第4章--常微分方程数值解法
- 格式:ppt
- 大小:2.04 MB
- 文档页数:65
常微分方程的数值解法专业班级:信息软件 姓名:吴中原 学号:120108010002 一、实验目的1、熟悉各种初值问题的算法,编出算法程序;2、明确各种算法的精度与所选步长有密切关系;通过计算更加了解各种 算法的优越性。
二、实验题目1、根据初值问题数值算法,分别选择二个初值问题编程计算;2、试分别取不同步长,考察某节点j x处数值解的误差变化情况; 3、试用不同算法求解某初值问题,结果有何异常; 4、分析各个算法的优缺点。
三、实验原理与理论基础(一) 欧拉法算法设计对常微分方程初始问题(6-1)(6-2)用数值方法求解时,我们总是认为(6-1)、(6-2)的解存在且唯一。
欧拉法是解初值问题的最简单的数值方法。
从(6-2)式由于y (x 0) = y 0已给定,因而可以算出),()('000y x f x y =。
设x 1 = h 充分小,则近似地有:),()(')()(00001y x f x y hx y x y =≈-(6-3)记 ,n ,,i x y y i i 10 )(== 从而我们可以取),(0001y x hf y y ==作为)(1x y 的近似值。
利用1y 及f (x 1, y 1)又可以算出)(2x y 的近似值:),(1112y x hf y y +=一般地,在任意点()h n x n 11+=+处)(x y 的近似值由下式给出),(1n n n n y x hf y y +=+(6-4)这就是欧拉法的计算公式,h 称为步长。
⎪⎩⎪⎨⎧==)( ),(d d 00y x y y x f x y(二)四阶龙格-库塔法算法设计:欧拉公式可以改写为:()111,i i i i y y k k hf x y +=+⎧⎪⎨=⎪⎩,它每一步计算(),f x y 的值一次,截断误差为()2o h 。
改进的欧拉公式可以改写为:()()()11212112,,i i i i i i y y k k k hf x y k hf x h y k +⎧=++⎪⎪=⎨⎪=++⎪⎩,它每一步要计算(),f x y 的值两次,截断误差为()3o h 。
常微分方程的数值解法在自然科学的许多领域中,都会遇到常微分方程的求解问题。
然而,我们知道,只有少数十分简单的微分方程能够用初等方法求得它们的解,多数情形只能利用近似方法求解。
在常微分方程课中已经讲过的级数解法,逐步逼近法等就是近似解法。
这些方法可以给出解的近似表达式,通常称为近似解析方法。
还有一类近似方法称为数值方法,它可以给出解在一些离散点上的近似值。
利用计算机解微分方程主要使用数值方法。
我们考虑一阶常微分方程初值问题⎪⎩⎪⎨⎧==00)(),(yx y y x f dx dy在区间[a, b]上的解,其中f (x, y )为x, y 的已知函数,y 0为给定的初始值,将上述问题的精确解记为y (x )。
数值方法的基本思想是:在解的存在区间上取n + 1个节点b x x x x a n =<<<<= 210这里差i i i x x h -=+1,i = 0,1, …, n 称为由x i 到x i +1的步长。
这些h i 可以不相等,但一般取成相等的,这时na b h -=。
在这些节点上采用离散化方法,(通常用数值积分、微分。
泰勒展开等)将上述初值问题化成关于离散变量的相应问题。
把这个相应问题的解y n 作为y (x n )的近似值。
这样求得的y n 就是上述初值问题在节点x n 上的数值解。
一般说来,不同的离散化导致不同的方法。
§1 欧拉法与改进欧拉法 1.欧拉法1.对常微分方程初始问题(9.2))((9.1) ),(00⎪⎩⎪⎨⎧==y x y y x f dx dy用数值方法求解时,我们总是认为(9.1)、(9.2)的解存在且唯一。
欧拉法是解初值问题的最简单的数值方法。
从(9.2)式由于y (x 0) = y 0已给定,因而可以算出),()('000y x f x y =设x 1 = h 充分小,则近似地有:),()(')()(00001y x f x y hx y x y =≈-(9.3)记 ,n ,,i x y y i i 10 )(== 从而我们可以取),(0001y x hf y y ==作为y (x 1)的近似值。
