人教版,轴对称整章水平测试
- 格式:doc
- 大小:198.50 KB
- 文档页数:6
第13章 《轴对称》单元测试一、单选题(本大题共10小题,每小题3分,共30分)1.书法是我国传统文化的重要组成部分,被誉为:无言的诗,无形的舞,无图的画,无声的乐.下列是用小篆书写的“魅力宁德”四个字,其中是轴对称图形的是( )A .B .C .D .2.如图,是线段的垂直平分线,垂足为点,,是上两点.下列结论不正确的是( )A .B .C .D .3.将长方形纸片沿AC 折叠后点B 落在点E 处,则线段BE 与AC 的关系是( )A .B .C .且D .且平分4.在平面直角坐标系xOy 中,点A (2,1)与点B (0,1)关于某条直线成轴对称,这条直线是( )AB CD G E F AB EC CD =EC ED =CF DF =CG DG=AC BE =AC BE ⊥AC BE ⊥AC BE =AC BE ⊥AC BEA .轴B .轴C .直线(直线上各点横坐标均为1)D .直线(直线上各点纵坐标均为1)5.一副三角板和如图摆放,,,若,,则下列结论错误的是( )A .平分B .平分C .D .6.如图,在中,点O 是内一点,连接、,垂直平分,若,,则点A 、O 之间的距离为( )A .4B .8C .2D .67.四边形的边长如图所示,对角线的长度随四边形形状的改变而变化.当为等腰三角形时,对角线的长为( )A .2B .3C .4D .58.如图,中,,是边上的高,是延长线上一点,平分,若,,,则下列等式一定成立的是()x y 1x =1y =ABC DEF 45BAC ∠=︒60EDF ∠=︒GA FD ∥AB EF ∥EC FED ∠CB FCE ∠BC DE ∥30GAB ∠=︒ABC ABC OB OC OD AB OBC OCB ∠=∠4OC =ABCD AC ABC AC ABC 2B C ∠=∠AD BC E BA AC DAE ∠AB m =BC p =BD q =A .B .C .D .9.如图所示,点为内一定点,点,分别在的两边上,若的周长最小,则与的关系为( )A .B .C .D .10.如图,和是两个等边三角形,是以为斜边的等腰直角三角形,连接,,,下列三个结论:①;②;③点在线段的中垂线上;④;⑤;⑥.其中正确的结论的个数是( )A .3B .4C .5D .6二、填空题(本大题共8小题,每小题4分,共32分)11.若点与点关于x 轴对称,则 .12.如图,在平面直角坐标系中,是由经过平移和关于坐标轴对称等变换得到的,m q p +=2m q p +=2m q p +=12q m p +=P O ∠A B O ∠PAB ∆O ∠APB ∠2O APB∠=∠2O APB ∠=∠180O APB ∠+∠=︒2180O APB ∠+∠=︒ABP CDP △APD △AD AC BC BD APC BPD △≌△ABD BCA △≌△P BC 15PBC ∠=︒AD BC ∥PC AB ⊥()12A a -,()21B b -,a b +=A B C ''' ABC其中点P 与是变换前后图形上的一对对应点.若点P 的坐标为,则点的坐标为 (用含a 、b 的代数式表示).13.如图,在一张纸片上将翻折得到三角形,并以为边作等腰,其中,且E ,A ,C 三点共线,,则的度数是 .14.如图,,,,,若,,且长为奇数,则的长为 .15.如图,是等腰三角形,,且B ,C ,D 三点共线.连接,分别交于点M ,N ,连接,则= .16.如图,A 是直线外的一点,于点H ,,P 是上一动点,是等边三角形,连接,则线段的最小值是 .P '(),a b P 'BED AED AB ABC AB AC =42EBC ∠=︒BAC ∠AE BD =CE CD =E D ∠=∠60DCE ∠=︒52BD =32CD =AB AB ,ABC ECD 60ACB ECD ∠=∠=︒,BE AD ,AC EC MN NMC ∠︒MN AH MN ⊥4AH =MN APQ △HQ HQ17.如图,一位同学拿了两块同样的含45°的三角尺,即等腰直角,等题直角做了一个探究活动:将的直角顶点M 放在的斜边的中点处,设,猜想此时重叠部分四边形的面积为 .18.如图,等边和等边的边长都是4,点在同一条直线上,点P 在线段上,则的最小值为 .三、解答题(本大题共6小题,共58分)19.(8分)已知如图所示,(1)画出中边上的高线,在内部作射线使得,交边于点,请你依题意补全图形;MNK △ACB △MNK △ACB △AB AC BC a ==CEMF ABC A B C ''△B C B ',,A C 'AP BP +ABC ABC BC AD ADC ∠DE EDC C ∠=∠AC E(2)判断与之间的关系,并说明理由.20.(8分)如图,,.求证:直线是线段的垂直平分线.DAE ∠ADE ∠AB AC =MB MC =AM BC21.(10分)如图,为等腰直角三角形,,点D 在上,点E 在的延长线上,且.(1)求证:;(2)若,求的度数.22.(10分)如图,,,垂足分别为D 、C ,,且.连接.(1)求证:.(2)若,,求的度数.ABC 90BCA ∠=︒CA BC BD AE =BCD ACE ≌△△80BAE ∠=︒DBA ∠ED AB ⊥FC AB ⊥AE BF ∥AE BF =CE AC BD =CD DE =25A ∠=︒AEC ∠23.(10分)如图,在中,, ,点在线段上运动(不与、重合),连接,作,交线段于.(1)当时, , ;点从向的运动过程中,逐渐变 (填“大”或“小”);(2)当等于多少时,,请说明理由.(3)在点的运动过程中,与的长度可能相等吗?若可以,请直接写出的度数,请说明理由.24.(12分)解答题(1)问题发现如图1,把一块三角板(,)放入一个“”形槽中,使三角形的三个顶点、、分别在槽的两壁及底边上滑动,已知,在滑动过程中,发现与始终相等的角是 ,与线段相等的线段是;ABC 2AB AC ==40B C ∠=∠=︒D BC D B C AD 40ADE ∠=︒DE AC E 115BDA ∠=︒EDC ∠=︒DEC ∠=︒D B C BDA ∠DC ABD DCE △△≌D DA DE BDA ∠AB BC =90ABC ∠=︒U A B C 90D E ∠=∠=︒DAB ∠AD(2)拓展探究如图2,在中,点在边上,并且,.求证:.(3)能力提升如图3,在等边中,,分别为、边上的点,,连接,以为边在内作等边,连接,当时,请直接写出的长度.ABC D BC DA DE =B ADE C ∠=∠=∠ADB DEC △≌△DEF A C DE DF 4AE =AC AC DEF ABC BF 30CFB ∠=︒CD答案一、单选题1.C【分析】根据轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁部分能够完全重合的图形;由此问题可求解.【详解】解:C 选项是轴对称图形,A 、B 、D 选项都不是轴对称图形;故选:C .2.A【分析】根据垂直平分线的性质分析选项即可.【详解】解:∵是线段的垂直平分线,∴,,故D 选项结论正确,不符合题意;在和中,∴,∴,故B 选项结论正确,不符合题意;同理可知:,∴,故C 选项结论正确,不符合题意;利用排除法可知选项A 结论不正确,符合题意.故选:A3.D【分析】由翻折得到AE=AB ,CE=CB ,再根据线段的垂直平分线的判定即可得到答案.【详解】解:∵ACE 是由ABC 翻折得到,∴AE=AB,CE=CB∴AC ⊥BE 且AC 平分BE ,AB CD 90∠==︒CGE DGE CG DG =ECG EDG △CGE DGE CG DGEG EG ∠=⎧⎪=⎨⎪=⎩()≌ECG EDG SAS △△EC ED =()≌FCG FDG SAS △△FC FD =故选D .4.C【分析】利用成轴对称的两个点的坐标的特征,即可解题.【详解】根据A 点和B 点的纵坐标相等,即可知它们的对称轴为.故选:C .5.B【分析】根据三角形板各角的特点,平行线的判定和性质即可求解.【详解】解:∵,,,∴,则,∴平分,故选项正确;∵,,如图所示,设与交于点,∴,由选项正确可得,∴在中,,在中,,∴,∴,∴平分错误,故选项错误;由上述证明可得,,∴,故选项正确;根据上述证明可得,,∵,且,∴,∴,20122A B x x x ++===90DEF ∠=︒45BAC ∠=︒AB EF ∥45BAC FEC ∠=∠=︒90904545DEC FEC ∠=︒-∠=︒-︒=︒EC FED ∠A 90B Ð=°AB EF ∥BC EF H 90EHC B ∠=∠=︒A 45FEC ∠=︒Rt CEH △45ECH ∠=︒Rt FCH △30EFC ∠=︒60FCH ∠=︒ECH FCH ∠≠∠CB FCE ∠B 60FCH EDF ∠=︒=∠BC DE ∥C 4560105ECF ECH FCH ∠=∠+∠=︒+︒=︒GA FD ∥45BAC ∠=︒180GAC ECF ∠+∠=︒180********GAC ECF ∠=︒-∠=︒-︒=︒∴,故选项正确;故选:.6.A【分析】连接,由垂直平分线的性质可得,由等角对等边可得,即可求解.【详解】解:如图,连接,∵垂直平分,∴,∵,,∴,∴,故选:A .7.B【分析】利用三角形三边关系求得,再利用等腰三角形的定义即可求解.【详解】解:在中,,∴,即,当时,为等腰三角形,但不合题意,舍去;若时,为等腰三角形,故选:B .8.B【分析】过点C 作于点F ,易证(AAS ),得到,,,进而得到,因此.由于得到,又,得到,因此,所以.由得,变形得到.754530GAB GAC BAC ∠=∠-∠=︒-︒=︒D B OA OA OB =4OB OC ==OA OD AB OA OB =OBC OCB ∠=∠4OC =4OB OC ==4OA OB OC ===04AC <<ACD 2AD CD ==2222AC -<<+04AC <<4AC BC ==ABC 3AC AB ==ABC CF BE ⊥ACF ACD ≌CF CD BC BD p q ==-=-AD AF =DCA FCA ∠=∠22BCF BCA B ∠=∠=∠BF CF p q ==-90DAC CAF BCA ∠=∠=︒-∠()180121802902BAD BCA BCA ∠=︒-∠-∠=︒-︒-∠=∠2B BCA ∠=∠BAD B =∠∠AD BD =AF BD q ==FB CF =m q p q +=-2m q p +=【详解】如图,过点C 作于点F是高,平分在和中(),,∵在中,,又,,即CF BE ⊥AD CF BE⊥90ADC AFC ∴∠=∠=︒AC DAF∠12∴∠=∠ADC △AFC △12ADC AFC AC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩ACF ACD ∴ ≌AAS AD AF ∴=CD CF =DCA FCA∠=∠Rt ACD △190ACD ∠=︒-∠12∠=∠()18012180211802902BAD ACD ACD∴∠=︒-∠-∠=︒-∠=︒-︒-∠=∠2B ACD∠=∠ BAD B∴∠=∠AD BD q∴==AF AD q ∴==BF AB AF m q=+=+CD BC BD p q=-=- CF CD p q∴==-DCA FCA∠=∠ 2BCF DCA FCA DCA∴∠=∠+∠=∠2B DCA∠=∠ B BCF∴∠=∠BF CF∴=m q p q ∴+=-2m q p+=故选:B9.D【分析】作点关于的对称点,点关于的对称点,其中交于,交于,此时的周长最小值等于的长,由轴对称的性质可知△是等腰三角形,所以,推出,所以,即得出答案.【详解】解:如图,作点关于的对称点,点关于的对称点,连接,,,其中交于,交于,此时的周长最小值等于的长,由轴对称性质可知:,,,,,,,即,故选:D .10.C【分析】利用等边三角形和等腰直角三角形的性质得到PA =PB =PD =PC ,∠APB =∠DPC =∠PAB =∠PDC =60°,∠APD =90°,∠PAD =∠PDA =45°,则根据“SAS ”可证明△APC ≌△BPD ,则可对①进行判断;根据线段垂直平分线的判定可对③进行判断;计算出∠BPC =150°,再利用PB =PC 和三角形内角和可计算出∠PBC =15°,则可对④进行判断;由于∠ABC =75°,∠BAD =105°加上BD =CA ,则可判断△ABD 与△BCA 不全等,从而可对②进行判断;求出∠ABC +∠BAD =75°+105°=180°,根据平行线的判定方法可对⑤进行判断;延长CP 交AB 于H ,计P OM P 'P ON P ''P P '''OM A ON B PAB ∆P P '''OP P '''2P OP AOP '''=∠180180222P OP AOB P P '''︒-∠︒-∠'''∠=∠==1802APB P P AOB '''∠=∠+∠=︒-∠P OM P 'P ON P ''OP 'OP ''P P '''P P '''OM A ON B PAB ∆P P '''OP OP '=OP OP ''=AOP AOP '∠=∠BOP BOP ''∠=∠2P OP AOP '''∴∠=∠180180222P OP AOB P P '''︒-∠︒-∠'''∴∠=∠==1802APB P P AOB '''∴∠=∠+∠=︒-∠2180O APB ∠+∠=︒算出∠CHB =90°,则可对⑥进行判断.