广东省中山市普通高中2020届高考数学三轮复习冲刺模拟试题(5)
- 格式:doc
- 大小:557.00 KB
- 文档页数:15
(完整word)2020届高考冲刺高考仿真模拟卷(五)数学(理)(解析版)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word)2020届高考冲刺高考仿真模拟卷(五)数学(理)(解析版)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word)2020届高考冲刺高考仿真模拟卷(五)数学(理)(解析版)(word版可编辑修改)的全部内容。
2020高考仿真模拟卷(五)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2019·山东四校联考)已知集合A={x|log2x<1},集合B={y|y=2-x},则A∪B=( )A.(-∞,2)B.(-∞,2]C.(0,2) D.[0,+∞)答案D解析由题意得A={x|0<x〈2},B={y|y≥0},所以A∪B=[0,+∞).故选D。
2.(2019·湖南桃江一中5月模拟)复平面内表示复数z=错误!的点位于()A.第一象限B.第二象限C.第三象限D.第四象限答案A解析∵z=错误!=错误!=错误!=2+2i,∴z在复平面对应的点(2,2)在第一象限.故选A。
3.(2019·北京师范大学附中模拟三)设D为△ABC所在平面内一点,BC→=3错误!,则()A.错误!=错误!错误!+错误!错误!B.错误!=错误!错误!-错误!错误!C.错误!=错误!错误!-错误!错误!D.错误!=-错误!错误!+错误!错误!答案D解析如图,错误!=错误!+错误!=错误!+错误!错误!=错误!+错误!(错误!+错误!)=错误!错误!-错误!错误!。
中山市高考数学模拟试题五(文科)本试卷共4页,20道小题,满分150分,考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,只交答题卡,试卷请自行保管。
谢谢!一、选择题(本大题共10小题,每小题5分,共50分. 在每小题给出的四个备选项中,只有一项是符合题目要求的.) 1.若集合{}0,1,2,4A =,{}1,2,3B =,则A B =I ( )A.{}0,1,2,3,4B.{}0,4C.{}1,2D.{}32.实部为-2,虚部为1的复数所对应的点位于复平面的( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.已知向量()2,4a =r ,()1,1b =-r,则2a b -=r r ( )A.()5,7B.()5,9C.()3,7D.()3,9 4.函数1()lg(1)1f x x x=++-的定义域是( ) A .(,1)-∞- B .(1,)+∞ C .(1,1)(1,)-+∞U D .(,)-∞+∞ 5.下列函数中,定义域是R 且为增函数的是( )A.x y e -=B.y x =C.ln y x =D.y x = 6. 掷两颗均匀的骰子,则点数之和为5的概率等于( )A.118 B.19 C.16 D.1127. 设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -1≥0,x -y -1≤0,x -3y +3≥0,则z =x +2y 的最大值为()A .1B .2C .7D .8 8.设a 、b 是实数,则“a b >”是“22a b >”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 9.已知函数()26log f x x x=-,在下列区间中,包含()f x 零点的区间是( )A.()0,1B.()1,2C.()2,4D.()4,+∞ 10.根据如下样本数据ˆybx a =+A .0,0a b >< B. 0,0a b >> C. 0,0a b << D.0,0a b <>二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卡相应横线上)11.在平面直角坐标系中,曲线2:1x C y ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数)的普通方程为___________.12.在ABC ∆中,1a =,2b =,1cos 4C =,则c = 13. 直线12y x b =+是曲线ln (0)y x x =>的一条切线,则实数b 的值为 .14.若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =________时{}n a 的前n 项和最大.三、解答题(本大题共6小题,共80分,解答须写出文字说明、证明过程和演算步骤.)15. (本题满分12分)函数()3sin 26f x x π⎛⎫=+ ⎪⎝⎭的部分图象如图所示.