微分方程数值解法微分方程数值解法微分方程数值解法【1】摘要:本文结合数例详细阐述了最基本的解决常微分方程初值问题的数值法,即Euler方法、改进Euler法,并进行了对比,总结了它们各自的优点和缺点,为我们深入探究微分方程的其他解法打下了坚实的基础。
关键词:常微分方程数值解法 Euler方法改进Euler法1、Euler方法由微分方程的相关概念可知,初值问题的解就是一条过点的积分曲线,并且在该曲线上任一点处的切线斜率等于函数的值。
根据数值解法的基本思想,我们取等距节点,其中h为步长,在点处,以为斜率作直线交直线于点。
如果步长比较小,那么所作直线与曲线的偏差不会太大,所以可用的近似值,即:,再从点出发,以为斜率作直线,作为的近似值,即:重复上述步骤,就能逐步求出准确解在各节点处的近似值。
一般地,若为的近似值,则过点以为斜率的直线为:从而的近似值为:此公式就是Euler公式。
因为Euler方法的思想是用折线近似代替曲线,所以Euler方法又称Euler折线法。
Euler方法是初值问题数值解中最简单的一种方法,由于它的精度不高,当步数增多时,由于误差的积累,用Euler方法作出的折线可能会越来越偏离曲线。
举例说明:解: ,精确解为:1.2 -0.96 -1 0.041.4 -0.84 -0.933 0.9331.6 -0.64 -0.8 0.161.8 -0.36 -0.6 0.242.0 0 -0.333 0.332.2 0.44 0 0.44通过上表可以比较明显地看出误差随着计算在积累。
2、改进Euler法方法构造在常微分方程初值问题 ,对其从到进行定积分得:用梯形公式将右端的定积分进行近似计算得:用和来分别代替和得计算格式:这就是改进的Euler法。
解:解得:由于 ,是线形函数可以从隐式格式中解出问题的精确解是误差0.2 2.421403 2.422222 0.000813 0.021400.4 2.891825 2.893827 0.00200 0.051830.6 3.422119 3.425789 0.00367 0.094112.0 10.38906 10.43878 0.04872 1.1973通过比较上表的第四列与第五列就能非常明显看出改进Euler方法精度比Euler方法精度高。
介绍常微分方程数值解法常微分方程(ordinary differential equations,ODE)可用于描述许多日常存在的物理系统。
处理ODE问题常常被称为数值求解法,这指的是找到概括ODE或者其他适用于数学模型的解决方案来模括这些ODE。
这种解决方案可能在一系列不同方案中发挥重要作用,以此来提供更好的解释和预测。
常微分方程与几何图形更为相关,它利用二维或者三维空间中曲线的绘制以及分析。
通过引入一些不同的方法,可以对不同的常微分方程中的量进行描述,使得可以通过数值方法的解析来进行研究。
数值解法可能是时间消耗较多的,但有助于验证几何图形中的某些过程,以此帮助揭示数学模型。
四种常见的常微分方程数值解法四种常见的常微分方程数值解法是:前向差分法、向后差分法、中点法和全分方法。
•前向差分法:前向差分法的基本概念是利用ODE的特定解来表达时间步的影响。
这是一种基本的数值法,可以在ODE中确定任意位置的点作为终点。
在这里,任何这样的点都可以表示为ODE右边的时间步。
•向后差分法:它是反过来基于前向差分法。
它要求对ODE中的时间步进行逆向推导,以获得某一特定点的解。
向后差分法要求推导反向解中点,以便可以从每一步中获取该点的解。
•中点法:这是一种非常基本的数值解法,可以用来求解ODE中的某一步的解,但不具有直观的方法解释。
主要的思想是在每一次时间步中通过求出ODE的中点来寻找解。
•全分方法:这是一种更复杂的数值解法,它要求将ODE中的每一步解细分并解决。
与前面提到的三种解法不同,它首先要求将ODE分解成若干离散区间,然后计算每一段区间中的点。
这种解法可以更准确地进行处理,但时间消耗较多,因此比较少被使用。
优化方案在需要解决常微分方程时,为了得到最佳的结果,有必要考虑一些优化措施。
