EFH∽△ABH,∴=,=,∵CD=DG=EF=2m,DF=52m,FH=4m,∴=,=,∴=,解得BD=52,∴=,解得AB=54.答:建筑物的高为54米.【点评】本题考查的是相似三角形的应用,熟知相似三角形的对应边成比例是解答此题的关键.22.(7分)“五一”小长假期间,某超市为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”、“30元”的字样.规定:顾客在本超市一次性购物满500元以上均可获得两次摸球的机会(摸出小球后放回).超市根据两小球所标金额的和返还相应的代金券.(1)顾客甲购物1000元,则他最少可获0元代金券,最多可获60元代金券.(2)请用树形图或列表方法,求出顾客甲获得不低于30元(含30元)代金券的概率.【分析】(1)至少得到的金额数为0+0=0元,至多得到的金额数为30+30=60元;(2)列举出所有情况,看该顾客所获得购物券的金额不低于30元的情况数占总情况数的多少即可.【解答】解:(1)至少得到的金额数为0+0=0元,至多得到的金额数为30+30=60元,故答案为0、60;(2)画树状图如下:共16种情况,不低于30元的情况数有10种,所以所求的概率为=.【点评】本题考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的关键.23.(8分)已知:如图,在△ABC中,D是AB边上一点,圆O过D、B、C三点,∠DOC=2∠ACD=90°.(1)求证:直线AC是圆O的切线;(2)如果∠ACB=75°,圆O的半径为2,求BD的长.【分析】(1)证明OC⊥AC即可.根据∠DOC是等腰直角三角形可得∠DCO=45°.又∠ACD=45°,所以∠ACO=90°,得证;(2)如果∠ACB=75°,则∠BCD=30°;又∠B=∠O=45°,解斜三角形BCD求解.所以作DE⊥BC,把问题转化到解直角三角形求解.先求CD,再求DE,最后求BD得解.【解答】(1)证明:∵OD=OC,∠DOC=90°,∴∠ODC=∠OCD=45°.∵∠DOC=2∠ACD=90°,∴∠ACD=45°.∴∠ACD+∠OCD=∠OCA=90°.∵点C在圆O上,∴直线AC是圆O的切线.(2)解:方法1:∵OD=OC=2,∠DOC=90°,∴CD=2.∵∠ACB=75°,∠ACD=45°,∴∠BCD=30°,作DE⊥BC于点E,则∠DEC=90°,∴DE=DCsin30°=.∵∠B=45°,∴DB=2.方法2:连接BO∵∠ACB=75°,∠ACD=45°,∴∠BCD=30°,∴∠BOD=60°∵OD=OB=2∴△BOD是等边三角形∴BD=OD=2.【点评】此题考查了切线的判定方法和解直角三角形,内容单一,难度不大.注意:解斜三角形通常通过作垂线把问题转化为解直角三角形求解.24.(10分)已知抛物线y=3ax2+2bx+c,(Ⅰ)若a=b=1,c=﹣1,求该抛物线与x轴公共点的坐标;(Ⅱ)若a=b=1,且当﹣1<x<1时,抛物线与x轴有且只有一个公共点,求c的取值范围;(Ⅲ)若a+b+c=0,且x1=0时,对应的y1>0;x2=1时,对应的y2>0,试判断当0<x<1时,抛物线与x轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.【分析】(Ⅰ)把a,b,c的值代入可得抛物线的解析式,求出两根即可;(Ⅱ)把a,b代入解析式可得△=4﹣12c≥0,等于0时可直接求得c的值;求出y的相应的值后可得c的取值范围;(Ⅲ)抛物线y=3ax2+2bx+c与x轴公共点的个数就是一元二次方程3ax2+2bx+c=0的实数根的个数,因此,本题的解答就是研究在不同的条件下一元二次方程3ax2+2bx+c=0根的判别式的符号,依据判别式的符号得出相应的结论.【解答】解:(Ⅰ)当a=b=1,c=﹣1时,抛物线为y=3x2+2x﹣1,方程3x2+2x﹣1=0的两个根为x1=﹣1,.∴该抛物线与x轴公共点的坐标是(﹣1,0)和(,0);(Ⅱ)当a=b=1时,抛物线为y=3x2+2x+c,且与x轴有公共点.