【详解】解:∵△ABP 和△CDP 是两个等边三角形,△APD 是以AD 为斜边的等腰直角三角形,∴PA =PB =PD =PC ,∠APB =∠DPC =∠PAB =∠PDC =60°,∠APD =90°,∠PAD =∠PDA =45°,∴∠APC =∠BPD =150°,在△APC 和△BPD 中,,∴△APC ≌△BPD (SAS ),所以①正确;∵PB =PC ,∴点P 在线段BC 的中垂线上,所以③正确;∵∠BPA =∠CPD =60°,∠APD =90°,∴∠BPC =150°,∵PB =PC ,∴∠PBC =15°,所以④正确;∵∠ABC =60°+15°=75°,∠BAD =∠PAB +∠PAD =60°+45°=105°,BD =AC ,∴∠ABC ≠∠BAD ,∴△ABD 与△BCA 不全等,所以②错误;∵∠ABC +∠BAD =75°+105°=180°,∴AD ∥BC ,所以⑤正确;延长CP 交AB 于H ,如图,∵∠PCB =15°,∠ABC =75°,∴∠ABC +∠PCB =90°,∴∠CHB =90°,∴PC ⊥AB,所以⑥正确.PA PB APC BPD PC PD =⎧⎪∠=∠⎨⎪=⎩正确的有5个,故选:C .二、填空题11.2【分析】根据若两点关于轴对称,则横坐标不变,纵坐标互为相反数,即可求解.【详解】解:∵点与点关于轴对称,∴,解得,∴.故答案为:2.12.【分析】根据点B 和的位置判断出平移方式和对称变换方式,继而求解.【详解】解:由图中可以看出,点只有向右平移2个单位才能和点的纵坐标相等,翻折可得到两点关于轴对称,此时两点的横坐标相等,纵坐标互为相反数.那么点也是如此转换得到.点的坐标为,向右平移2个单位后变为这点关于轴的对称点是.故答案为:.13.【分析】根据折叠得出,根据等腰三角形的性质得出,,根据三角形外角的性质得出,求出,根据三角形内角和定理求出结果即可.【详解】解:根据折叠可知,,∴,∵,∴,∵,∴,x ()12A a -,()21B b -,x 1212a b -=-=-,31,==-a b 312a b +=-=()2,a b +-B 'B B 'x P P ' P (,)a b (2,)a b +x (2,)a b +-(2,)a b +-152︒EA EB =EAB EBA ∠=∠A ABC CB =∠∠42EBC EBA ABC ∠=∠+∠=︒14ACB ABC ∠=∠=︒EA EB =EAB EBA ∠=∠AB AC =A ABC CB =∠∠EAB ABC ACB ∠=∠+∠2EBA EAB ABC ∠=∠=∠∵,∴,∴,∴,∴.故答案为:.14.3【分析】由已知条件得,进而得出,,再根据得到为等边三角形,进而得到,最后根据三角形的三边关系即可求出.【详解】解:在和中,,,,,,为等边三角形,,,,,即,,长为奇数,,故答案为3.15.6042EBC EBA ABC ∠=∠+∠=︒242ABC ABC ∠+∠=︒14ABC ∠=︒14ACB ABC ∠=∠=︒180152BAC ABC ACB ∠=︒-∠-∠=︒152︒AEC BDC ≌△△BC AC =BCD ACE ∠=∠60ACB DCE ︒∠=∠=ABC AB BC AC ==AEC △BCD △AE BD E DCE CD =⎧⎪∠=∠⎨⎪=⎩()SAS AEC BDC ∴ ≌BC AC ∴=BCD ACE ∠=∠DCE BCD ECB ∠=∠+∠ ACB ACE ECB ∠=∠+∠60ACB DCE ∴∠=∠=︒ABC ∴ AB BC AC ∴==52BD = 32CD =BD CD BC BD CD ∴-<<+14BC <<14AB ∴<<AB 3AB ∴=【分析】根据已知证明都是等边三角形,得到,即可证明,推出,进一步证明,可得,求出,证明是等边三角形,可得结果.【详解】解:∵都是等腰三角形,且,∴都是等边三角形,∴,∵,∴.在与中,,∴,∴.∵,∴.在与中,,∴,∴.∵,∴是等边三角形,∴,故答案为:60.16.2【分析】以为边作等边,连接,证明,得出,说明当最,ABC ECD ,AC BC CD CE ==()SAS ACD BCE △≌△CAN CBM ∠=∠(ASA)ACN BCM △≌△CM CN =MCN ∠MCN △,ABC ECD 60ACB ECD ∠=∠=︒,ABC ECD ,AC BC CD CE ==ACB ACE ECD ACE ∠+∠=∠+∠ACD BCE ∠=∠ACD BCE AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩()SAS ACD BCE △≌△CAN CBM ∠=∠60ACB ECD ∠=∠=︒60MCN ∠=︒ACN △BCM CAN CBM AC BCACN BCM ∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA)ACN BCM △≌△CM CN =6,0MCN CM CN ︒∠==MCN △60NMC ∠=︒AH AEH △PE AEP AHQ ≌HQ EP =EP小时,最小,根据垂线段最短,过点E 作于点B ,当点P 在点B 时,最小,即最小,根据含角的直角三角形的性质求出.【详解】解:以为边作等边,连接,如图所示:∴,,∴,∵为等边三角形,∴,,∴,∴,∴,∴,∴,∴当最小时,最小,∵垂线段最短,∴过点E 作于点B ,当点P 在点B 时,最小,即最小,∵,,∴.故答案为:2.17.18.8【分析】连接,根据和都是边长为4的等边三角形,证明,可得,所以,进而可得当点P 与点C 重合时,的值最小,正好等于的长,即可求解.HQ EB MN ⊥EP HQ 30︒122EB EH ==AH AEH △PE 4AE EH AH ===60EAH AHE ∠=∠=︒906030EHM ∠=︒-︒=︒APQ △AP AQ =60PAQ ∠=︒PAQ EAH ∠=∠EAH HAP HAP PAQ ∠+∠=∠+∠EAP HAQ ∠=∠AEP AHQ ≌HQ EP =EP HQ EB MN ⊥EP HQ 906030EHM ∠=︒-︒=︒90EBH ∠=︒122EB EH ==214a PE ABC A B C ''△ACP B CP '△≌△AP B P '=AP BP BP B P '+=+AP BP +BB '【详解】解:如图,连接,∵和都是边长为4的等边三角形,∴,∴,∴,在和中,,∴,∴,∴,∴当点P 与点C 重合时,点A 与点关于对称,的值最小,正好等于的长,∴的最小值为,故答案为:8.三、解答题19.(1)解:如图:先作交于点,作的垂直平分线与交于点,即为所求.(2)解:,理由如下:∵,即,∴,PB 'ABC A B C ''△60AC B C ACB A CB '''=∠=∠=︒,60ACA '∠=︒ACA A CB '''∠=∠ACP △B CP '△AC B C ACA A CB CP CP =⎧⎪∠=∠⎨⎪='''⎩'()SAS ACP B CP '△≌△AP B P '=AP BP BP B P '+=+B 'A C 'AP BP +BB 'AP BP +448+=AD BC ⊥BC D CD AC E D AE AD E ∠=∠AD BC ⊥90ADC ∠=︒90C DAE +=︒∠∠∵,且,∴.20.证明:,点在线段的垂直平分线上.,点在线段的垂直平分线上.直线是线段的垂直平分线.21.(1)解:∵为等腰直角三角形,∴,∵,∴,在和中,∴;(2)∵为等腰直角三角形,∴,∵,∴,∵,∴,∴.22.(1)证明:∵,,∴,∵,∴,在△ADE 与中,90EDC ADE ∠+∠=︒EDC C ∠=∠D AE AD E ∠=∠ AB AC =∴A BC MB MC =∴M BC ∴AM BC ABC AC BC =90BCA ∠=︒90ACE ∠=︒Rt BCD Rt ACE BC AC BD AE=⎧⎨=⎩()Rt Rt HL BCD ACE ≌△△ABC 45CAB CBA ∠=∠=︒80BAE ∠=︒35CAE BAE CAB ∠=∠-∠=︒BCD ACE ≌△△35CAE CBD ∠=∠=︒10DBA CBA CBD ∠=∠-∠=︒ED AB ⊥FC AB ⊥90ADE BCF ∠=∠=︒AE BF ∥A B ∠=∠BCF △,∴,∴,∴;(2)解:∵,,∴,∵,∴.23.(1)解:,,,,,,,,点从向的运动过程中,逐渐增大,逐渐变小,故答案为:;;小;(2)解:当时,,理由如下:,,又,,,,当时,ADE BCF A BAE BF ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ADE BCF ≌△△AD BC =AC BD =CD DE =90CDE ∠=︒45DCE CED ∠=∠=︒25A ∠=︒452520AEC DCE A ∠=∠-∠=︒-︒=︒115BDA ∠=︒ 18011565ADC ∴∠=︒-︒=︒40ADE ∠=︒ 25EDC ADC ADE ∴∠=∠-∠=︒40C ∠=︒ 180115DEC EDC C ∴∠=︒-∠-∠=︒180B BAD BDA ∠+∠+∠=︒ 180BDA BAD B ∴∠=︒-∠-∠ D B C BAD ∠BDA ∴∠251152DC =ABD DCE △△≌40B C ∠=∠=︒ 180140DEC EDC C ∴∠+∠=︒-∠=︒40ADE ∠=︒ 180ADB ADE EDC ∠+∠+∠=︒140ADB EDC ∴∠+∠=︒ADB DEC ∴∠=∠2DC =,,在和中,,,即当时,,;(3)解:在点的运动过程中,与的长度可能相等,理由如下:,,,,,,,,.24.(1)解:,,,,在和中,,,,故答案为:,;(2),,2AB AC == AB DC ∴=ABD △DCE △B C ADB DEC AB DC ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ABD DCE ∴≌ 2DC =ABD DCE △△≌D DA DE DA DE = DAE DEA ∴∠=∠40ADE ∠=︒ ()1180702DEA ADE ∴∠=︒-∠=︒AED C EDC ∠=∠+∠ 40C ∠=︒30EDC DEA C ∴∠=∠-∠=︒70ADC ADE EDC ∴∠=∠+∠=︒180110BDA ADC ∴∠=︒-∠=︒90D ABC ∠=∠=︒ 90DAB ABD ∴∠+∠=︒90ABD EBC ∠+∠=︒BAD EBC ∴∠=∠ABD △BCE D E DAB EBC AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ABD BCE ∴ ≌AD BE ∴=EBC ∠BE ADC ADE CDE B BAD ∠=∠+∠=∠+∠ B ADE ∠=∠,在和中,,;(3)如图,过点作交于点,、是等边三角形,,,,,,,,,,,,,,在和中,,,,,,,CDE BAD ∴∠=∠ADB DEC B C BAD CDE AD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ADB DEC ∴ ≌3B BM EF ∥DF M DEF ABC DE DF ∴=AC BC =60D DFE ACB ∠=∠=∠=︒30CFB ∠=︒ BM EF ∥603030BFE MBF ∴∠=︒-︒=︒=∠MBF CFB ∴∠=∠60CMB MBF CFB ∠=∠+∠=︒BM FM ∴=60D ACB ∠=∠=︒ 120DAC ACD ∴∠+∠=︒120ACD BCM ∠+∠=︒DAC BCM ∴∠=∠ACD CBM D CMB DAC BCM AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ACD CBM ∴ ≌CD BM FM ∴==AD CM =22DF CD CM FM CD CM CD AD ∴=++=+=+DE AD AE DF =+=,,.2AE CD ∴=4AE = 2CD ∴=。
