三年级奥数.应用题(B级).方阵问题.学生版
- 格式:docx
- 大小:2.10 MB
- 文档页数:7
小学生奥数方阵问题练习题(精选9篇)小学三年级奥数方阵问题练习题篇一1、要排成一个4行4列的正方形方阵,需要()名同学。
2、学生进行军训队列表演,排成一个7行7列,如果去掉一行一列,要去掉()人,还剩下()人。
3、2023年级同学参加广播操比赛,因服装问题要横竖各减少一排,这样共去掉了19人,则此年级原准备()人参加比赛。
4、学校学生站成25行25列方阵,现去掉5行5列,要减少()人。
5、正方形广场四周均匀挂彩灯,四个角上都挂一盏,每边挂了20盏,则这块广场的四周共需挂()盏彩灯。
6、在一个正方形场地四周插入彩旗,四个角都插一面,共插了24面彩旗,问四周每边插彩旗()面。
7、游乐场用木桩排一个四层的空心方阵,最外边一层每边15根木桩,则共需()根木桩。
8、小红用围棋字摆了一个八层空心方阵,共享了424个,则最外层每边有()个棋子。
9、一个五层空心方阵最外层每边有20人,则最内层每边有()人。
10、一个六层空心方阵最内层每边有6人,则最外层每边有()人。
1、(1)小新把贝壳放在桌上,每5厘米放一颗,到20厘米处,可以放几颗?(2)小新把7颗贝壳放在桌上,每两颗之间距离是5厘米,从第一颗到第七颗的距离是多少厘米?(3)小新在桌上等距离地摆了8颗贝壳,已知第1颗到第8颗的距离为56厘米,求每两颗之间的距离是多少?2、一个鱼塘周围长1800米,沿塘边每隔6米栽一棵杨树,需种几棵杨树?3、一条走廊长21米,从走廊的一端每隔3米放一盆花。
走廊的两边一共需要几盆花?4、学校两座教学楼之间的距离是40米,如果每隔5米种1棵树,共可以种多少棵树?5、在一条长为48米的马路一旁栽树,如果每4米栽一棵,一共可以栽几棵?如果一共要栽9棵,那么每两棵之间应相隔多少米?6、一根木料长20米,把它锯成5米长的一段,如果每锯一次需要3分钟,一共需多少分钟?7、一幢六层楼房,每层楼有14级楼梯,小明从底楼走到六楼,共走了多少级楼梯?8、从1楼走到4楼共要走36级台阶,如果每上一层楼的台阶数都相同,那么从1楼到6楼共要走多少级台阶?9、时钟6点钟敲6下,10秒钟敲完,敲8下需要多少秒?10、科学家进行一项实验,每隔5小时做一次记录,做第12次记录时,挂钟时针指向9、问:第一次记录时,时针指向几?1、三年级(1)班的学生参加体操表演,排成队形正好是由每7个人为一边的6个三角形组成的一个正六边形,求正六边形一周共有多少名学生?三(1)班参加体操表演的共有多少人?7某6-6=36(人)7某12-6某2-5=67(人)2、现有松树和柏树以隔株相间的种法,种成9行9列的方阵,问这个方阵最外层有松树和柏树各多少棵?方阵中共有松树柏树各多少棵?最外层松柏各是:(9-1)某4÷2=16(棵)共有松柏树是:(9某9+1)÷2=41(棵)81-41=40(棵)答:柏树41棵,松树40棵,或松树41棵,柏树40棵。
一、数阵图定义及分类:定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.数阵:是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.三、幻方起源:幻方也叫纵横图,也就是把数字纵横排列成正方形,因此纵横图又叫幻方.幻方起源于我国,古人还为它编撰了一些神话.传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,知识框架数阵图与幻方这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:987654321我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久.三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”幻方的种类还很多,这节课我们将学习认识了解它们.四、幻方定义:幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的33⨯的数阵称作三阶幻方,44⨯的数阵称作四阶幻方,55⨯的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,98765432113414151612978105113216。
小学三年级奥数题方阵问题【三篇】
导读:本文小学三年级奥数题方阵问题【三篇】,仅供参考,如果觉得很不错,欢迎点评和分享。
【第一篇】练习题:某部队战士排成方阵行军,另一支队伍共17人加入他们的方阵,正好使横竖各增加一排,现共有多少战士?