对于方程3x2+2x+c=0,判别式△=4﹣12c≥0,有c≤.①当时,由方程3x2+2x+=0,解得x1=x2=﹣.此时抛物线为y=3x2+2x+与x轴只有一个公共点(﹣,0);(4分)②当时,x1=﹣1时,y1=3﹣2+c=1+c;x2=1时,y2=3+2+c=5+c.由已知﹣1<x<1时,该抛物线与x轴有且只有一个公共点,考虑其对称轴为,应有即,解得﹣5<c≤﹣1.综上,或﹣5<c≤﹣1.(6分)(Ⅲ)对于二次函数y=3ax2+2bx+c,由已知x1=0时,y1=c>0;x2=1时,y2=3a+2b+c>0,又∵a+b+c=0,∴3a+2b+c=(a+b+c)+2a+b=2a+b.∴2a+b>0.∵b=﹣a﹣c,∴2a﹣a﹣c>0,即a﹣c>0.∴a>c>0.(7分)∵关于x的一元二次方程3ax2+2bx+c=0的判别式△=4b2﹣12ac=4(a+c)2﹣12ac=4[(a﹣c)2+ac]>0,∴抛物线y=3ax2+2bx+c与x轴有两个公共点,顶点在x轴下方.(8分)又该抛物线的对称轴,由a+b+c=0,c>0,2a+b>0,得﹣2a<b<﹣a,∴.又由已知x1=0时,y1>0;x2=1时,y2>0,观察图象,可知在0<x<1范围内,该抛物线与x轴有两个公共点.(10分)【点评】借助图象,可将抽象的问题直观化;二次函数与x轴的交点的纵坐标为0;抛物线与x轴交点的个数就是一元二次方程根的个数.25.(12分)问题探究(1)请在图①的正方形ABCD的对角线BD上作一点P,使PA+PC最小;(2)如图②,点P为矩形ABCD的对角线BD上一动点,AB=2,BC=2,点E为BC边的中点,求作一点P,使PE+PC最小,并求这个最小值.问题解决(3)如图③,李师傅有一块边长为1000米的菱形ABCD采摘园,AC=1200米,BD为小路,BC的中点E为一水池,李师傅现在准备在小路BD上建一个游客临时休息纳凉室P,为了节省土地,使休息纳凉室P到水池E与大门C的距离之和最短,那么是否存在符合条件的点P?若存在,请作出的点P位置,并求出这个最短距离;若不存在,请说明理由.【分析】(1)利用正方形的对称性直接连接AC即可;(2)作出点C关于BD的对称性,连接C'E交BD于P,进而判断出△CEC'是直角三角形,利用勾股定理即可求出;(3)直接连接AE交BD于P,再过点E作EF⊥AC,构造出直角三角形,再利用三角形的中位线求出EF,进而利用勾股定理求出CF,最后在Rt△AEF中利用勾股定理即可.【解答】解:(1)如图①,连接AC交BD于P,则AP+CP最小=AC;(2)如图②,作点C关于BD的对称点C'交BD于F,连接C'E交BD于P,则PE+PC最小=C'E.∵BD是矩形ABCD的对角线,∴CD=AB=2,∠BCD=90°,在Rt△BCD中,CD=2,BC=2,∴tan∠CBD===,∴∠CBD=30°,由对称知,CC'=2CF,CC'⊥BD,∴∠CFD=90°,∴∠BCF=60°,∠DCF=30°,在Rt△CDF中,CD=2,∠DCF=30°,∴CF=,∴CC'=2CF=2,∵点E为BC边的中点,∴CE=BC=,∴CF=CE,连接EF,∴△CEF是等边三角形,∴EF=CF=C'F,∴△CEC'是直角三角形,在Rt△CEC'中,CC'=2,CE=,∴C'E=3,∴PE+PC最小为3;(3)如图③,菱形ABCD的对角线相交于点O,∴OC=OA=AC=600,AC⊥BD,在Rt△BOC中,OB==800,过点E作EF⊥AC于F,∴EF∥OB,∵点E是BC的中点,EF=OB=400,∵CE=BC=500,根据勾股定理得,CF==300,∴AF=AC﹣CF=1200﹣300=900,连接AE交BD于P,即:PC+PE最小=AE,在Rt△AEF中,根据勾股定理得,AE==100,【点评】此题是四边形综合题,主要考查了正方形的性质,矩形的性质,菱形的性质,对称的性质,三角形的中位线,勾股定理;解(2)的关键是判断出△CEC'是直角三角形,解(3)的关键是构造出直角三角形AEF.。