(1)写出()f x 的最小正周期及图中0x 、0y 的值;(2)求()f x 在区间,212ππ⎡⎤--⎢⎥⎣⎦上的最大值和最小值.16. (本题满分13分)某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:(,),(,),(,),(,),(,),(,),(,),(,),a b a b a b a b a b a b a b a b r rr r r(,),(,),(,),(,),(,),(,),(,)a b a b a b a b a b a b a b r r r rr r其中,a a r分别表示甲组研发成功和失败;,b b r 分别表示乙组研发成功和失败.(I )若某组成功研发一种新产品,则给改组记1分,否则记0分,试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;(II )若该企业安排甲、乙两组各自研发一种新产品,试估算恰有一组研发成功的概率.17. (本题满分13分)如图所示的正方体1111ABCD A B C D 棱长为2,解答下列问题:(1)求三棱锥1B ABC -的表面积; (2)证明直线1BD 与平面1AB C 垂直。
中山市2020届高三高考模拟试题(文科数学)本试卷分为第I 卷(选择题)和第II 卷(必考题和选考题两部分)两部分. 一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知全集R U =,102x A xx⎧+⎫=≥⎨⎬-⎭⎩,}{0<=nx l x B ,则A B =U A.}{12x x -≤≤ B.}{21<≤-x x C .}{1x 2x x <-≥或 D .}{20<<x x 2.已知复数(,,0)Z a bi a b R ab =+∈≠且,若(12)Z i -为实数,则ba= A.2 B.-2 C.-12 D.123.设1132113,,ln 23a b c π⎛⎫⎛⎫⎛⎫=== ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,则 A.c a b << B. c b a << C. a b c << D. b a c <<4.已知抛物线22(0)y px p =>的准线与椭圆22146x y +=相切,则p 的值为A .2B .3C .4D .5 5.已知()3cos 24απ-=,(,0)2απ∈-,则sin 2α的值为A .38B .38-C .378D .378-6.“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的 几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如下左图,图中四边形是为体现其直观性所作的辅助线.当其正视图和侧视图完全相同时,它的正视图和俯视图分别可能是A.a,bB.a,cC.c,bD.b,d7.已知ABC ∆中,060,A D ∠=为AC 上一点,且3,BD AC AD AC AB =⋅=⋅u u u r u u u r u u u r u u u r,则AD AB ⋅=u u u r u u u rA .1B .2C .4D .38.若下框图所给的程序运行结果为35S =,那么判断框中应填入的关于k 的条件是A .7k =B .6k ≤C .6k <D .6k >9. 已知函数)20(sin 2sin cos 2cos )(πϕϕϕ<<-=x x x f 的图象的一个对称中心为(6π,0),则下列说法不正确的是 A .直线π125=x 是函数)(x f 的图象的一条对称轴B .函数)(x f 在]6,0[π上单调递减C .函数)(x f 的图象向右平移6π个单位可得到x y 2cos =的图D . 函数()f x 在[0,]2π的最小值为1-10.函数1ln 1ln xy x+=-的图像大致为.11.过双曲线22221x y a b-=(0a >,0b >)的一个焦点F 作一条渐近线的垂线,垂足为点A ,与另一条渐近线交于点B ,若F 2F B =A u u u r u u u r,则此双曲线的离心率为A .2B .3C .2D .512. 函数()[]f x x x =-(函数[]y x =的函数值表示不超过x 的最大整数,如[]3.64-=-,[]2.12=),设函数()()()lg (0)sin (20)f x xx g x f x xx π+>⎧⎪=⎨--<<⎪⎩,则函数()y g x =的零点的个数为A . 11B .10C . 12D . 13 二、填空题:本大题共4小题,每小题5分,共20分。