人教版数学八年级上学期《轴对称》单元测试考试时间:100分钟;总分:120分一、单选题(每小题3分,共30分)1.(2019·江苏南京一中初二期中)下列图案中,不是轴对称图形的是()A.B.C.D.2.(2018·河北初二期中)如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是( )A.﹣1 B.1 C.﹣5 D.53.(2018·河北初二期中)如图,AB的垂直平分线分别交AB、AC于点D、E,AC=9,AE:EC=2:1,则点E到点B的距离为( )A.5 B.6 C.7 D.8关于直线MN的轴对称图形,其中正确的是( ) 4.(2019·江苏初二期中)下面是四位同学作ABCA.B.C.D.5.(2019·江苏初二期中)如图,正方形网格中的每个小正方形边长都是1.已知A、B是两格点,若△ABC为等腰三角形,且S△ABC=1.5,则满足条件的格点C有( )A.1个B.2个C.3个D.4个6.(2019·江苏省盐城市初级中学初二期中)如图,点E是等腰三角形△ABD底边上的中点,点C是AE延长线上任一点,连接BC、DC,则下列结论中:①BC=AD;②AC平分∠BCD;③AC=AB;④∠ABC=∠ADC.一定成立的是( )A.②④B.②③C.①③D.①②7.(2019·山东初二期中)等腰三角形的两条边长分别为3cm和6cm,则它的周长为( ).A.12cm B.15cm C.12cm或15cm D.18cm或36cm8.(2019·山东初二期中)如图,在△ABC中,DE是边AB的垂直平分线,BC=8cm,AC=5cm,则△ADC的周长为()A.14cm B.13cm C.11cm D.9cm9.(2017·广东初二月考)下列各点中,到三角形各顶点的距离相等的是()A.三个内角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高线的交点10.(2019·湖北初二期中)上午8时,一条船从海岛A出发,以15n mile/h(海里/时,1n mile=1852m)的速度向正北航行,10时到达海岛B处,从A、B望灯塔C,测得NAC=42°,NBC=84°.则从海岛B到灯塔C的距离为()A .45n mileB .30n mileC .20n mileD .15n mile二、填空题(每小题4分,共24分)11.(2019·南京市浦口外国语学校初二期中)如图,四边形ABCD 是轴对称图形,BD 所在的直线是它的对称轴,AB =5 cm,CD =3.5 cm,则四边形ABCD 的周长为_____cm .12.(2019·如东县新店镇初级中学初二期中)如图,在△ABC 中,AB =AC ,D 是BC 的中点,∠BAD =34°,则∠C =_________°.13.(2019·安徽初二期中)如图,ABC △与A B C '''关于直线l 对称,且105A ∠=︒,30C '∠=︒,则B ∠=______.14.(2019·广西初二期中)如图,在ABC ∆中,DE 垂直平分AC ,若BCD ∆的周长是12,4BC =,则AB 的长______.15.(2019·北京市三帆中学初二期中)如图,在Rt △ABC 中,90B =∠ ,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知40C ∠=,则BAE ∠的度数为_________.16.(2019·广西初二期中)如图,在第1个△A 1BC 中,∠B =20°,A 1B =CB ;在边A 1B 上任取一点D ,延长CA 1到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ;在边A 2D 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第3个△A 2A 3E ,按此做法继续下去,第2019个等腰三角形的底角度数是______________.三、解答题一(每小题6分,共18分)17.(2019·呼和浩特市实验中学初二期中)如图,已知OB 、OC 为△ABC 的角平分线,DE ∥BC,△ADE 的周长为10,BC 长为8,求△ABC 的周长.18.(2019·如东县新店镇初级中学初二期中)如图,△ABC 中,AB =AC,∠BAC =80°,AD ⊥BC 于点D, E 是AB 上一点,满足BE =CD,求∠ADE 的度数.19.(2019·如东县新店镇初级中学初二期中)如图,在平面直角坐标中,已知△ABC的三个顶点A(-3,1),B(-2,3),C(2,1),直线l上各点的横坐标都为1.(1)画出△ABC关于直线l对称的△A′B′C′,直接写出点B′的坐标;(2)直接写出点M(a,b)关于直线l对称点M ′的坐标.四、解答题二(每小题7分,共21分)20.(2019·湖北初二期中)如图,△ABC中,AB=BC,∠ABC=45°,BE⊥AC于点E,AD⊥BC于点D,BE与AD相交于F.(1)求证:BF=AC;(2)若BF=3,求CE的长度.21.(2019·湖北初二期中)如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边且BE=CF,AD+EC =AB.(1)求证:△DEF 是等腰三角形;(2)当∠A =40°时,求∠DEF 的度数.22.(2019·厦门市梧侣学校初二期中)如图,在ABC ∆中,AB AC =,点D 在AB 边上且点D 到点A 的距离与点D 到点C 的距离相等.(1)利用尺规作图作出点D ,不写作法但保留作图痕迹.(2)连接CD ,若CD CB =,求∠B 的度数.五、解答题三(每小题9分,共27分)23.(2019·山东初二期中)如图,ABC ∆是等边三角形,BD 是中线,延长BC 至点E ,使CE CD =.(1)求证:DB DE =;(2)尺规作图:过点D 作DF 垂直于BE ,垂足为F ;(保留作图留痕迹,不写作法)(3)若3CF =,求ABC ∆的周长.24.(2019·湖北初二期中)如图,A 、B 、C 三点在同一直线上,分别以AB 、BC 为边,在直线AC 的同侧作等边△ABD 和等边△BCE ,连接AE 交BD 于点M ,连接CD 交BE 于点N ,连接MN 得△BMN .(1)求证:AE=CD;(2)试判断△BMN的形状,并说明理由;(3)设CD、AE相交于点G,求∠AGC的度数.25.如图,在△ABC中,AB=AC,点D在△ABC内,BD=BC,∠DBC=60°,点E在△ABC外,∠BCE=150°,∠ABE=60°.(1)求∠ADB的度数.(2)判断△ABE的形状并证明.(3)连结DE,若DE⊥BD,DE=6,求AD的长参考答案一、单选题(每小题3分,共30分)1.(2019·江苏南京一中初二期中)下列图案中,不是轴对称图形的是()A.B.C.D.【答案】A【解析】【分析】根据轴对称图形的定义进行判断即可.【详解】A、不是轴对称图形,符合题意;B、是轴对称图形,故不符合题意;C、是轴对称图形,故不符合题意;D、是轴对称图形,故不符合题意,故选A.【点睛】本题考查了轴对称图形,熟知一个图形沿着一条直线折叠,直线两旁的部分能够完全重合的图形是轴对称图形是解题的关键.2.(2018·河北初二期中)如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是( )A.﹣1 B.1 C.﹣5 D.5【答案】B【解析】试题分析:根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,求出a、b的值,再计算a+b的值.解:∵点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,又∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,∴a=﹣2,b=3.∴a+b=1,故选B.【点评】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.3.(2018·河北初二期中)如图,AB的垂直平分线分别交AB、AC于点D、E,AC=9,AE:EC=2:1,则点E到点B的距离为( )A.5 B.6 C.7 D.8【答案】B【解析】如图,连接BE,∵AE:EC=2:1,AC=9,∴AE=6.∵DE垂直平分AB,∴BE=AE=6.故选B.关于直线MN的轴对称图形,其中正确的是( ) 4.(2019·江苏初二期中)下面是四位同学作ABCA.B.C.D.【答案】B【解析】根据轴对称的定义判断即可得.【详解】作△ABC关于直线MN的轴对称图形正确的是B选项,故选:B.【点睛】此题考查轴对称的定义,解题关键在于掌握对称轴的定义.5.(2019·江苏初二期中)如图,正方形网格中的每个小正方形边长都是1.已知A、B是两格点,若△ABC为等腰三角形,且S△ABC=1.5,则满足条件的格点C有( )A.1个B.2个C.3个D.4个【答案】B【解析】试题分析:如下图,△ABC为等腰三角形,点C的位置一共有6种可能,其中满足面积为1.5的,只有C5和C6.考点:1数形结合;2分类思想.6.(2019·江苏省盐城市初级中学初二期中)如图,点E是等腰三角形△ABD底边上的中点,点C是AE延长线上任一点,连接BC、DC,则下列结论中:①BC=AD;②AC平分∠BCD;③AC=AB;④∠ABC=∠ADC.一定成立的是( )A.②④B.②③C.①③D.①②【答案】A【解析】根据全等三角形的判定和性质得出结论进而判断即可.【详解】∵点E是等腰三角形△ABD底边上的中点,∴BE=DE,∠AEB=∠AED=90°,∴∠BEC=∠DEC=90°.在△BEC与△DEC中,∵BE DEBEC DECEC EC=⎧⎪∠=∠⎨⎪=⎩,∴△BEC≌△DEC(SAS)∴BC=CD,∠BCE=∠DCE,∴∠ABC=∠ADC,∴④∠ABC=∠ADC;②AC平分∠BC D正确.故选A.【点睛】本题考查了等腰三角形的性质、全等三角形的判定和性质,关键是根据SAS证明△BEC≌△DEC.7.(2019·山东初二期中)等腰三角形的两条边长分别为3cm和6cm,则它的周长为( ).A.12cm B.15cm C.12cm或15cm D.18cm或36cm【答案】B【解析】分情况讨论:若腰长为3cm,底边为6cm,由于3+3=6,不能组成三角形,不符合题意;若腰长为6cm,底边为3cm,3+6>6,6-3<6,可组成三角形,求出周长即可.【详解】分情况讨论:①若腰长为3cm,底边为6cm,由于3+3=6,不能组成三角形,不符合题意,舍去;②若腰长为6cm,底边为3cm,3+6>6,6-3<6,可组成三角形,此时周长为6+6+3=15cm,故选B.【点睛】本题考查等腰三角形的定义,分类讨论,排除不能组成三角形的情况是解题的关键. 8.(2019·山东初二期中)如图,在△ABC中,DE是边AB的垂直平分线,BC=8cm,AC=5cm,则△ADC的周长为()A.14cm B.13cm C.11cm D.9cm【答案】B【解析】试题解析:∵DE是边AB的垂直平分线∴BD=AD∴△ADC的周长为AC+DC+AD=AC+BC=5+8=13cm.故选B.9.(2017·广东初二月考)下列各点中,到三角形各顶点的距离相等的是()A.三个内角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高线的交点【答案】B【解析】根据线段垂直平分线上的点到线段两端点的距离相等解答.【详解】解:∵线段垂直平分线上的点到线段两端点的距离相等,∴到三角形各顶点的距离相等的是三条边的垂直平分线的交点,故选:B.【点睛】本题考查线段垂直平分线的性质,解题的关键是掌握线段垂直平分线的性质.10.(2019·湖北初二期中)上午8时,一条船从海岛A出发,以15n mile/h(海里/时,1n mile=1852m)的速度向正北航行,10时到达海岛B处,从A、B望灯塔C,测得NAC=42°,NBC=84°.则从海岛B到灯塔C的距离为()A.45n mile B.30n mile C.20n mile D.15n mile【答案】B【解析】根据三角形外角的性质,求证∠C=∠NAC,然后即可证明BC=AB,从而求得B到C的距离.【详解】∵∠NBC=84°,∠NAC=42°,∴∠C=84°﹣42°=42°.∴∠C=∠NAC,∴BC=AB,∵上午8时,一条船从海岛A出发,以15n mile/h的速度向正北航行.10时到达海岛B处,∴BC=AB=15×2=30n mile.故选:B.【点睛】此题考查了等腰三角形的判定和性质,灵活运用等腰三角形性质是解题的关键.二、填空题(每小题4分,共24分)11.(2019·南京市浦口外国语学校初二期中)如图,四边形ABCD是轴对称图形,BD所在的直线是它的对称轴,AB=5cm,CD=3.5cm,则四边形ABCD的周长为_____cm.【答案】17【解析】根据对称的性质分别得到BC=AB=5cm,AD=CD=3.5cm,计算可得周长.【详解】解:四边形ABCD是轴对称图形,BD所在的直线是它的对称轴,∴BC=AB=5cm,AD=CD=3.5cm,∴四边形ABCD的周长=AB+BC+CD+DA=5+5+3.5+3.5=17cm故答案为:17【点睛】本题考查了轴对称图形,熟记轴对称图形的对应边相等是解题关键,12.(2019·如东县新店镇初级中学初二期中)如图,在△ABC中,AB=AC,D是BC的中点,∠BAD=34°,则∠C =_________°.【答案】56°【解析】AB=AC得△ABC为等腰三角形,根据性质得到∠B=∠C,∠ADB=90°,即可求出答案.【详解】解:∵AB=AC∴△ABC为等腰三角形∴∠B=∠C∵D是BC的中点∴AD也是△ABC的高∴∠ADB=90°∵∠ADB+∠B﹢∠BAD=90°+∠C﹢34°=180°∴∠C=56°【点睛】此题主要考查了等腰三角形的判定及性质.13.(2019·安徽初二期中)如图,ABC △与A B C '''关于直线l 对称,且105A ∠=︒,30C '∠=︒,则B ∠=______.【答案】45°【解析】根据轴对称的性质得出△ABC ≌△A′B′C′,由∠C′=30°求出∠C 的度数,再根据三角形内角和定理即可得出∠B 的度数.【详解】解:∵△ABC 与△A′B′C′关于直线l 对称,∴△ABC ≌△A′B′C′,∵∠C′=30°,∴∠C=30°,∴∠B=180°-∠A-∠C=180°-105°-30°=45°.