答案与解析:
后来的战士加入方阵时,是在原方阵外侧横竖方向各增加一排,那么有一个战士要站在这两排的交界处,计算横排竖排的人数时,对他进行了重复计算,也就是说现在每一排实际人数是(17+1)÷2=9(人),因此可以求出总人数:9×9=81(人)。
【第二篇】习题:最新的三年级奥数题及答案:方阵问题:现有松树和柏树以隔株相间的种法,种成9行9列的方阵,问这个方阵最外层有松树和柏树各多少棵?方阵*有松树柏树各多少棵?
答案:最外层松柏各是:(9-1)×4÷2=16(棵)
共有松柏树是:(9×9+1)÷2=41(棵)
81-41=40(棵)
答:柏树41棵,松树40棵,或松树41棵,柏树40棵。
【第三篇】习题:六一儿童节前夕,在校园雕塑的周围,用204盆鲜花围成了一个每边三层的方阵求最外面一层每边有鲜花多少盆?
答案:最外层每边人数=总数÷4÷层数+层数
204÷4÷3+3=20(盆)。
方阵问题知识导航学生排队,士兵列队,横着排叫做行,竖着排叫做列。
如果行数与列数都相等,则正好排成一个正方形,这种图形就叫方队,也叫做方阵(亦叫乘方问题)。
核心公式:一、实心方阵1.方阵总人数=最外层每边人数的平方(方阵问题的核心)=每边数×每边数2.方阵最外层每边人数=(方阵最外层总人数÷4)+13.方阵外一层每边人数比内一层每边人数多24.去掉一行、一列的总人数=去掉的每边人数×2-15、每层数=(每边数-1)×4二、空心方阵1、外边人数=总人数÷4÷层数+层数2、总数=最外层人数2 - 最内层人数2=(最外层每边数-层数)×层数×4=(最外层数+最内层数)×层数÷23、内层数=外层数-84、每层数=(每边数-1)×45、实心方阵的总人数是一个完全平方数,空心方阵的总人数是4的倍数。
例1 四年级同学参加广播操比赛,要排列成每行8人,共8行方阵。
排列这个方阵共需要多少名同学?解题分析这是一道实心方阵问题,求这个方阵里有多少名同学,就是求实心方阵中布点的总数。
排列成每行8人点,共8行,就是有8个8点。
求方阵里有多少名同学,就是求8个8人是多少人?解:8×8=64(人)答:排列这个方阵,共需要64名同学。
例2 有一堆棋子,刚好可以排成每边6只的正方形。
问棋子的总数是多少?最外层有多少只棋子?解题分析依题意可以知道:每边6只棋子的正方形,就是棋子每6只1排,一共有6排的实心方阵。
根据方阵问题应用题的解题规律,求实心方阵总数的数量关系,总人数=每边人数×每边人数,从而可以求出棋子的总数是多少只。
而最外层棋子数则等于每边棋子数减去1乘以行数4,即(6-1)×4只。
解:(1)棋子的总数是多少?6×6=36(只)(2)最外层有多少只棋子?(6-1)×4=20(只)答:棋子的总数是36只,最外层有20只棋子。
2018秋季数学集训三队B教材每周习题(11)参考答案星期一1.同学们做早操,排成一个正方形的方阵,从前、后、左、右数,小明都是第4个。
这个方阵共有多少人?解:(4×2-1)×(4×2-1)=49(人)答:这个方阵共有49人。
2.小红用棋子摆成一个正方形实心方阵,用棋子81枚。
最外层每边多少枚棋子?解:81=9×9答:最外层每边有9枚棋子。
3.一队学生站成9行9列方阵,如果去掉2行2列。
那么,要去掉多少人?解:9×2×2-2×2=32(人)答:要去掉32人。
星期二4.参加中学生运动会团体操比赛的运动员排成了一个正方形队列。
如果要使这个正方形队列减少一行和一列,则要减少21人。
参加团体操比赛的运动员有多少人?解:减少后每边人数:(21-1)÷2=10(人)总人数:10×10+21=121(人)或原来每边人数:(21+1)÷2=11(人)总人数:11×11=121(人)答:参加团体操比赛的运动员有121人。