广东省中山市2019-2020学年高考第三次模拟数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知定义在R 上的函数||()21x m f x -=-(m 为实数)为偶函数,记()0.5log 3a f =,()2log 5b f =,(2)c f m =+则a ,b ,c 的大小关系为( )A .a b c <<B .a c b <<C .c a b <<D .c b a <<【答案】B 【解析】 【分析】根据f (x )为偶函数便可求出m =0,从而f (x )=2x ﹣1,根据此函数的奇偶性与单调性即可作出判断. 【详解】解:∵f (x )为偶函数; ∴f (﹣x )=f (x ); ∴2x m --﹣1=2x m -﹣1; ∴|﹣x ﹣m|=|x ﹣m|; (﹣x ﹣m )2=(x ﹣m )2; ∴mx =0; ∴m =0;∴f (x )=2x ﹣1;∴f (x )在[0,+∞)上单调递增,并且a =f (|0.5log 3|)=f (2log 3), b =f (2log 5),c =f (2); ∵0<2log 3<2<2log 5; ∴a<c<b . 故选B . 【点睛】本题考查偶函数的定义,指数函数的单调性,对于偶函数比较函数值大小的方法就是将自变量的值变到区间[0,+∞)上,根据单调性去比较函数值大小.2.复数z 满足()12(i i z +=为虚数单位),则z 的虚部为( ) A .i B .i -C .1-D .1【答案】C 【解析】【分析】21iz =+,分子分母同乘以分母的共轭复数即可. 【详解】 由已知,22(1i)1i 1i (1i)(1i)z -===-++-,故z 的虚部为1-. 故选:C. 【点睛】本题考查复数的除法运算,考查学生的基本运算能力,是一道基础题. 3.函数f(x)=sin(wx +φ)(w >0,φ<2π)的最小正周期是π,若将该函数的图象向右平移6π个单位后得到的函数图象关于直线x =2π对称,则函数f(x)的解析式为( ) A .f(x)=sin(2x +3π) B .f(x)=sin(2x -3π) C .f(x)=sin(2x +6π) D .f(x)=sin(2x -6π) 【答案】D 【解析】 【分析】由函数的周期求得2w =,再由平移后的函数图像关于直线2x π=对称,得到223ππϕ⨯+-2k ππ=+,由此求得满足条件的ϕ的值,即可求得答案. 【详解】分析:由函数的周期求得ω2=,再由平移后的函数图像关于直线πx 2=对称,得到πππ2φk π232⨯+-=+,由此求得满足条件的φ的值,即可求得答案. 详解:因为函数()()f x sin ωx φ=+的最小正周期是π,所以2ππω=,解得ω2=,所以()()f x sin 2x φ=+, 将该函数的图像向右平移π6个单位后,得到图像所对应的函数解析式为ππy sin 2x φsin 2x φ63⎡⎤⎛⎫⎛⎫=-+=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 由此函数图像关于直线πx 2=对称,得: πππ2φk π232⨯+-=+,即πφk π,k Z 6=-∈,取k 0=,得πφ6=-,满足πφ2<,所以函数()f x 的解析式为()πf x sin 2x 6⎛⎫=- ⎪⎝⎭,故选D. 【点睛】本题主要考查了三角函数的图象变换,以及函数的解析式的求解,其中解答中根据三角函数的图象变换得到sin(2)3y x πϕ=+-,再根据三角函数的性质求解是解答的关键,着重考查了推理与运算能力.4.若()f x 是定义域为R 的奇函数,且()()2f x f x +=-,则 A .()f x 的值域为RB .()f x 为周期函数,且6为其一个周期C .()f x 的图像关于2x =对称D .函数()f x 的零点有无穷多个【答案】D 【解析】 【分析】运用函数的奇偶性定义,周期性定义,根据表达式判断即可. 【详解】()f x 是定义域为R 的奇函数,则()()f x f x -=-,(0)0f =,又(2)()f x f x +=-,(4)(2)()f x f x f x +=-+=, 即()f x 是以4为周期的函数,(4)(0)0()f k f k Z ==∈, 所以函数()f x 的零点有无穷多个;因为(2)()f x f x +=-,[(1)1]()f x f x ++=-,令1t x =+,则(1)(1)f t f t +=-, 即(1)(1)f x f x +=-,所以()f x 的图象关于1x =对称, 由题意无法求出()f x 的值域, 所以本题答案为D. 【点睛】本题综合考查了函数的性质,主要是抽象函数的性质,运用数学式子判断得出结论是关键.5.已知双曲线的中心在原点且一个焦点为F ,直线1y x =-与其相交于M ,N 两点,若MN 中点的横坐标为23-,则此双曲线的方程是 A .22134x y -= B .22143x y -= C .22152x y -=D .22125x y -=【答案】D【解析】 【分析】 根据点差法得2225a b=,再根据焦点坐标得227a b +=,解方程组得22a =,25b =,即得结果. 