故答案为:45.【点睛】本题考查的是轴对称的性质以及三角形的内角和定理,熟知关于轴对称的两个图形全等是解答此题的关键.14.(2019·广西初二期中)如图,在ABC ∆中,DE 垂直平分AC ,若BCD ∆的周长是12,4BC =,则AB 的长______.【答案】8【解析】先根据线段垂直平分线的性质得出AD=CD,进而根据等腰三角形的性质可得出结论.【详解】∵DE 垂直平分AC,∴AD=CD .∵△BCD 的周长是12,BC=4,∴AB=BD+CD=12-4=8,故答案为:8.【点睛】本题考查的是等腰三角形的性质、线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.15.(2019·北京市三帆中学初二期中)如图,在Rt △ABC 中,90B =∠ ,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知40C ∠=,则BAE ∠的度数为_________.【答案】10【解析】试题分析:在Rt △ABC 中,∠BAC =90°-∠C =90°-40°=50°, ∵ED 是AC 的垂直平分线,∴EA =EC,∴∠CAE =∠C =40°,∴∠BAE =∠BAC -∠CAE=50°-40°=10°.故答案为10.16.(2019·广西初二期中)如图,在第1个△A 1BC 中,∠B =20°,A 1B =CB ;在边A 1B 上任取一点D ,延长CA 1到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ;在边A 2D 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第3个△A 2A 3E ,按此做法继续下去,第2019个等腰三角形的底角度数是______________.【答案】2018180 2⎛⎫⨯ ⎪⎝⎭【解析】根据等腰三角形的性质求出∠BA1C的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律即可得出第2019个三角形中以A2019为顶点的内角度数.【详解】解:∵在△CBA1中,∠B=20°,A1B=CB,∴∠BA1C=°180-2B∠=80°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=12∠BA1C=12×80°;同理可得∠EA3A2=(12)2×80°,∠FA4A3=(12)3×80°,∴第n个三角形中以A n为顶点的底角度数是(12) n-1×80°.∴第2017个三角形中以A2019为顶点的底角度数是(12)2018×80°,故答案为:(12) 2018×80°.【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律是解答此题的关键.三、解答题一(每小题6分,共18分)17.(2019·呼和浩特市实验中学初二期中)如图,已知OB、OC为△ABC的角平分线,DE∥BC,△ADE的周长为10,BC长为8,求△ABC的周长.【答案】C△ABC=18【解析】思路:求出OD=BD,OE=CE即可.【详解】∵OB、OC为△ABC的角平分线,∴∠ABO=∠OBC,∠ACO=∠BCO,∵DE∥BC,∴∠DOB=∠OBC,∠EOC=∠OCB,∴∠ABO=∠DOB,∠ACO=∠EOC,∴BD=OD,EC=OE,∴DE=OD+OE=BD+EC;∵△ADE的周长为10,∴AD+DE+AE=AD+OD+OE+AE=AD+BD+CE+AE=AB+AC=10,∵BC=8,∴△ABC的周长为:AB+AC+BC=10+8=18.【点睛】利用角平分线求角相等是解题的关键.18.(2019·如东县新店镇初级中学初二期中)如图,△ABC中,AB=AC,∠BAC=80°,AD⊥BC于点D, E是AB 上一点,满足BE=CD,求∠ADE的度数.【答案】25°【解析】根据AB=AC,得到△ABC是等腰三角形,AD⊥BC,得到∠ADB=90°,∠B=∠C=50°,BD=DC=BE,所以△BDE是等腰三角形,∠BDE=∠BED=65°,∠ADE=∠ADB —∠BDE得到答案.【详解】∵AB=AC,∠BAC=80°∴∠B=∠C=50°∵AB=AC,AD⊥BC∴∠ADB=90°,BD=CD∵BE=CD∴BE=BD∴∠BDE=∠BED=65°∴∠ADE=∠ADB —∠BDE=90°— 65°= 25°【点睛】此题主要考查了等腰三角形的性质及判定定理.19.(2019·如东县新店镇初级中学初二期中)如图,在平面直角坐标中,已知△ABC的三个顶点A(-3,1),B(-2,3),C(2,1),直线l上各点的横坐标都为1.(1)画出△ABC关于直线l对称的△A′B′C′,直接写出点B′的坐标;(2)直接写出点M(a,b)关于直线l对称点M ′的坐标.【答案】(1)B′(4,3)(2)M ′(2-a,b)【解析】⑴尺规作图即可,依图写出B’坐标;⑵根据对称轴的性质直接写出M ′,注意对称轴为1.【详解】(1)解:画图略;B′(4,3)(2)解:因为M(a , b) 与M’关于l的对称, l=1M (2-a , b)【点睛】本题考查了利用对称轴的性质得出对应点的坐标及作图画出对称图形.四、解答题二(每小题7分,共21分)20.(2019·湖北初二期中)如图,△ABC中,AB=BC,∠ABC=45°,BE⊥AC于点E,AD⊥BC于点D,BE与AD 相交于F.(1)求证:BF=AC;(2)若BF=3,求CE的长度.【答案】(1)见解析;(2)CE=3 2 .【解析】(1)由三角形的内角和定理,对顶角的性质计算出∠1=∠2,等腰直角三角形的性质得BD=AD,角边角(或角角边)证明△BDF≌△ADC,其性质得BF=AC;(2)等腰三角形的性质“三线合一”证明CE=12AC,计算出CE的长度为32.【详解】解:如图所示:(1)∵AD⊥BC,BE⊥AC,∴∠FDB=∠FEA=∠ADC=90°, 又∵∠FDB+∠1+∠BFD=180°, ∠FEA+∠2+AFE=180°,∠BFD=∠AFE,∴∠1=∠2,又∠ABC=45°,∴BD=AD,在△BDF和△ADC中,12BD ADBDF ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDF≌△ADC(ASA) ∴BF=AC;(2)∵BF=3,∴AC=3,又∵BE⊥AC,∴CE=AE=12AC=32.【点睛】本题综合考查了全等三角形的判定与性质,等腰三角形的判定与性质,三角形的中线及三角形的内角和定理等相关知识,重点掌握全等三角形的判定与性质.21.(2019·湖北初二期中)如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边且BE=CF,AD+EC =AB.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.【答案】(1)见解析;(2)∠DEF=70°.【解析】(1)求出EC=DB,∠B=∠C,根据SAS推出△BED≌△CFE,根据全等三角形的性质得出DE=EF即可;(2)根据三角形内角和定理求出∠B=∠C=70°,根据全等得出∠BDE=∠FEC,求出∠DEB+∠FEC=110°,即可得出答案;【详解】(1)证明:∵AB=AC,∴∠B=∠C,∵AB=AD+BD,AB=AD+EC,∴BD=EC,在△DBE和△ECF中,BE CFB C BD EC=⎧⎪∠=∠⎨⎪=⎩,∴△DBE≌△ECF(SAS) ∴DE=EF,∴△DEF是等腰三角形;(2)∵∠A=40°,∴∠B=∠C=1(18040)2-=70°,∴∠BDE+∠DEB=110°,又∵△DBE≌△ECF,∴∠BDE=∠FEC,∴∠FEC+∠DEB=110°,∴∠DEF=70°.【点睛】本题考查了全等三角形的性质和判定,等腰三角形的性质,三角形内角和定理的应用,能灵活运用性质进行推理是解此题的关键.22.(2019·厦门市梧侣学校初二期中)如图,在ABC ∆中,AB AC =,点D 在AB 边上且点D 到点A 的距离与点D 到点C 的距离相等.(1)利用尺规作图作出点D ,不写作法但保留作图痕迹.(2)连接CD ,若CD CB =,求∠B 的度数.【答案】(1)见解析;(2)72°【解析】(1)作出线段AC 的垂直平分线即可;(2)根据等腰三角形性质得出∠CDB=∠B=∠ACB 以及∠A=∠ACD,然后利用等量代换进一步得出∠B=∠ACB =2∠A,最后根据三角形内角和为180°列方程求出∠A 的度数然后求出∠B 即可.【详解】(1)点D 如图所示:(2)∵CD=CB,AB=AC,∴∠CDB=∠B=∠ACB,又∵DA=DC,∴∠A=∠ACD,∴∠CDB=∠A+∠ACD=2∠A,∴∠B=∠ACB =2∠A,又∵∠B+∠A+∠ACB=180°, ∴2∠A+∠A+2∠A=180°,∴∠A=36°,∴∠B=72°.【点睛】本题主要考查了三角形内角和性质与等腰三角形性质的综合运用,熟练掌握相关概念是解题关键.五、解答题三(每小题9分,共27分)23.(2019·山东初二期中)如图,ABC ∆是等边三角形,BD 是中线,延长BC 至点E ,使CE CD =.(1)求证:DB DE =;(2)尺规作图:过点D 作DF 垂直于BE ,垂足为F ;(保留作图留痕迹,不写作法)(3)若3CF =,求ABC ∆的周长.【答案】(1)证明见解析;(2)作图见解析;(3)36.【解析】(1)根据等边三角形的性质得出∠DBC =30°,∠ACB =60°,根据等边对等角和三角形外角的性质得到∠E =30,根据等角对等边即可得出结论;(2)根据垂线的尺规作图方法,过点D 作DF ⊥BE ,垂足为F ;(3)根据直角三角形两锐角互余求出∠CDF =30°,根据30度角所对直角边等于斜边的一半得到CD 的长,进而得到AC 的长,即可得出结论.【详解】(1)∵ABC ∆是等边三角形,BD 是中线,∴60ABC ACB ∠=∠=︒,30DBC ∠=︒.∵CE CD =,∴CDE E ∠=∠.又∵BCD CDE E ∠=∠+∠,∴1302CDE E BCD ∠=∠=∠=︒. ∴DBC E ∠=∠.∴DB DE =.(2)如图所示.(3)∵DF BE ⊥,由(1)知,DB DE =,∴DF 垂直平分BE .∴在Rt DFC ∆中,90906030CDF DCB ∠=︒-∠=︒-︒=︒.∴26DC CF ==.∵AD CD =,∴212AC CD ==.∴336ABC C AC ∆==.【点睛】本题考查了等边三角形的性质以及基本作图,解题时注意:等边三角形的三个内角都相等,且都等于60°,等边三角形是轴对称图形,它有三条对称轴;它的任意一角的平分线都垂直平分对边,三边的垂直平分线是对称轴.24.(2019·湖北初二期中)如图,A、B、C三点在同一直线上,分别以AB、BC为边,在直线AC的同侧作等边△ABD和等边△BCE,连接AE交BD于点M,连接CD交BE于点N,连接MN得△BMN.(1)求证:AE=CD;(2)试判断△BMN的形状,并说明理由;(3)设CD、AE相交于点G,求∠AGC的度数.【答案】(1)见解析;(2)△BMN为等边三角形,理由见解析;(3)∠AGC=120°.【解析】(1)由△ABD与△BCE都为等边三角形,利用等边三角形的性质得到两条边对应相等,两个角相等都为60°,利用SAS即可得到△ABE≌△DBC即可解决问题;(2)△BMN为等边三角形,理由为:由第一问△ABE≌△DBC,利用全等三角形的对应角相等得到一对角相等,再由∠ABD=∠EBC=60°,利用平角的定义得到∠MBE=∠NBC=60°,再由EB=CB,利用ASA可得出△EMB≌△CNB,利用全等三角形的对应边相等得到MB=NB,再由∠MBE=60°,利用有一个角为60°的等腰三角形为等边三角形可得出△BMN为等边三角形;(3)利用全等三角形的性质,证明∠DGM=∠ABM=60°即可.【详解】(1)证明:∵等边△ABD和等边△BCE,∴AB=DB,BE=BC,∠ABD=∠EBC=60°,∴∠ABE=∠DBC=120°,在△ABE和△DBC中,AB DBABE DBC BE BC=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△DBC(SAS).∴AE=CD.(2)解:△BMN为等边三角形,理由为:∵△ABE≌△DBC,∴∠AEB=∠DCB,又∠ABD=∠EBC=60°,∴∠MBE=180°﹣60°﹣60°=60°, 即∠MBE=∠NBC=60°,在△MBE和△NBC中,AEB DCB EB CBMBE NBC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△MBE≌△NBC(ASA),∴BM=BN,∠MBE=60°,则△BMN为等边三角形.(3)解:∵△ABE≌△DBC,∴∠EAB=∠BDC,∵∠AMB=∠DMG,∴∠ABM=∠DGM,∵△ABD是等边三角形,∴∠ABM=60°,∴∠DGM=∠ABM=60°,∴∠AGC=120°.【点睛】本题属于三角形综合题,考查了等边三角形的判定与性质,以及全等三角形的判定与性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25.如图,在△ABC中,AB=AC,点D在△ABC内,BD=BC,∠DBC=60°,点E在△ABC外,∠BCE=150°,∠ABE=60°.(1)求∠ADB的度数.(2)判断△ABE的形状并证明.(3)连结DE,若DE⊥BD,DE=6,求AD的长【答案】(1)150°;(2)△ABE是等边三角形,理由详见解析;(3)3.【解析】(1)首先证明△DBC是等边三角形,推出∠BDC=60°,DB=DC,再证明△ADB≌△ADC,推出∠ADB =∠ADC即可解决问题;(2)利用ASA证明△ABD≌△EBC得到AB=BE,结合∠ABE=60°可得△ABE是等边三角形;(3)首先证明△DEC是含有30度角的直角三角形,求出EC的长,利用全等三角形的性质即可解决问题.【详解】解:(1)∵BD=BC,∠DBC=60°,∴△DBC是等边三角形,∴DB=DC,∠BDC=60°,∵AB=AC,AD=AD,∴△ADB≌△ADC(SSS),∴∠ADB=∠ADC,∴∠ADB=12(360°−60°)=150°;(2)△ABE是等边三角形.证明:∵∠ABE=∠DBC=60°,∴∠ABD=∠CBE,∵∠ADB=∠BCE=150°,BD=BC, ∴△ABD≌△EBC(ASA),∴AB=BE,∵∠ABE=60°,∴△ABE是等边三角形;(3)连接DE.∵∠BCE=150°,∠DCB=60°,∴∠DCE=90°,∵∠EDB=90°,∠BDC=60°,∴∠EDC=30°,∴EC=12DE=3,∵△ABD≌△EBC,∴AD=EC=3.【点睛】本题考查全等三角形的判定和性质、等边三角形的判定和性质、30度角的直角三角形的性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,属于中考常考题型.。