•首先,应考虑将一个复杂的ODE拆分成一些更易解决的问题。
这样做的结果是,预见到解决此ODR的总耗时将会降低。
•其次,为了加快计算速度,可以考虑使用预解算法。
常微分方程的数值解法1. 引言常微分方程是自变量只有一个的微分方程,广泛应用于自然科学、工程技术和社会科学等领域。
由于常微分方程的解析解不易得到或难以求得,数值解法成为解决常微分方程问题的重要手段之一。
本文将介绍几种常用的常微分方程的数值解法。
2. 欧拉方法欧拉方法是最简单的一种数值解法,其具体步骤如下:- 将自变量的区间等分为n个子区间;- 在每个子区间上假设解函数为线性函数,即通过给定的初始条件在每个子区间上构造切线;- 使用切线的斜率(即导数)逼近每个子区间上的解函数,并将其作为下一个子区间的初始条件;- 重复上述过程直至达到所需的精度。
3. 改进的欧拉方法改进的欧拉方法是对欧拉方法的一种改进,主要思想是利用两个切线的斜率的平均值来逼近每个子区间上的解函数。
具体步骤如下: - 将自变量的区间等分为n个子区间;- 在每个子区间上构造两个切线,分别通过给定的初始条件和通过欧拉方法得到的下一个初始条件;- 取两个切线的斜率的平均值,将其作为该子区间上解函数的斜率,并计算下一个子区间的初始条件;- 重复上述过程直至达到所需的精度。
4. 二阶龙格-库塔方法二阶龙格-库塔方法是一种更为精确的数值解法,其基本思想是通过近似计算解函数在每个子区间上的平均斜率。
具体步骤如下: - 将自变量的区间等分为n个子区间;- 在每个子区间上计算解函数的斜率,并以该斜率的平均值近似表示该子区间上解函数的斜率;- 利用该斜率近似值计算下一个子区间的初始条件,并进一步逼近解函数;- 重复上述过程直至达到所需的精度。
5. 龙格-库塔法(四阶)龙格-库塔法是目前常用的数值解法之一,其精度较高。
四阶龙格-库塔法是其中较为常用的一种,其具体步骤如下:- 将自变量的区间等分为n个子区间;- 在每个子区间上进行多次迭代计算,得到该子区间上解函数的近似值;- 利用近似值计算每个子区间上的斜率,并以其加权平均值逼近解函数的斜率;- 计算下一个子区间的初始条件,并进一步逼近解函数;- 重复上述过程直至达到所需的精度。
常微分方程的数值解法常微分方程是研究变量的变化率与其当前状态之间的关系的数学分支。
它在物理、工程、经济等领域有着广泛的应用。
解常微分方程的精确解往往十分困难甚至不可得,因此数值解法在实际问题中起到了重要的作用。
本文将介绍常见的常微分方程的数值解法,并比较其优缺点。
1. 欧拉方法欧拉方法是最简单的数值解法之一。
它基于近似替代的思想,将微分方程中的导数用差商近似表示。
具体步骤如下:(1)确定初始条件,即问题的初值。
(2)选择相应的步长h。
(3)根据微分方程的定义使用近似来计算下一个点的值。
欧拉方法的计算简单,但是由于误差累积,精度较低。
2. 改进欧拉方法为了提高欧拉方法的精度,改进欧拉方法应运而生。
改进欧拉方法通过使用两个点的斜率的平均值来计算下一个点的值。
具体步骤如下:(1)确定初始条件,即问题的初值。
(2)选择相应的步长h。
(3)根据微分方程的定义使用近似来计算下一个点的值。
改进欧拉方法相较于欧拉方法而言,精度更高。
3. 龙格-库塔法龙格-库塔法(Runge-Kutta)是常微分方程数值解法中最常用的方法之一。
它通过迭代逼近精确解,并在每一步中计算出多个斜率的加权平均值。
具体步骤如下:(1)确定初始条件,即问题的初值。
(2)选择相应的步长h。
(3)计算各阶导数的导数值。
(4)根据权重系数计算下一个点的值。
与欧拉方法和改进欧拉方法相比,龙格-库塔法的精度更高,但计算量也更大。
4. 亚当斯法亚当斯法(Adams)是一种多步法,它利用之前的解来近似下一个点的值。
具体步骤如下:(1)确定初始条件,即问题的初值。
(2)选择相应的步长h。
(3)通过隐式或显式的方式计算下一个点的值。
亚当斯法可以提高精度,并且比龙格-库塔法更加高效。
5. 多步法和多级法除了亚当斯法,还有其他的多步法和多级法可以用于解常微分方程。
多步法通过利用多个点的值来逼近解,从而提高精度。
而多级法则将步长进行分割,分别计算每个子问题的解,再进行组合得到整体解。