【详解】设双曲线的方程为22221(0,0)x y a b a b-=>>,由题意可得227a b +=,设()11,M x y ,()22,N x y ,则MN的中点为25,33⎛⎫-- ⎪⎝⎭,由2211221x y a b -=且2222221x y a b-=,得()()12122x x x x a +-= ()()12122y y y y b +-,2223a ⨯-=() 2523b ⨯-(),即2225a b=,联立227a b +=,解得22a =,25b =,故所求双曲线的方程为22125x y -=.故选D . 【点睛】本题主要考查利用点差法求双曲线标准方程,考查基本求解能力,属于中档题.6.若双曲线()22210x y a a-=>的一条渐近线与圆()2222x y +-=至多有一个交点,则双曲线的离心率的取值范围是( ) A.)+∞ B .[)2,+∞C.(D .(]1,2【答案】C 【解析】 【分析】求得双曲线的渐近线方程,可得圆心()0,2到渐近线的距离d ≥,由点到直线的距离公式可得a 的范围,再由离心率公式计算即可得到所求范围. 【详解】双曲线()22210x y a a-=>的一条渐近线为1y x a =,即0x ay -=,由题意知,直线0x ay -=与圆()2222x y +-=相切或相离,则d =≥,解得1a ≥,因此,双曲线的离心率(c e a ==.故选:C. 【点睛】本题考查双曲线的离心率的范围,注意运用圆心到渐近线的距离不小于半径,考查化简整理的运算能力,属于中档题.7.已知双曲线221x y a+=的一条渐近线倾斜角为56π,则a =( )A .3B .3-C .3-D .3-【答案】D 【解析】 【分析】由双曲线方程可得渐近线方程,根据倾斜角可得渐近线斜率,由此构造方程求得结果. 【详解】由双曲线方程可知:0a <,渐近线方程为:y x a=±-, Q 一条渐近线的倾斜角为56π,53tan 6aπ∴-==--,解得:3a =-. 故选:D . 【点睛】本题考查根据双曲线渐近线倾斜角求解参数值的问题,关键是明确直线倾斜角与斜率的关系;易错点是忽略方程表示双曲线对于a 的范围的要求. 8.抛物线的焦点是双曲线的右焦点,点是曲线的交点,点在抛物线的准线上,是以点为直角顶点的等腰直角三角形,则双曲线的离心率为( )A .B .C .D .【答案】A 【解析】 【分析】先由题和抛物线的性质求得点P 的坐标和双曲线的半焦距c 的值,再利用双曲线的定义可求得a 的值,即可求得离心率. 【详解】由题意知,抛物线焦点,准线与x 轴交点,双曲线半焦距,设点是以点为直角顶点的等腰直角三角形,即,结合点在抛物线上, 所以抛物线的准线,从而轴,所以,即故双曲线的离心率为故选A 【点睛】本题考查了圆锥曲线综合,分析题目,画出图像,熟悉抛物线性质以及双曲线的定义是解题的关键,属于中档题.9.设复数z 满足21z i z -=+,z 在复平面内对应的点为(,)x y ,则( ) A .2430x y --= B .2430x y +-= C .4230x y +-= D .2430x y -+=【答案】B 【解析】 【分析】设z x yi =+,根据复数的几何意义得到x 、y 的关系式,即可得解; 【详解】 解:设z x yi =+∵|2||1|z i z -=+,∴2222(2)(1)x y x y +-=++,解得2430x y +-=. 故选:B 【点睛】本题考查复数的几何意义的应用,属于基础题.10.已知集合{2,0,1,3}A =-,{53}B x x =<<,则集合A B I 子集的个数为( ) A .4 B .8C .16D .32【答案】B 【解析】 【分析】首先求出A B I ,再根据含有n 个元素的集合有2n 个子集,计算可得. 【详解】解:{2,0,1,3}A =-Q ,{53}B x x =<<,{2,0,1}A B ∴=-I ,A B ∴I 子集的个数为328=.考查列举法、描述法的定义,以及交集的运算,集合子集个数的计算公式,属于基础题.11.过抛物线C 的焦点且与C 的对称轴垂直的直线l 与C 交于A ,B 两点,||4AB =,P 为C 的准线上的一点,则ABP ∆的面积为( ) A .1 B .2 C .4 D .8【答案】C 【解析】 【分析】设抛物线的解析式22(0)y px p =>,得焦点为,02p F ⎛⎫⎪⎝⎭,对称轴为x 轴,准线为2p x =-,这样可设A点坐标为,22p ⎛⎫⎪⎝⎭,代入抛物线方程可求得p ,而P 到直线AB 的距离为p ,从而可求得三角形面积. 【详解】设抛物线的解析式22(0)y px p =>, 则焦点为,02p F ⎛⎫⎪⎝⎭,对称轴为x 轴,准线为2p x =-,∵ 直线l 经过抛物线的焦点,A ,B 是l 与C 的交点, 又AB x ⊥轴,∴可设A 点坐标为,22p ⎛⎫⎪⎝⎭, 代入22y px =,解得2p =,又∵点P 在准线上,设过点P 的AB 的垂线与AB 交于点D ,||222p pDP p =+-==, ∴11||||24422ABP S DP AB ∆=⋅=⨯⨯=. 