八年级数学上册第十三章《轴对称》综合测试题-人教版(含答案)题号一二三总分19 20 21 22 23 24分数一、选择题(每题3分,共30分)1以下列各组数据为边长,可以构成等腰三角形的是()A.1,1,2 B.1,1,3 C.2,2,1 D.2,2,52如图,下列条件不能推出△ABC是等腰三角形的是()A.∠B=∠C B.AD⊥BC,∠BAD=∠CADC.AD⊥BC,BD=CD D.AD⊥BC,∠BAD=∠ACD3如图,DE是△ABC中AB边的垂直平分线,若BC=6,AC=8,则△BCE的周长为()A.10 B.12 C.14 D.164.如图,直线m是多边形ABCDE的对称轴,其中∠A=120°,∠B=110°,那么∠BCD的度数为( )A.50° B.60° C.70° D.80°5.如图,在等腰△ABO中,∠ABO=90°,腰长为2,则A点关于y轴的对称点的坐标为()A.(﹣2,2)B.(﹣2,﹣2)C.(2,2)D.(2,﹣2)6.以下叙述中不正确的是()A.等边三角形的每条高线都是角平分线和中线B.有一内角为60°的等腰三角形是等边三角形C.等腰三角形一定是锐角三角形D.在一个三角形中,如果两条边不相等,那么它们所对的角也不相等;反之,如果两个角不相等,那么它们所对的边也不相等7.如图①,在边长为4cm的正方形ABCD中,点P从点A出发,沿AB→BC的路径匀速运动,当点C停止,过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(s)的函数关系图象如图②所示,当点P运动2.5s时,PQ的长是()cm.A.B.C.D.8.如图13-5,P是∠AOB外的一点,M,N分别是∠AOB两边上的点,点P关于OA的对称点Q 恰好落在线段MN上,点P关于OB的对称点R恰好落在MN的延长线上.若PM=2.5 cm,PN=3 cm,MN=4 cm,则线段QR的长为()A.4.5 cmB.5.5 cmC.6.5 cmD.7 cm图13-5 图13-69.如图13-6,已知在△ABC中,∠ABC=90°,∠A=30°,BD⊥AC,DE⊥BC,D,E分别为垂足,下列结论中正确的是()A.AC=2ABB.AC=8ECC.CE=12BDD.BC=2BD10. 如图,△ABE、△ADC和△ABC分别是关于AB,AC边所在直线的轴对称图形,若∠1:∠2:∠3=7:2:1,则∠α的度数为()A.90°B.108°C.110°D.126°二、填空题(每题3分,共24分)11如图所示,分别将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为P,Q,M,N的四个图形,按照“由哪个正方形剪开后拼成的轴对称图形”的对应关系:A与对应,B与对应,C与对应,D与对应.12如图,两车从南北方向的路段AB的A端出发,分别向东、向西行进相同的距离,到达C,D两地,此时可以判断C,D到B的距离相等,用到的数学道理是.13如图在等边△ABC中,D是AB的中点,DE⊥AC于E,EF⊥BC于F,已知AB=8,则BF的长为.14设点P(2m﹣3,3﹣m)关于y轴的对称点在第二象限,则整数m的值为.15如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC为.16定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=.17.如图,在△ABC中,AB=AC,∠A=32°,以点C为圆心、BC的长为半径作弧,交AB于点D,交AC于点E,连接BE,则∠ABE的大小为______.18.如图,△ABC中,BC的垂直平分线DP与∠BAC的平分线相交于点D,垂足为点P,若∠BAC =84°,则∠BDC=______.三.解答题(共46分,19题6分,20 ---24题8分)19.如图,已知△ABC,(1)分别画出与△ABC关于x轴、y轴对称的图形△A1B1C1和△A2B2C2;(2)直接写出B1和B2点坐标.20.如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列四个条件:①∠EBD=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.上述四个条件中,哪两个条件可判定△ABC是等腰三角形,选择其中的一种情形,证明△ABC是等腰三角形.21.如图,△ABC中,AB=AC,DE是腰AB的垂直平分线.(1)若∠A=40°,求∠DBC的度数;(2)若AB=9,BC=5,求△BDC的周长.22.如图,在△ABC中,BC的垂直平分线交BC于点D,交AB延长线于点E,连接CE.求证:∠BCE=∠A+∠ACB.23.已知△ABC中,AC=BC,∠C=120°,点D为AB边的中点,∠EDF=60°,DE、DF分别交AC、BC于E、F点.(1)如图1,若EF∥AB.求证:DE=DF.(2)如图2,若EF与AB不平行.则问题(1)的结论是否成立?说明理由.24.已知等腰ABC,AC AB⊥交BA延长线于点D,点P在直线AC上=,30ABC∠=︒,CD AB运动,连接BP,以BP为边,并在BP的左侧作等边三角形BPE,连接AE.(1)如图1,当BP AC≌△△;⊥时,求证:ABP ACD(2)如图2,当点D与点E在直线CP同侧时,求证:AP AB AE=+;(3)在点P运动过程中,是否存在定直线,使得线段BE、CE始终关于这条直线对称,若存在,指出这一条直线,并加以证明:若不存在,请说明理由.参考答案一、选择题(每题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10答案 C D C D C C D B D B二、填空题(每题3分,共24分)11如图所示,分别将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为P,Q,M,N的四个图形,按照“由哪个正方形剪开后拼成的轴对称图形”的对应关系:A与对应,B与对应,C与对应,D与对应.【考点】轴对称图形.【答案】见试题解答内容【分析】应根据各图形组成特征找出对应关系.【解答】解:A剪开后是三个三角形,B和C剪开后是两个直角梯形和一个三角形,D剪开后是两个三角形和一个四边形,因而,A与G对应,B与E对应,C与F对应,D与H对应.12如图,两车从南北方向的路段AB的A端出发,分别向东、向西行进相同的距离,到达C,D两地,此时可以判断C,D到B的距离相等,用到的数学道理是.【考点】线段垂直平分线的性质.【专题】三角形.【答案】见试题解答内容【分析】先根据题意得到AB垂直平分CD,然后根据线段垂直平分线的性质可判断C,D到B的距离相等.【解答】解:∵AB⊥CD,AC=AD,∴AB垂直平分CD,∴BC=BD,即C,D到B的距离相等.故答案为:垂直平分线上的点到线段两端点的距离相等.13如图在等边△ABC中,D是AB的中点,DE⊥AC于E,EF⊥BC于F,已知AB=8,则BF的长为.【考点】等边三角形的性质;含30度角的直角三角形.【专题】推理填空题.【答案】见试题解答内容【分析】根据等边三角形的性质得到AD=4,AC=8,∠A=∠C=60°,根据直角三角形的性质得到AE=AD=2,计算即可.【解答】解:等边△ABC中,D是AB的中点,AB=8,∴AD=4,BC=AC=8,∠A=∠C=60°,∵DE⊥AC于E,EF⊥BC于F,∴∠AFD=∠CFE=90°,∴AE=AD=2,∴CE=8﹣2=6,∴CF=CE=3,∴BF=5,故答案为:5.14设点P(2m﹣3,3﹣m)关于y轴的对称点在第二象限,则整数m的值为.【考点】解一元一次不等式组;一元一次不等式组的整数解;关于x轴、y轴对称的点的坐标.【专题】平面直角坐标系;数感;运算能力.【答案】2.【分析】由于点P关于y轴的对称点在第二象限,则点P在第一象限,再根据点的坐标特征,即可得出整数m的值.【解答】解:由于点P关于y轴的对称点在第二象限,则点P在第一象限.依题意有解得<m<3.因为m为整数,所以m=2,故答案为:2.15如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC为.【考点】等边三角形的性质;轴对称﹣最短路线问题.【专题】平移、旋转与对称;推理能力.【答案】见试题解答内容【分析】根据等边三角形的性质得到AC=BC,∠B=60°,作点E关于直线CD的对称点G,过G作GF⊥AB于F,交CD于P,则此时,EP+PF的值最小,根据直角三角形的性质得到BG=2BF=14,求得EG=8,于是得到结论.【解答】解:∵△ABC是等边三角形,∴AC=BC,∠B=60°,作点E关于直线CD的对称点G,过G作GF⊥AB于F,交CD于P,则此时,EP+PF的值最小,∵∠B=60°,∠BFG=90°,∴∠G=30°,∵BF=7,∴BG=2BF=14,∴EG=8,∵CE=CG=4,∴AC=BC=10,故答案为:10.16定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=.【考点】等腰三角形的性质.【专题】等腰三角形与直角三角形.【答案】见试题解答内容【分析】可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解.【解答】解:①当∠A为顶角时,等腰三角形两底角的度数为:=50°∴特征值k==②当∠A为底角时,顶角的度数为:180°﹣80°﹣80°=20°∴特征值k==综上所述,特征值k为或故答案为或17.21°解析:∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°.依题意可知BC=EC,∴∠BEC =∠EBC=53°,∴∠ABE=∠ABC-∠EBC=74°-53°=21°.18.96°解析:如图,过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于点F.∵AD是∠BAC的平分线,∴DE =DF .∵DP 是BC 的垂直平分线,∴BD =CD .在Rt△DEB 和Rt△DFC 中,⎩⎨⎧DB =DC ,DE =DF ,∴Rt△DEB ≌Rt△DFC (HL).∴∠BDE =∠CDF ,∴∠BDC =∠EDF .∵∠DEB =∠DFA =90°,∠BAC =84°,∴∠BDC =∠EDF =360°-90°-90°-84°=96°.三.解答题(共46分,19题6分,20 ---24题8分)19.如图,已知△ABC ,(1)分别画出与△ABC 关于x 轴、y 轴对称的图形△A 1B 1C 1和△A 2B 2C 2;(2)直接写出B 1和B 2点坐标.【分析】(1)分别作出点A 、B 、C 关于x 轴、y 轴对称的点,然后顺次连接;(2)根据坐标系的特点,写出点B 1和B 2的坐标.【解答】解:(1)所作图形如图所示:;(2)B1(2,2),B2(﹣2,﹣4).20.如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列四个条件:①∠EBD=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.上述四个条件中,哪两个条件可判定△ABC是等腰三角形,选择其中的一种情形,证明△ABC是等腰三角形.