5.参加中学生运动会团体操比赛的运动员排成了一个正方形队列。
将这个正方形队列减少2行和2列,则要减少36人。
这个正方形队列还剩下多少人?解:减少后每边人数:(36-2×2)÷4=8(人)总人数:8×8=64(人)或原来每边人数:(36+2×2)÷4=10(人)总人数:10×10-36=64(人)答:这个正方形队列还剩下64人。
6.一个正方形舞厅四周均匀地装彩灯,如果四个角都装一盏且每边装12 盏。
则这个舞厅四周共装彩灯多少盏?解:(12-1)×4=44(盏)或 12×4-4=44(盏)答:这个舞厅四周共装彩灯44盏。
星期三7.为了绿化小区,在一块正方形的地四周种树,四个角都种一棵,共种了36棵。
这块地每边有多少棵树?解:36÷4+1=10(棵)或 (36+4)÷4=10(棵)答:这块地每边有10棵树。
1.小学三年级奥数方阵问题练习题一次检阅,接受检阅的一列彩车车队共30辆,每辆车长4米,前后每辆车相隔5米。
这列车队共排列了多长?如果车队每秒行驶2米,那么这列车队要通过535米长的检阅场地,需要多少时间?解:车队间隔共有30-1=29(个),每个间隔5米,所以,间隔的总长为:(30-1)×5=145(米),而车身的总长为30×4=120(米),故这列车队的总长为(30-1)×5+30×4=265(米)。
解析:由于车队要行265+535=800(米),且每秒行2米,所以,车队通过检阅场地需要(265+535)÷2=400(秒)=6分40秒。
答:这列车队共长265米,通过检阅场地需要6分40秒。
2.小学三年级奥数方阵问题练习题晶晶用围棋子摆成一个三层空心方阵,最外一层每边有围棋子14个。
晶晶摆这个方阵共用围棋子多少个?答案与解析:方阵每向里面一层,每边的个数就减少2个。
知道最外面一层每边放14个,就可以求第二层及第三层每边个数。
知道各层每边的个数,就可以求出各层总数。
解:最外边一层棋子个数:(14-1)×4=52(个)第二层棋子个数:(14-2-1)×4=44(个)第三层棋子个数:(14-2×2-1)×4=36(个)。
摆这个方阵共用棋子:52+44+36=132(个)还可以这样想:中空方阵总个数=(每边个数一层数)×层数×4进行计算。
解:(14-3)×3×4=132(个)答:摆这个方阵共需132个围棋子。
3.小学三年级奥数方阵问题练习题1、某班抽出一些学生参加节日活动表演,想排成一个正方形的方阵,结果多出7人;如果每行每列增加一个再排,却少了4人,问共抽出学生多少人?(7+4+1)÷2=6(人),6×6-4=32(人)答:共抽出学生32人2、棋子若干粒,恰好可排成每边8粒的正方形,棋子的总数是多少?棋子最外层有多少粒?8×8=64(粒)(8-1)×4=28(粒)答:棋子总数64粒,最外层28粒。
2018秋季数学集训三队B教材每周习题(11)星期一1.同学们做早操,排成一个正方形的方阵,从前、后、左、右数,小明都是第4个。
这个方阵共有多少人?2.小红用棋子摆成一个正方形实心方阵,用棋子81枚。
最外层每边多少枚棋子?3.一队学生站成9行9列方阵,如果去掉2行2列。
那么,要去掉多少人?星期二4.参加中学生运动会团体操比赛的运动员排成了一个正方形队列。
如果要使这个正方形队列减少一行和一列,则要减少21人。
参加团体操比赛的运动员有多少人?5.参加中学生运动会团体操比赛的运动员排成了一个正方形队列。
将这个正方形队列减少2行和2列,则要减少36人。