故应选C. 【点睛】本题考查抛物线的性质,解题时只要设出抛物线的标准方程,就能得出A 点坐标,从而求得参数p 的值.本题难度一般.12.在ABC V 中,点P 为BC 中点,过点P 的直线与AB ,AC 所在直线分别交于点M ,N ,若AM AB λ=u u u u r u u u r ,(0,0)AN AC μλμ=>>u u ur u u u r ,则λμ+的最小值为( )A .54B .2C .3D .72【分析】由M ,P ,N 三点共线,可得11122λμ+=,转化11()22λμλμλμ⎛⎫+=++ ⎪⎝⎭,利用均值不等式,即得解. 【详解】因为点P 为BC 中点,所以1122AP AB AC =+u u u r u u u r u u u r,又因为AM AB λ=u u u u r u u u r ,AN AC μ=u u ur u u u r ,所以1122AP AM AN λμ=+u u u r u u u ur u u u r . 因为M ,P ,N 三点共线,所以11122λμ+=,所以111111()12222222λμλμλμλμμλ⎛⎫⎛⎫+=++=++++⨯=⎪ ⎪⎝⎭⎝⎭…, 当且仅当,11122λμμλλμ⎧=⎪⎪⎨⎪+=⎪⎩即1λμ==时等号成立,所以λμ+的最小值为1. 故选:B 【点睛】本题考查了三点共线的向量表示和利用均值不等式求最值,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。
高考冲刺2020年新高考数学全真模拟演练(五)数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.1.已知集合2{|10}A x x =-=,2{|230}B x x x =--<.则A B =I ( )A .{1,1}-B .{1}C .[1,1]-D .[1,3]- 2.已知复数3z i =-,则||z =( ) A .1B .2C .3D .2 3.设x ∈R ,则“38x >”是“2x >” 的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( )A .138B .135C .95D .235.如图所示,过ABC V 的重心G 作一直线分别交AB AC ,于点D E ,.若(0)AD x AB AE y AC xy ==≠u u u v u u u v u u u v u u u v ,,则11x y+=()A .4B .3C .2D .16.函数()sin()x x f x e e -=+的图象大致为( )A .B .C .D .7.在高中阶段,我们学习的数学教材有必修1~5,选修2系列3册,选修4系列2册,某天晚自习小明准备从上述书中随机取两册进行复习,则他今晚复习的两本均是必修教材的概率是( )A .13B .29C .59D .158.如图,已知BD 是圆O 的直径,A ,C 在圆上且分别在BD 的两侧,其中2BD =,AB CD =.现将其沿BD 折起使得二面角A BD C --为直二面角,则下列说法不正确的是( )A .A ,B ,C ,D 在同一个球面上B .当AC BD ⊥时,三棱锥A BCD -的体积为13C .AB 与CD 是异面直线且不垂直D .存在一个位置,使得平面ACD ⊥平面ABC二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.下列说法正确的是( )A .从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样B .某地气象局预报:5月9日本地降水概率为90%,结果这天没下雨,这表明天气预报并不科学C .在回归分析模型中,残差平方和越小,说明模型的拟合效果越好D .在回归直线方程0.110ˆyx =+中,当解释变量x 每增加1个单位时,预报变量ˆy 增加0.1个单位10.关于函数22()cos sin 1f x x x =-+,下列说法正确的是( )A .函数()f x 以π为周期且在()2k x k Z π=∈处取得最大值 B .函数()f x 以2π为周期且在区间,42ππ⎛⎫ ⎪⎝⎭单调递增 C .函数()f x 是偶函数且在区间,42ππ⎛⎫⎪⎝⎭单调递减 D .将()f x 的图像向右平移1个单位得到()|cos(21)|1g x x =-+11.已知函数229,1()4,1x ax x f x x a x x ⎧-+≤⎪=⎨++>⎪⎩,若()f x 的最小值为(1)f ,则实数a 的值可以是( ) A .1 B .2 C .3 D .412.在平面直角坐标系xOy 中,抛物线2:2C y px =(0)p >的焦点为F ,准线为l.设l 与x 轴的交点为K ,P 为C 上异于O 的任意一点,P 在l 上的射影为E ,EPF ∠的外角平分线交x 轴于点Q ,过Q 作QN PE ⊥交EP 的延长线于N ,作QM PF ⊥交线段PF 于点M ,则( )A .