【分析】①③;②③;①④;②④都可以组合证明△ABC是等腰三角形;选①③为条件证明△ABC是等腰三角形,首先证明△EBO≌△DCO,可得BO=CO,根据等边对等角可得∠OBC =∠OCB,进而得到∠ABC=∠ACB,根据等角对等边可得AB=AC,即可得到△ABC是等腰三角形.【解答】①③;②③;②④都可以组合证明△ABC是等腰三角形;选①③为条件证明△ABC是等腰三角形;证明:∵在△EBO和△DCO中,∵,∴△EBO≌△DCO(AAS),∴BO=CO,∴∠OBC=∠OCB,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AB=AC,∴△ABC是等腰三角形.21.解:(1)∵△ABC中,AB=AC,∠A=40°,∴∠ABC==70°.∵DE是腰AB的垂直平分线,∴AD=BD,∠DBA=∠A=40°,∴∠DBC=70°﹣40°=30°;(2)由(1)得:AD=BD,∴△BDC的周长=BD+CD+BC=AD+CD+BC=AC+BC=AB+BC=9+5=14.答:△BDC的周长是14.22.证明:∵BC的垂直平分线交BC于点D,交AB延长线于点E,∴CE=BE,∴∠ECB=∠EBC,∵∠EBC=∠A+∠ACB,∴∠BCE=∠A+∠ACB.23.【答案】(1)解:∵EF∥AB.∴∠FEC=∠A=30°.∠EFC=∠B=30°∴EC=CF.又∵AC=BC∴AE=BFD是AB中点.∴DB=AD∴△ADE≌△BDF.∴DE=DF(2)解:过D作DM⊥AC交AC于M,再作DN⊥BC交BC于N.∵AC=BC,∴∠A=∠B,又∵∠ACB=120°,∴∠A=∠B=(180°﹣∠ACB)÷2=30°,∴∠ADM=∠BDN=60°,∴∠MDN=180°﹣∠ADM﹣∠BDN=60°.∵AC=BC、AD=BD,∴∠ACD=∠BCD,∴DM=DN.由∠MDN=60°、∠EDF=60°,可知:一当M 与E 重合时,N 就一定与F 重合.此时:DM=DE 、DN=DF ,结合证得的DM=DN ,得:DE=DF .二当M 落在C 、E 之间时,N 就一定落在B 、F 之间.此时:∠EDM=∠EDF﹣∠MDF=60°﹣∠MDF,∠FDN=∠MDN﹣∠MDF=60°﹣∠MDF,∴∠EDM=∠FDN,又∵∠DME=∠DNF=90°、DM=DN ,∴△DEM≌△DFN(ASA ),∴DE=DF.三当M 落在A 、E 之间时,N 就一定落在C 、F 之间.此时:∠EDM=∠MDN﹣∠EDN=60°﹣∠EDN,∠FDN=∠EDF﹣∠EDN=60°﹣∠EDN,∴∠EDM=∠FDN,又∵∠DME=∠DNF=90°、DM=DN ,∴△DEM≌△DFN(ASA ),∴DE=DF.综上一、二、三所述,得:DE=DF .24. (1)证明∶如图1,∵CD ⊥AB , BP ⊥AC ,∴∠ADC =∠APB =90°,∵在△ABP 和△ACD 中,ADC APB CAD BAP AC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABP ≌△ACD ;(2)证明:如图3,在PA 上取一点M ,使得PM =AB ,∵△BPE是等边三角形,∴BE=PE,∠BEP=60°,∵AB=AC,∠ABC=30°,∴∠ACB=∠ABC=30°,∴∠BAP=∠ABC+∠ACB=60*,∴∠BEP=∠BAP,∴∠EPM=∠EBA,∴△PEM≌△BEA,∴EM=AE,∠PEM=∠BEA,∴∠AEM=∠AEB+∠BEM=∠PEM+∠MEB=∠BEP=60°,∴△AEM是等边三角形,∵AE=AM,∴AP=AM+PM=AE+AB;(3)解∶存在定直线,使得线段BE、CE始终关于这条直线对称,理由如下:①当点D与点E在直线CP同侧时,连接CE,如图4,∵△AEM是等边三角形,∴∠EAM=60°,∵∠BAP =60°,∴∠DAE =180°-∠DAE -∠EAM =60°,∴∠CAE =CAD +∠DAE =120°,∠BAE =∠BAP +∠AEM =120°,∴∠CAE =∠BAE ,∵在△CAE 和△BAE 中AE AE CAE BAE AC AB =⎧⎪∠=∠⎨⎪=⎩, ∴△CAE ≌△BAE ,∴CE =BE ,∴点E 在线段BC 的垂直平分线上,△CEB 是等腰三角形,∵等腰三角形CEB 的对称轴为线段BC 的垂直平分线,∴线段BE 、CE 始终关于线段BC 的垂直平分线对称;②当点D 与点E 在直线CP 两侧时,在PC 上取一点M ,使得PM = BA ,如图5,∵△BPE 是等边三角形,∴BE =PE ,∠BEP =60°,∵AB =AC ,∠ABC =30°,∴∠ACB =∠ABC =30°,∴∠BAP =∠ABC +∠ACB =60°,∴∠BEP =∠BAP ,∴∠EPM =∠EBA ,∴△PEM ≌△BEA ,∴∠PME =∠BAE , EM =AE ,∴∠PME =∠MAE ,∴∠MAE =∠BAE ,∵△ACE 和△ABE 中,CA AB MAE BAE AE AE =⎧⎪∠=∠⎨⎪=⎩∴△ACE ≌△ABE ,∴CE =BE ,∴点E 在线段BC 的垂直平分线上,△CEB 是等腰三角形,∵等腰三角形CEB 的对称轴为线段BC 的垂直平分线,∴线段BE 、CE 始终关于线段BC 的垂直平分线对称;即∶在点P 运动过程中,存在定直线(线段BC 的垂直平分线),使得线段BE 、CE 始终关于这条直线对称.。
人教版八年级数学上册第13章《轴对称》单元练习题(含答案)一、单选题1.下列倡导节约的图案中,是轴对称图形的是( )A .B .C .D . 2.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A .(3,2)-B .(2,3)-C .(2,3)-D .(3,2)-3.下列黑体字中,属于轴对称图形的是( )A .善B .勤C .健D .朴4.如图,在已知的ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M ,N ; ②作直线MN 交AB 于点D ,连接CD .若4AC =,10AB =,则ACD 的周长为( )A .8B .9C .10D .145.图1是光的反射规律示意图.其中,PO 是入射光线,OQ 是反射光线,法线KO ⊥MN ,∠POK 是入射角,∠KOQ 是反射角,∠KOQ =∠POK .图2中,光线自点P 射入,经镜面EF 反射后经过的点是( )A .A 点B .B 点C .C 点D .D 点6.如图,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠AED '=50°,则∠EFC 等于( )A .65°B .110°C .115°D .130°7.如图,在ABC 中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M ,N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若7AB =,12AC =,6BC =,则ABD △的周长为( )A .25B .22C .19D .188.如图,在ABC 中,AB AC =,40A ︒∠=,//CD AB ,则BCD ∠=( )A .40︒B .50︒C .60︒D .70︒9.如图是A ,B ,C 三岛的平面图,C 岛在A 岛的北偏东35度方向,B 岛在A 岛的北偏东80度方向,C 岛在B 岛的北偏西55度方向,则A ,B ,C 三岛组成一个( )A .等腰直角三角形B .等腰三角形C .直角三角形D .等边三角形10.如图,在等边ABC 中,BC 边上的高6AD =,E 是高AD 上的一个动点,F 是边AB 的中点,在点E 运动的过程中,EB EF +存在最小值,则这个最小值是( )A .5B .6C .7D .811.如图,在△ABC 中,AD 是BC 边上的高,∠BAF =∠CAG =90°,AB =AF ,AC =AG ,连接FG ,交DA 的延长线于点E ,连接BG ,CF , 则下列结论:①BG =CF ;②BG ⊥CF ;③∠EAF =∠ABC ;④EF =EG ,其中正确的有( )A .①②③B .①②④C .①③④D .①②③④ 12.如图,在ABC 中,45,ABC AD BE ∠=︒,分别为,BC AC 边上的高,,AD BE 相交于点F ,连接CF ,则下列结论:①BF AC =;②FCD DAC ∠=∠;③CF AB ⊥;④若2BF EC =,则FDC △周长等于AB 的长.其中正确的有( )A .①②B .①③④C .①③D .②③④二、填空题13.已知△ABC 是等腰三角形.若∠A =40°,则△ABC 的顶角度数是____.14.如图,,AC BD 在AB 的同侧,2,8,8AC BD AB ===,点M 为AB 的中点,若120CMD ∠=,则CD 的最大值是_____.15.如图,△ABC 的边CB 关于CA 的对称线段是CB ',边CA 关于CB 的对称线段是CA ',连结BB ',若点A '落在BB '所在的直线上,∠ABB '=56°,则∠ACB =___度.16.如图,在ABC 中,BC 的垂直平分线分别交BC 、AB 于点E 、F .若AFC △是等边三角形,则B ∠=_________°.17.如图,在等边△ABC 中,点E 是边AC 上一点,AD 为BC 边上的中线,AD 、BE 相交于点F ,若∠AEB =100°,则∠AFB 的度数为_____.18.如图,在Rt ABC 中,90C ∠=︒,20B ∠=︒,PQ 垂直平分AB ,垂足为Q ,交BC 于点P .按以下步骤作图:①以点A 为圆心,以适当的长为半径作弧,分别交边,AC AB 于点D ,E ;②分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧相交于点F ;⑤作射线AF .若AF 与PQ 的夹角为α,则α=________°.三、解答题19.已知ABC 的三边长分别为a ,b ,c .(1)若2a =,3b =,求c 的取值范围;(2)在(1)的条件下,若c 为奇数,试判断ABC 的形状,并说明理由.20.如图,在ABC 和ADE 中,AB AC =,AD AE =,90BAC DAE ∠=∠=︒.(1)当点D 在AC 上时,如图①,线段BD ,CE 有怎样的数量关系和位置关系?请证明你的猜想;(2)将图①中的ADE 绕点A 顺时针旋转()090αα︒<<︒,如图②,线段BD ,CE 有怎样的数量关系和位置关系?请说明理由.(3)拓展应用:已知等边ABC 和等边ADE 如图③所示,求线段BD 的延长线和线段CE 所夹锐角的度数.21.如图,在四边形ABCD 中,AD BC ∥,E 为CD 的中点,连接AE 、BE ,BE AE ⊥,延长AE 交BC 的延长线于点F .(1)请判断FC 与AD 的数量关系,并说明理由;(2)若AB =6,AD =2,求BC 的长度.22.已知△ABC 和△DEF 为等腰三角形,AB =AC ,DE =DF ,∠BAC =∠EDF ,点E 在AB 上,点F 在射线AC 上.(1)如图1,若∠BAC =60°,点F 与点C 重合,求证:AF =AE +AD ;(2)如图2,若AD =AB ,求证:AF =AE +BC .23.(1)如图1,在等边三角形ABC 中,AD ⊥BC 于D ,CE ⊥AB 于E ,AD 与CE 相交于点O .求证:OA =2DO ;(2)如图2,若点G 是线段AD 上一点,CG 平分∠BCE ,∠BGF =60°,GF 交CE 所在直线于点F .求证:GB =GF .(3)如图3,若点G 是线段OA 上一点(不与点O 重合),连接BG ,在BG 下方作∠BGF =60°边GF 交CE 所在直线于点F .猜想:OG 、OF 、OA 三条线段之间的数量关系,并证明.24.如图,在ABC 中,AD BC ⊥,AD BD =;点F 在AD 上,DF DC =.连接BF 并延长交AC 于E .(1)求证:BF AC =;(2)求证:BE AC ⊥;(3)若AB BC =,BF 与AE 有什么数量关系?请说明理由.25.如图,在Rt ABC 中,9030C A ∠=︒∠=︒,.点D 是AB 中点,点E 为边AC 上一点,连接CD DE ,,以DE 为边在DE 的左侧作等边三角形DEF ,连接BF .△的形状为______;(1)BCD(2)随着点E位置的变化,DBF∠的度数是否变化?并结合图说明你的理由;AC=,请直接写出DE的长.(3)当点F落在边AC上时,若626.在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:△ABE≌△CBF;(2)若∠CAE=30°,求∠ACF度数.27.如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D,E.(1)求证:AE=2CE;(2)连接CD,请判断△BCD的形状,并说明理由.28.已知,如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P.(1)求证:△ABE≌△CAD;(2)求∠BPQ的度数;(3)若BQ⊥AD于Q,PQ=6,PE=2,求AD的长。