这个正方形队列还剩下多少人?6.一个正方形舞厅四周均匀地装彩灯,如果四个角都装一盏且每边装12 盏。
则这个舞厅四周共装彩灯多少盏?星期三7.为了绿化小区,在一块正方形的地四周种树,四个角都种一棵,共种了36棵。
这块地每边有多少棵树?8.一队战士排成一个三层空心方阵,已知最外一层每边有12人。
这个队伍有多少人?9.某六年级学生排成一个实心方阵,最外层有80人,这个方阵共有多少名学生?星期四10.一队战士排成空心方阵,最外层的人数为44人,最内层的人数为28人,这方阵共有多少人?11.用一些棋子排成一个三层空心方阵,中间一层每边棋子数为9个。
这个方阵一共用了多少个棋子?12.用一些棋子排成一个4层空心方阵,最外层每边放了13个棋子。
这个方阵一共用了多少个棋子?星期五13.一个团体操表演队,想排成5层的空心方阵,已知参加表演的有360人。
最外层每边应安排多少人?14.小华用棋子摆成一个三层的空心方阵,还多13枚。
如果这空心方阵再增加一层,又缺15枚。
小华共有多少枚棋子?15.圣诞节那天,同学们为了装点校园,用40棵圣诞树在校园里摆了一个两层的空心方阵。
为了更漂亮,同学们决定在外围再增加一层,变成三层空心方阵。
需要增加多少棵圣诞树?。
三年级小学奥数方阵问题【五篇】
答案:(240÷4)-1=59(人)
59×59=3481(人)
【第二篇:空心方阵】
习题:某校少先队员能够排成一个四层空心方阵如果最外层每边有20个学生,问这个空心方阵最里边一周有多少个学生?这个四层空心方阵共有多少个学生?
答案:(20-2×3-1)×4=42(个)
(20-40×4×4=256(个)
【第三篇:鲜花方阵】
习题:六一儿童节前夕,在校园雕塑的周围,用204盆鲜花围成了一个每边三层的方阵求最外面一层每边有鲜花多少盆?
答案:最外层每边人数=总数÷4÷层数+层数
204÷4÷3+3=20(盆)
【第四篇:体操表演】
习题:三年级(1)班的学生参加体操表演,排成队形正好是由每7个人为一边的6个三角形组成的一个正六边形,求正六边形一周共有多少名学生?三(1)班参加体操表演的共有多少人?
答案:7×6-6=36(人)
7×12-6×2-5=67(人)
【第五篇:松柏方阵】
习题:最新的三年级奥数题及答案:方阵问题:现有松树和柏树以隔株相间的种法,种成9行9列的方阵,问这个方阵最外层有松树和柏树各多少棵?方阵*有松树柏树各多少棵?
答案:最外层松柏各是:(9-1)×4÷2=16(棵)
共有松柏树是:(9×9+1)÷2=41(棵)
81-41=40(棵)
答:柏树41棵,松树40棵,或松树41棵,柏树40棵。
三年级奥数方阵问题及参考答案
三年级奥数方阵问题及参考答案
学好基础知识有助于大家奥数学习能力的加强,这篇三级奥数方阵问题及答案,下面是店铺为大家整理的三年级奥数方阵问题及参考答案,仅供参考,希望能够帮助到大家。
士兵排队,横着排叫行,竖着排叫列,若行数与列数都相等,正好排成一个正方形,这就是一个方队,这种方队也叫做方阵(亦叫乘方问题)。
方阵的基本特点:
(1)方阵不论哪一层,每边上的人(或物)数量都相同,每向里一层,每边上的人数就少2。
(2)每边人(或物)数和四周人(或物)的关系;
四周人(或物)数=[每边人(或物)数-1]×4
每边人(或物)数=四周人(或物)数÷4+1
(3)中实方阵的总人数(或物)=每边人(或物)数×每边人(或物)数
(4)空心方阵的总人(或物)数=(最外层每边人(或物)数-空心方阵的`层数)×空心方阵的层数×4
例1.三年级一班参加运动会入场式,排成一个方阵,最外层一周的人数为20人,问方阵最外层每边的人数是多少?这个方阵共有多少人?