||||PE PF =B .||||PF QF =C .||||PN MF =D .||||PN KF =三、填空题:本题共4小题,每小题5分,共20分.13.函数()1xe f x x =+的图象在点()()0,0f 处的切线方程是_______________. 14.定义运算a bad bc c d =-,若1cos 7α=,sin sin 33cos cos αβαβ=,02πβα<<<,则β=__________. 15.在代数式721x x ⎛⎫- ⎪⎝⎭的展开式中,一次项的系数是_____.(用数字作答)16.已知1F ,2F 分别为双曲线221927x y C -=:的左、右焦点,点A C ∈,点M 的坐标为()2,0,AM 为12F AF ∠的角平分线,则2AF =_______四、解答题:本小题共6小题,共70分。
2020年广东省第三次高考模拟考试理科数学试题与答案(满分150分,考试时间120分钟)注意事项:1.答题前,考生务必将自己的姓名、准考证号码填写在答题卡和试卷指定位置上,并将条形码准确粘贴在条形码区域内。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合{}{}22|22,|log A x Z x B x y x =∈-<<==,则AB =( )A .{}1,1-B .{}1,0,1-C .{}1D .{}0,12. 复数z 满足(1)|1|z +=+,则z 等于( )A .1B .1C .12D 12i -3. 已知实数,满足约束条件,则的最大值为( )A.B.C. D. 24. 在由直线,和轴围成的三角形内任取一点,记事件为,为,则( )A.B. C. D.5. 《孙子算经》是我国古代的数学名著,书中有如下问题:“今有五等诸侯,共分橘子六十颗,人别加三颗.问: 五人各得几何?”其意思为: 有5个人分60个橘子,他们分得的橘子数成公差为3的等差数列,问5人各得多少个橘子.这个问题中,得到橘子最多的人所得的橘子个数是( ) A. 15B. 16C. 18D. 216. 某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4为朋友,每位朋友1本,则不同的赠送方法共有( )A. 4种B. 10种C. 18种D. 20种7. 若1x 是方程4xxe =的解,2x 是方程ln 4x x =的解,则12x x +等于( ) A .4B .2C .eD .18. 已知函数()2()12sin 06f x x πωω⎛⎫=-+> ⎪⎝⎭在区间,62ππ⎡⎤⎢⎥⎣⎦为单调递减函数,则ω的最大值是( ) A .12 B .35 C .23 D .349. 已知三棱锥的底面是以为斜边的等腰直角三角形,且,则该三棱锥的外接球的表面积为 A.B.C.D.10. 函数的图象大致是( )A. B. C. D.11.已知函数a x ax e ex f +--+=)(,若c b a ==3log 3,则( )A.)(a f <)(b f <)(c fB.)(b f <)(c f <)(a fC.)(a f <)(c f <)(b fD.)(c f <)(b f <)(a f12.已知函数1,)21(1,2542{)(≤>-+-=x x x x x x f ,若函数()()g x f x mx m =--的图象与x 轴的交点个数不少于2个,则实数m 的取值范围为( )A.1,64⎡⎢⎣ B.1,64⎡⎢⎣C .][1,2ln2,64⎛-∞-⋃ ⎝ D .][1,2ln2,64e ⎛-∞-⋃ ⎝ 二、填空题:本题共4小题,每小题5分,共20分。
高考数学三轮复习冲刺模拟试题04三角函数01一、选择题1 .若f (x )a sin x b =+(a ,b 为常数)的最大值是5,最小值是-1,则ab 的值为 ( )A .、23-B .、23或23- C .、 32-D .、322 .边长为的三角形的最大角与最小角的和是( )( )A .B .C .D .3 .在钝角△ABC 中,已知AB=3, AC=1,∠B=30°,则△ABC 的面积是( )A .23 B .43 C .23 D .43 4 .设函数f(x)=Asin(ϕω+x )(A>0,ω>0,-2π<ϕ<2π)的图象关于直线x=32π对称,且周期为π,则f(x) ( )A .图象过点(0,21) B .最大值为-AC .图象关于(π,0)对称D .在[125π,32π]上是减函数 5 .设ω>0,函数y=sin(ωx+3π)+2的图像向右平移34π个单位后与原图像重合,则ω的最小值是( )A .23B .43C .32D .36 .已知21)4tan(=+απ,则ααα2cos 1cos 2sin 2+-的值为( )7 .为了得到函数x x x y2cos 21cos sin 3+=的图象,只需将函数x y 2sin =的图象( )A .