人教版八年级数学上测第十三章《轴对称》检测题(含答案)一、选择题(每小题3分,共30分)1. 现实世界中,对称现象无处不在,下列汉字是轴对称图形的是()A. 爱B. 我C. 中D. 华【答案】C.2.点M(1,2)关于x轴对称点的坐标为()A.(-1,2)B.(-1,-2)C.(1,-2)D.(2,-1)【答案】C.3. 如图,△ABC中,AC的垂直平分线交AB于点D,CD平分∠ACB,若∠A=50°,则∠B度数为()A. 25°B. 30°C. 35°D. 40°【答案】B.4.下列每个网格中均有两个图形,其中一个图形可由另一个轴对称变换得到的是()A. B. C. D.【答案】B.5. 如图,∠MON内有一点P,点P关于OM、ON的对称点分别是G、H,连GH分别交OM、ON于A、B点,若GH=10cm,则△P AB的周长为()A. 5cmB.10cmC. 20cmD.15cm【答案】B. 提示:根据对称性,AG=AP,BH=GP,∴AP+AB+BP=AG+AB+BH=GH=10.6.等腰三角形的一个内角为70°,则另外两个内角的度数分别是()A. 55° ,55°B. 70°,40或70°,55°C.70°,40°D. 55°,55°或70°,40°【答案】D.7. 如图,在正方形ABCD的外侧,作等边△CDE,连接AE交CD于点F,则∠DF A的度数为()A. 45°B. 55°C. 60°D. 75°【答案】D. 提示:∠ADE=90°+60°=150°,∠DAF=∠DEA=15°,则∠DF A=75°.8. 如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC=36cm2,AB=18cm,BC=12cm,则DE的长度为()A. 5cmB. 5.4cmC. 2.4cmD. 3cm【答案】C. 提示:作DF⊥BC于F,∵BD平分∠ABC,故设DE=DF=h,由S△ABD+S△CBD=S△ABC,得:12(AB+BC)h=36,代入数值,解得h=2.4,故选C.9. 如图,在△ABC中,BD为∠ABC的平分线,∠A=36°,AB=AC=a,BC=b,则CD=()A.2ba+B.2ba-C. a-b D. b-a【答案】C. 提示:AD=BD=BC=b,CD=AC-AD=a-b.10. 如图OE是等边△AOB的中线,OB=4,C是直线OE上一动点,以AC为边在直线AC下方作等边△ACD,连接ED,下列说法正确的是()A. ED的最小值是2B. ED的最小值是1C. ED有最大值D. ED没有最大值也没有最小值【答案】B. 提示:连BD,则易得△AOC≌△ABD(SAS),∴∠ABD=∠AOC=30°,当∠BDE=90°时,ED最小,此时ED=12BE=1,故选B.二、填空题(每小题3分,共18分)11. 点P(m,n)和点Q(n-1,2m)关于x轴对称,则m+n的值为__________.【答案】13. 提示:m=n-1,2m+n=0,联立解得m=-13,n=23,∴m+n=13.12. 如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC,若DE=1,则BC的长是__________.【答案】3. 提示:由条件得AD=BD,∠CAD=∠BAD,∴∠CAD=∠BAD=∠B=30°,CD=DE=1,BD=2DE=2,∴BC=CD+BD=3.13. 如图,在△ABC中,DE垂直平分AC,若AE=3,△ABD周长为13,则△ABC周长为________.【答案】19. 提示:由题知AC=2AE=6,AD=CD,∴BC=BD+AD,∵AB+BD+AD=13,∴AB+BC=13,∴AB+BC+AC=13+6=19.14. 如图,一个经过改造的台球桌面上四个角的阴影部分分别表示四个入球孔,如果一个球按图中所示的力向被击出(球可以经过多次反射),那么该球最后将落入的球袋是________.【答案】1号袋. 提示:如图所示.15. 如图,在△ABC中,∠C=46°,将△ABC沿直线l折叠,点C落在点D的位置,则∠1-∠2的度数是___________ .【答案】92°. 提示:由飞镖模型,∠DNC=∠C+∠D+∠DMC,即:180°-∠2=46°+46°+(180°-∠1),∴∠1-∠2=92°.16 .已知A(1,2)、B(7,4),点M、N是x轴上的动点(M在N左边),MN=3,当AM+MN+NB最小时,直接写出点M的坐标为___________.【答案】(2,0). 提示:作点A关于x轴的对称点A′,将点B向左平移3个单位得点B′,连接A′B′,交x轴于点M.三、解答题(共8小题,共72分)17. (8分)如图,已知点M、N和∠AOB,用尺规作图作一点P,使P到点M、N的距离相等,且到∠AOB两边的距离相等.(保留作图痕迹,不写作法)【答案】1.作∠AOB的平分线OC;2.连MN,作MN的垂直平分线EF;则射线OC与直线EF的交点P即为所求.18. (8分)如图,在△ABC中,∠B=30°,∠C=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)直接写出∠BAC的度数;(2)求∠DAF的度数;(3)若△DAF的周长为20,求BC的长.【答案】(1)∠BAC=100°;(2)∵DE、FG分别垂直平分AB、AC,∴AD=BD,AF=CF,∴∠BAD=∠B=30°,∠CAF=∠C=50°,∴∠DAF=∠BAC-∠BAD-∠CAF=100°-30°-50°=20°;(3) ∵△DAF的周长为20,∴AD+DF+AF=20,∴BC=BD+DF+CF=AD+DF+AF=20.19. (8分)(1)如图,已知△ABC,请画出△ABC关于y轴对称的△A'B'C'(其中A'、B'、C'分别是A、B、C的对应点);(2)直接写出点A'、B'、C'点的坐标;(3)求△ABC的面积是多少?(4)用无刻度的直尺在y轴上找一点Q,使得QA+QB之和最小.(用虚线表示画图过程)【答案】(1) A'(2,3)、B'(3,1)、C'(-1,-2);(2)S△ABC=5×4-12×1×2-12×3×4-12×3×5=5.5;(3) 连接A′B(或AB′)交y轴于Q,即可.20. (8分)如图,在△ABC中,AB=AC,D是BC边上的一点,DE⊥AB于E,DF⊥AC于F,请添加一个条件,使DE=DF,并说明理由.【答案】添加的条件是:D为BC的中点. 理由如下:方法1:连接AD.∵AB=AC,D为BC中点,∴AD平分∠BAC.又∵DE⊥AB,DF⊥AC,∴DE=DF.方法2:∵AB=AC,∴∠B=∠C.∵D为BC中点,∴BD=CD.在△BDE与△CDF中,∵∠B=∠C,∠BED=∠CFD=90°,BD=CD,∴△BDE≌△CDF(AAS),∴DE=DF.21. (8分)如图,△ABC 是等边三角形,点D 在BC 延长线上,DE ⊥AB 于点E ,交AC 于G ,EF ⊥BC 于点F ,若CD =3AE ,CF =6,求AC 的长. 【答案】设AE =x ,则CD =3x .在等边△ABC 中,∠A =∠B =∠ACB =60°, 又DE ⊥AB ,∴∠D =∠AGE =∠CGD =30°. ∴AG =2AE =2x ,CG =CD =3x , ∴AB =BC =AC =2x +3x =5x . 则BE =5x -x =4x ,又∵EF ⊥BC ,∠B =60°,∴BF =12BE =2x ,∴BC =BF +CF =2x +6.∵BC =AC ,∴2x +6=5x ,∴x =2. ∴AC =5x =10.22. (10分)如图,在△ABC 中,∠ABC =∠ACB ,E 为BC 边上一点,以E 为顶点作∠AEF ,∠AEF 的边交AC 于点F ,使∠AEF =∠B . (1)如果∠ABC =40°,则∠BAC =________; (2)判断∠BAE 与∠CEF 的大小关系,并说明理由;(3)当△AEF 为直角三角形时,求∠AEF 与∠BAE 的数量关系.【答案】(1)100°; …………… 2分 (2)∠BAE =∠CEF ,理由如下: ∵∠AEC 是△ABE 的外角, ∴∠AEF +∠CEF =∠B +∠BAE . 又∵∠AEF =∠B ,∴∠CEF =∠BAE . …………… 5分(3)由(2),设∠CEF =∠BAE =α,设∠AEF =∠B =∠C =β.则∠AFE =∠CEF +∠C =α+β.∵∠AEF =∠B <90°,故分两种情况考虑:1°当∠EAF 为直角时,如图1,由∠AEF +∠AFE =90°,CBAFECBA备用图1CBA备用图2得β+(α+β)=90°,∴α+2β=90°,故有:∠BAE+2∠AEF=90°.2°当∠AFE为直角时,如图2,得α+β=90°,即:∠BAE+∠AEF=90°.综上,当△AEF为直角三角形时,∠BAE+2∠AEF=90°或∠BAE+∠AEF=90°. …………… 10分23. (10分)已知Rt△ABC中,AB=AC,∠ABC=∠ACB=45°,点D为直线BC上的一动点(点D不与点B、C重合),以AD为边在AD的右侧作Rt△ADE,AD=AE,∠ADE=∠AED =45°,连接CE.(1)〖发现问题〗如图1,当点D在边BC上时,①请写出BD和CE之间的数量关系为_____________,位置关系为____________;②求证:CE+CD=BC;(2)尝试探究:如图2,当点D在边BC的延长线上且其他条件不变时,(1)中BC、CE、CD 之间存在的数量关系是否成立? 若成立,请证明;若不成立,请写出新的数量关系(不必证明);(3)拓展延伸:如图3,当点D在CB的延长线上且其他条件不变时,若BC=6,CE=2,求线段CD的长.【答案】(1)①BD=CE,BD⊥CE,…………… 2分②由条件得∠BAC=∠DAE=90°,∴∠BAD=∠CAE.又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴BD=CE,∠ACE=∠ABD=45°,∴CE+CD=BD+CD=BC. …………… 5分(2) 不成立,此时关系式为BC+CD=CE. …………… 7分提示:同上,证明△BAD≌△CAE(SAS),得BD=CE,即BC+CD=CE.(3) 由条件得∠BAC=∠DAE=90°,∴∠BAD=∠CAE.又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴BD=CE. ∵BD+BC=CD,∴CD =CE +BC =2+6=8. …………… 10分24. (12分)等腰Rt △ACB 中,∠ACB =90°,AC =BC ,点A 在x 轴正半轴上,C 在y 轴负半轴上.(1)如图1,求证:∠BCO =∠CAO ;(2)如图2,若OA =4,OC =2,M 是AB 与y 轴交点,求△AOM 的面积;(3)如图3,点C (0,2),点Q 、A 均在x 轴上,且S △ACQ =6a (a 为已知数). 分别以AC 、CQ 为腰在第一、第二象限作等腰Rt △CAN 、等腰Rt △QCM ,连接MN 交y 轴于P 点,间:S △MON 是否发生改变?若不变,求出S △MON 的值;若变化,求S △MON 的取值范围.【答案】(1) ∵∠ACB =90°,∴∠BCO +∠ACO =90°. 又∵∠AOC =90°,∴∠CAO +∠ACO =90°. ∴ ∠BCO =∠CAO . …………… 3分(2) 过B 作BD ⊥y 轴于D ,则△BCD ≌△CAO (AAS ), ∴BD =CO =2,CD =AO =4,OD =CD -OC =2,∴B (-2,2). 又∵A (4,0),C (0,-2),由割补法,得S △ABC =4×6-12×2×4-12×2×4-12×2×6=10, 又2142△△BCM ACM S BD S OA ===,∴S △ACM =23S △ABC =203. ∵S △AOC =12×2×4=4,∴S △AOM =S △ACM -S △AOC =203-4=83. (3) 过N 作NE ∥CM 交y 轴于E ,则∠CNE +∠MCN =180°,∵∠MCQ +∠ACN =90°+90°=180°, ∴∠ACQ +∠MCN =180°, ∴∠CNE =∠ACQ . 又∵∠ECN +∠ACO =90°,∠QAC +∠ACO =90°, ∴∠ECN =∠QAC . 在△ECN 和△QAC 中,∵∠CNE =∠ACQ ,CN =AC ,∠ECN =∠QAC , ∴△ECN ≌△QAC (ASA ),∴CE=AQ,EN=QC=MC.又NE∥CM,∴△PEN≌△PCM(ASA),∴PE=PC.∵点C(0,2),S△ACQ=6a,∴AQ=6a.∴CE=AQ=6a,∴CP=PE=3a.∴OP=OC+CP=2+3a.过M作MF⊥y轴于F,过N作NG⊥y轴于G,∵△MCQ为等腰直角三角形,∴△MCF≌△CQO(AAS),∴MF=CO=2,同理,NG=OC=2.则S△MON=S△MOP+S△NOP=12OP·MF+12OP·NG=2OP=6a+4.。