分析:根据四周人数与每边人数的关系可知:
每边人数=四周人数÷4+1,可以求出这个方阵最外层每边的人数,那么这个方阵队列的总人数就可以求了。
解:(1)方阵最外层每边的人数:20÷4+1=5+1=6(人)
(2)整个方阵共有学生人数:6×6=36(人)
答:方阵最外层每边的人数是6人,这个方阵共有36人。
三年级小学奥数方阵问题【五篇】导读:本文三年级小学奥数方阵问题【五篇】,仅供参考,如果觉得很不错,欢迎点评和分享。
【第一篇:士兵方阵】习题:有一队士兵,排成了一个方阵,最外层一周共有240人,问这个方阵共有多少人?答案:(240÷4)-1=59(人)59×59=3481(人) 【第二篇:空心方阵】习题:某校少先队员可以排成一个四层空心方阵如果最外层每边有20个学生,问这个空心方阵最里边一周有多少个学生?这个四层空心方阵共有多少个学生?答案:(20-2×3-1)×4=42(个)(20-40×4×4=256(个) 【第三篇:鲜花方阵】习题:六一儿童节前夕,在校园雕塑的周围,用204盆鲜花围成了一个每边三层的方阵求最外面一层每边有鲜花多少盆?答案:最外层每边人数=总数÷4÷层数+层数204÷4÷3+3=20(盆) 【第四篇:体操表演】习题:三年级(1)班的学生参加体操表演,排成队形正好是由每7个人为一边的6个三角形组成的一个正六边形,求正六边形一周共有多少名学生?三(1)班参加体操表演的共有多少人?答案:7×6-6=36(人)7×12-6×2-5=67(人) 【第五篇:松柏方阵】习题:最新的三年级奥数题及答案:方阵问题:现有松树和柏树以隔株相间的种法,种成9行9列的方阵,问这个方阵最外层有松树和柏树各多少棵?方阵*有松树柏树各多少棵?答案:最外层松柏各是:(9-1)×4÷2=16(棵)共有松柏树是:(9×9+1)÷2=41(棵)81-41=40(棵)答:柏树41棵,松树40棵,或松树41棵,柏树40棵。
一、 方阵问题
(1) 明确空心方阵和实心方阵的概念及区别.
(2) 每边的个数=总数÷41 ”;
(3) 每向里一层每边棋子数减少2;
(4) 掌握计算层数、每层个数、总个数的方法,及每层个数的变化规律。
【例 1】 小华观看团体操表演,他看到表演队伍中的一个方阵变换成一个正三角形实心队列,他估计队
伍中人数大概在30至50人之间,你能告诉他到底有多少人吗?
【巩固】 在一次运动会开幕式上,有一大一小两个方阵合并变换成一个10行10列的方阵,求原来两个方
阵各有多少人?
例题精讲
知识结构
方阵问题
【例2】同学们做操,小林站在左起第5列,右起第3列;从前数前面有4个同学,从后数后面有6个同学.每行每列的人数同样多,做操的同学一共有多少人?
【巩固】一群小猴排成整齐的队伍做操,长颈鹿站在队伍旁边,一下子看到了他的好朋友金丝猴.长颈鹿数了数,金丝猴的左边有4只猴,右边也有4只猴,前面有5只猴,后面也有5只猴.小朋友,你能算出有多少只猴子在做操吗?