人教版八年级数学上册《第十三章轴对称》单元测试卷含答案一.选择题(共10小题)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.如图,△ABC中,AB=AE,且AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,若△ABC周长为16,AC =6,则DC为()A.5B.8C.9D.103.如图,在△ABC中,∠ACB=90°,CD是高,∠B=60°,则下列关系正确的是()A.B.C.D.4.如图,在△ABC中,AB=AC,CD平分∠ACB,交AB于点D,若∠BAC=100°,则∠ADC的度数为()A.60°B.50°C.65°D.70°5.下列命题中:①等腰三角形底边的中点到两腰的距离相等;②等腰三角形的高、中线、角平分线互相重合;③若△ABC与△A′B′C′成轴对称,则△ABC一定与△A′B′C′全等;④有一个角是60度的三角形是等边三角形;⑤等腰三角形的对称轴是顶角的平分线.正确命题的个数是()A.1B.2C.3D.46.已知等腰三角形两边的长x、y满足|x2﹣9|+(y﹣4)2=0,则三角形周长为()A.10B.11C.12D.10或117.如图,在等边三角形ABC中,BC边上的中线AD=6,E是AD上的一个动点,F是边AB上的一个动点,在点E,F运动的过程中,EB+EF的最小值是()A.6B.4C.3D.28.如图,在正方形网格中,A,B两点都在小方格的顶点上,如果点C也是图中小方格的顶点,且△ABC是等腰三角形,那么点C的个数为()A.1B.2C.3D.49.如图,△ABC是等腰三角形,AB=AC,∠BAC是钝角.点D在底边BC上,连接AD,恰好把△ABC分割成两个等腰三角形,则∠B的度数是()A.30°B.36°C.45°D.60°10.若二元一次方程组的解x,y的值恰好是一个等腰三角形两边的长,且这个等腰三角形的周长为7,则m的值为()A.4B.1.5或2C.2D.4或2二.填空题(共8小题)11.等边三角形的两条中线所成的锐角的度数是度.12.已知点P(1﹣a,3+2a)关于x轴的对称点落在第三象限,则a的取值范围是.13.等腰三角形一腰上的高与另一腰的夹角为42°,则顶角为.14.如图,等腰三角形ABC中,CA=CB,∠C=40°,若沿图中虚线剪去∠A,则∠1+∠2的度数为度.15.如图,在△ABC中,DE是BC的垂直平分线,若AB=6,AC=9,则△ABD的周长是.16.如图,∠ABC和∠ACB的角平分线相交于点M,且过点M的直线DE∥BC,分别交AB、AC于D、E两点,若AB =12,AC=10,则△ADE的周长为.17.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是秒.18.如图,在△ABC中,AB=AC,BC=4,△ABC的面积为20,AB的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则BM+DM的最小值为.三.解答题(共7小题)19.△ABC在直角坐标系内的位置如图所示:(1)分别写出点A,C的坐标:A的坐标:,C的坐标:;(2)请在这个坐标系内画出与△ABC关于x轴对称的△A1B1C1,并写出点B1的坐标;(3)求△A1B1C1的面积.20.已知一个三角形的两条边长分别为4cm,8cm.设第三条边长为x cm.(1)求x的取值范围.(2)若此三角形为等腰三角形,求该等腰三角形的周长.21.如图所示,△ABC是等边三角形,AD为中线,AD=AE.(1)求∠EDC的度数;(2)若AD=2,求△AED的面积.22.如图,DC平分∠ACE,且AB∥CD,求证:△ABC为等腰三角形.23.如图,在等边三角形ABC中,D是BC边上一点,以AD为边作等腰三角形ADE,使AD=AE,∠DAE=80°,DE交AC于点F,∠BAD=15°.(Ⅰ)求∠CAE的度数;(Ⅱ)求∠FDC的度数.24.如图,在△ABC中,AB=AC,D是AB上的一点,过点D作DE⊥BC于点E,延长ED和CA,交于点F.(1)求证:△ADF是等腰三角形;(2)若∠F=30°,BD=4,EC=6,求AC的长.25.如图,在△ABC中,AB=AC,∠BAC=120°,AD是BC边上的中线,且BD=BE,CD的垂直平分线MF交AC 于F,交BC于M.(1)求∠BDE的度数;(2)证明△ADF是等边三角形;(3)若MF的长为2,求AB的边长.参考答案一.选择题(共10小题)1.B.2.A.3.:D.4.A.5.B.6.D.7.A.8.C.9.B.10.C.二.填空题(共8小题)11.60.12.a>1.13.48°或132°.14.250.15.15.16.22.17.4.18.10.三.解答题(共7小题)19.解:(1)A(0,3),C(﹣2,1);(2)如图所示,△A1B1C1即为所求;点B1(﹣4,﹣4);故答案为:(﹣4,﹣4);(3)△A1B1C1的面积=.20.解:(1)根据三角形三边关系得,8﹣4<x<8+4即4<x<12;(2)∵三角形是等腰三角形,等腰三角形两条边长分别为4cm,8cm,且4<x<12∴等腰三角形第三边只能是8cm∴等腰三角形周长为4+8+8=20cm.21.(1)解:∵△ABC是等边三角形∴∠BAC=60°AB=AC=BC∵AD为中线∴AD⊥CD∵AD=AE∴∴∠CDE=∠ADC﹣∠ADE=15°;(2)解:过D作DH⊥AC于H∴∠AHD=90°∵∠CAD=30°∴∵AD=AE=2∴.22.证明:∵AB∥CD∴∠A=∠ACD,∠B=∠DCE.∵DC平分∠ACE∴∠ACD=∠DCE∴∠B=∠A∴AC=BC∴△ABC为等腰三角形.23.解:(Ⅰ)∵三角形ABC为等边三角形∴∠BAE=60°∵∠BAD=15°∴∠DAC=60°﹣15°=45°∵∠DAE=80°∴∠CAE=80°﹣45°=35°;(Ⅱ)∵∠DAE=80°,AD=AE∴∠ADE=(180°﹣80°)=50°∠ADC=∠BAD+∠B=15°+60°=75°又∵∠ADE=50°∴∠FDC=∠ADC﹣∠ADE=75°﹣50°=25°.24.(1)证明:∵AB=AC∴∠B=∠C∵FE⊥BC∴∠F+∠C=90°,∠B+∠BDE=90°∴∠F=∠BDE∵∠BDE=∠FDA∴∠F=∠FDA∴AF=AD∴△ADF是等腰三角形;(2)解:∵DE⊥BC∴∠DEB=90°∵∠F=30°∴∠BDE=30°∵BD=4∴∵AB=AC∴△ABC是等边三角形∴AC=AB=BE+EC=825.(1)解:在△ABC中,AB=AC,∠BAC=120°∴∠B=∠C=×(180°﹣∠BAC)=30°在△BDE中,BD=BE∴∠BDE=∠BED=×(180°﹣∠B)=75°;(2)证明:∵CD的垂直平分线MF交AC于F,交BC于M ∴DF=CF,∠FMC=90°∴∠FDC=∠C=30°∴∠AFD=∠FDC+∠C=60°在△ABC中,AB=AC,∠BAC=120°,AD是BC边上的中线∴∠BAD=∠CAD=∠BAC=60°∴∠CAD=∠AFD=60°∴△ADF是等边三角形;(3)在Rt△FMC中,∠C=30°,MF=2∴CF=2MF=4∴DF=CF=4由(2)可知:△ADF是等边三角形∴AF=DF=4∴AB=AC=AF+CF=4+4=8.。
13.10轴对称整章水平测试(3)
一、精心选一选(每小题2分,共20分.)
1.如图所示图形中,轴对称图形有()
A.1个 B.2个 C.3个 D.4个
2.下列图形中,不一定是轴对称图形是()
A.直角 B.正方形 C.半圆 D.三角形
3.有一个等腰三角形的周长为25cm,一边长为11cm,那么腰长为()
A.11cm B.7cm C.14cm D.7cm或11cm
4.下列说法中,正确的是()
A.关于某直线对称的两个三角形是全等三角形
B.全等三角形是关于某直线对称的
C.两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧
D.有一条公共边的两个全等三角形关于公共边所在的直线对称
5.下列图形中,不是轴对称图形的是()
A.有两条边相等的三角形 B.有一个角为60°的直角三角形
C.有一个角为60°的等腰三角形D.一个内角为40°,一个内角为100°的三角形
6.当你看到镜子中的自己在用右手往左梳理你的头发时,实际上你是()
A.用右手往左梳 B.用右手往右梳 C.用左手往左梳 D.用左手往右梳
7.下列说法中,不正确的是()
A.等边三角形是轴对称图形
B.若两个图形的对应点的连线都被同一条直线垂直平分,则这两个图形关于这条直线对称
C.直线MN是线段AB的垂直平分线,若点P使P A=PB,则点P在MN上,若P A≠PB,则P不在MN上
D.等腰三角形的对称轴是它的中线
8.如图所示,一正方形的纸片经三次折叠后,用剪子剪掉虚线部分,则展开后的图形是()
9.…,依次观察左边三个图形,并判断照此规律从左向右第四个图形是( )
10.如图,五边形ABCDE中,∠A=∠B=120°,EA=AB=BC,
DC=DE=2BC,则∠D=()
A. 30° B. 45° C. 60° D. 67.5°
二、耐心填一填(每小题2分,共20分.)
1.在下列图形中,如图所示,是轴对称图形_______个.
2.线段、角、等腰三角形都是______图形,线段的对称轴是________,角的对称轴是______等腰三角形的对称轴是__________.
3.如图,是轴对称图形有______,其中对称轴条数最多的是_______,只有一条对称轴的是______.
4.等腰三角形一个角为70°,则其他两个角的度数是________.
5.等腰三角形一腰的中线把三角形的周长分成18cm和12cm两部分,则等腰三角形的底边长为______.
6.如图,△ABC中,AB=AC=8,D在BC上,过D作DE∥AB交AC于E,
DF∥AC交AB于F,则四边形AFDE的周长为______.
7.如图所示,图中的点A、B、C、D、E中,关于x轴对称点是
_________,关于y轴对称的点是_______,若点C和E关于某直线对称,则这条直线是_________.
8.如图所示,△ABC中,∠ABC=40 ,∠ACB=80 ,延长CB至D,使DB=BA,延长BC至E,使
CE=CA,连结AD、AE,则∠D=________,∠E=________,∠DAE=________.
9.如图,AD是直角三角形△ABC斜边上的中线,把ADC沿AD对折,点C落在点C′处,连结CC′,则图中共有等腰三角形____个.
10.设有一个边长为1的正三角形,记作A1如图(1),将A1的每条边三等分,在中间的线段上向图形外作正三角形,去掉中间的线段后所得到的图形记作A2如图(2);将A2的每条边三等分,并重复上述过程,所得到的图形记作A3如图(3);将A3的每条边三等分,并重复上述过程,所得到的图形记作A4,那么A4的周长是.
三、认真答一答(本大题共60分)
1.(本题8分)找出下列各个轴对称图形的对称轴,并画出来.
2.(本题8分)画出所示图形关于直线L的对称图形.
3.(本题8分)如图所示,一个算式在镜中所成的像构成的算式是正确的,但是在实际中是正确的吗?实际中这个算式是什么?(写出即可)
4. (本题12分)某供电部门准备在输电主干线L 上连结一个分支路线,分支点为M ,同时向新落成的A 、B 两个居民小区送电,己知居民小区A 、B 分别到主干线距离AA 1=2千M ,BB 1=1千M ,且A 1B 1=4千M .
(1)如果居民小区A 、B 在主干线L 的两旁,如图(1)所示,那么分支点M 在什么地方时总线路最短?
(2)如果居民小区A 、B 在主干线L 的同侧,如图(2)所示,那么分支点M 在什么地方时总线路最短?
(3) 比较(1)、(2)小题的两种性况,哪种情况所用总线路较短?
5. (本题12分)如图,ABCD 为正方形,请在平面内找出点P ,使得 P AB 、PBC 、PCD 、PDA 都是等腰三角形,并指出这样的点有几个,在图在作出这样的点P .
6.(本题12分)操作与探究 (1)分别画出“
q ”和“F ”关于直线
l 的对称图形(画出示意图即可).
q
F
(2)图中小冬和小亮上衣上印的字母分别是什么? (3)把字母“q ”和“
F ”写在薄纸上,观察纸的背面,写出你看到的字母背影.
(4)小明站在五个学生的身后,这五个学生正向前方某人用手势示意一个五位数,从小明站的地方看(如图所示),这个五位数是23456.请你判断
出他们示意的真实数字是多少
?
l
参考答案:
一、1.A 2.D 3.D 4.A 5.B 6.D 7.D 8.C 9.D 10.C
二、1.2 2.轴对称,线段垂直平分线或其本身所在的直线,角平分线所在的直线,底边的垂直平分线.3.(1)(3)(4),(1),(4) 4.70°,40°或55°,55° 5.6或14
6.16 7.A点与B点,B点与E点,y=0.5 8.20°,40°,120° 9.5 10.64 9
三、1.略
2.略
3.正确,151+25+12=188
4.(1)如图连结AB交直线L于M,则M为分支点.
(2)如图,作点B关于直线L的对称点D,连结AD交直线L于M,则M为分支点.
(3)两种情况所用的总线路相等,如图(1)中,过点B作AA1的延长线的垂线,垂足为C,如图(2)中,过D作AA1的延长线的垂线,垂足为C,可证图(1)中的△ACB与图(2)中的△ACD全等,所以上述两种情况下所用总线路是相等的.
5.如图
6.(1)“P”和“”;(2)“q”和“F”;(3)“P”和“”;
(4)分析:从身后看到的手势旋转180°,排尾变排头,实际上是从身后看到的手势关于直线l的对称示势,如图所示,即为从身前看到的手势.
所以选42635。