【例3】四年级一班同学参加了广播操比赛,排成每行8人,每列8人的方阵,问方阵中共有多少学生?
如果去掉一行一列.还剩多少同学?
【巩固】100名同学排成一个方阵,后来又减去一行一列,问减少了多少人?
【例4】学生进行队列表演,排成了一个正方形队列,如果去掉一行一列,要去掉15人,问这个方阵共有多少人?
【巩固】学生进行队列表演,排成了一个正方形队列,如果去掉一行一列,要去掉13人,问这个方阵共有多少人?
【例5】二年级舞蹈队为全校做健美操表演,组成一个正方形队列,后来由于表演的需要,又增加一行一列,增加的人数正好是19人,那么原来准备参加健美操表演的有多少人?
【巩固】某部队战士排成方阵行军,另一支队伍共17人加入他们的方阵,正好使横竖各增加一排,现共有多少战士?
【例6】某校五年级学生排成一个方阵,最外一层的人数为60人.问方阵外层每边有多少人?这个方阵共有五年级学生多少人?
【巩固】校三年级学生排成一个方阵,最外一层的人数为36人,问方阵外层每边有多少人?这个方阵共有三年级学生多少人?
【例7】新学期开始,手持鲜花的少先队员在一辆彩车四周围成了每边两层的方阵,最外面一层每边13人,彩车周围的少先队员有多少人?
【巩固】节日来临,同学们用盆花在操场上摆了一个空心花坛,最外层的一层每边摆了12盆花,一共3层,一共用去多少盆花?
【例8】120个棋子摆成一个三层空心方阵,最内层每边有多少棋子?
【巩固】将一个每边16枚棋子的实心方阵变成一个四层的空心方阵,此空心方阵的最外层每边有多少棋子?
【例9】有一群学生排成三层空心方阵,多9人,如空心部分增加两层,又少15人,问有学生多少人?
【巩固】一队战士排成三层空心方阵多出16人,如果空心部分再加一层又少28人,这队战士共有多少人?
如果他们改成实心方阵,每边应有多少人?
模块三、植树中的智巧趣题
【例 10】 今有12盆花要在平地上摆成6行,每行都通过3盆花.请你给出一种设计方案,画图时用点表
示花,用直线表示行.
【巩固】 今有10盆花要在平地上摆成5行,每行都通过4盆花.请你给出一种设计方案,画图时用点表
示花,用直线表示行.
【随练1】 学生进行队列表演,排成了一个正方形队列,如果去掉一行一列,要去掉11人,问这个方阵共
有多少人?
【随练2】 四年级一班同学参加了广播操比赛,排成每行8人,每列8人的方阵,问方阵中共有多少学生?
如果去掉一行一列.还剩多少同学?
【随练3】 100名同学排成一个方阵,后来又减去一行一列,问减少了多少人?
课堂检测
【作业1】 军训的学生进行队列表演,排成了一个5行5列的正方形队列,如果去掉一行一列,要去掉多少
人?
【作业2】 晶晶用围棋子摆成一个三层空心方阵,最外一层每边有围棋子14个.晶晶摆这个方阵共用围棋
子多少个?
【作业3】 一队战士排成三层空心方阵多出16人,如果空心部分再加一层又少28人,这队战士共有多少人?
如果他们改成实心方阵,每边应有多少人?
【作业4】 校三年级学生排成一个方阵,最外一层的人数为36人,问方阵外层每边有多少人?这个方阵共
有三年级学生多少人?
【作业5】 三年级学生排成一个方阵进行体操表演,最外一层的人数为32人,问方阵外层每边有多少人?
这个方阵共有三年级学生多少人?
课后作业
【作业6】 希望小学举行运动会,全体运动员的编号是从1开始的连续整数,他们按图1中实线所示,从
第1行第1列开始,按照编号从小到大的顺序排成一个方阵。
小明的编号是28,他排在第3行第4列,则运动员共有 人。
图1第2
第1第
教学反馈。