向左平移12π个长度单位 B .向右平移12π个长度单位 A .35-B .56-C .-1D .2C .向左平移6π个长度单位 D .向右平移6π个长度单位 8 .在ABC ∆中,角,,A B C 所对边长分别为,,a b c ,若2222a b c +=,则cos C 的最小值为 ( )A .2B .2C .12D .12-9 .在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,,,且1+2cos(B+C)=0,则BC 边上的高等于 ( )A B C .2D .210.把函数=()y sin x x R ∈的图象上所有的点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是 ( )A .=(2-),R 3y sin x x π∈ B .=(+),R 26x y sin x π∈C .=(2+),R 3y sin x x π∈D . 2=(2+),R 3y sin x x π∈11.在∆ABC 中,A,B,C 为内角,且sin cos sin cos A A B B =,则∆ABC 是( ) A .等腰三角形 B .直角三角形C .等腰直角三角形D .等腰或直角三角形12.设函数sin()3y x π=+(x ∈R),则f(x)( )A .在区间[-π,2π-]上是减函数 B .在区间27[,]36ππ上是增函数 C .在区间[8π,4π]上是增函数 D .在区间5[,]36ππ上是减函数13.函数f(x)=sin2x-4sin 3xcosx(x ∈R)的最小正周期为( )A .8π B .4π C .2π D .π14.把函数sin(2)4yx π=+的图象向右平移8π个单位,再把所得图象上各点的横坐标缩短到原来的一半,则所得图象对应的函数解析式是 ( )A .y=sin (4x+83π) B .y=sin (4x+8π) C . y=sin4x D .y=sinx15.函数ln cos y x =⎪⎭⎫ ⎝⎛<<-22ππx 的图象是16.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,其中120,1A b ==o,且ABC ∆面积为3则sin sin a bA B+=+( )A 21B .2393C .21D .2717.函数2()322sin f x x x =-,(02x π≤≤)则函数f(x)的最小值为( )A .1B .-2C .√3D .-√318.在∆ABC 中,tanA 是以-4为第三项,4为第七项的等差数列的公差,tanB 是以13为第三项,9为第六项的等比数列的公比,则这个三角形是 ( )A .钝角三角形B .锐角三角形C .等腰直角三角形D .以上都不对19.△ABC 的三个内角C B A ,,所对的边分别为c b a ,,,a A b B A a 2cos sin sin 2=+,则=ab( )A .32B .22C .3D .220.将函数⎪⎭⎫⎝⎛+=42sin 2)(πx x f 的图像向右平移)0(>ϕϕ个单位,再将图像上每一点横坐标缩短到原来的21倍,所得图像关于直线4π=x 对称,则ϕ的最小正值为 ( )A .8πB .83πC .43πD .2π二、填空题 21.已知函数,给出下列四个说法: ①若,则; ②的最小正周期是;③在区间上是增函数; ④的图象关于直线对称.其中正确说法的序号是______.22.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若222+=2012a b c ,则(+)tan A tan BtanC tan A tan B g 的值为 ;23.函数()=(+)(,,f x Asin x A ωϕωϕ为常数,A>0, ω>0)的部分图象如图所示,则f (0)的值是 ;24.函数()sin(2)3f x x π=-(x ∈R)的图象为C,以下结论中:①图象C 关于直线1112x π=对称;②图象C 关于点2(,0)3π对称;③函数f(x)在区间5(,)1212ππ-内是增函数;④由3sin 2y x =的图象向右平移3π个单位长度可以得到图象C.则正确的是 .(写出所有正确结论的编号)25.已知3sin cos 8x x =,且(,)42x ππ∈,则cos sin x x -=_________. 26.在△ABC 中,若sinA=2sinBcosC 则△ABC 的形状为________。
广东省中山市2019-2020学年高考数学三月模拟试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.要得到函数2sin 2y x x =-的图像,只需把函数sin 22y x x =-的图像( )A .向左平移2π个单位 B .向左平移712π个单位 C .向右平移12π个单位D .向右平移3π个单位 【答案】A 【解析】 【分析】运用辅助角公式将两个函数公式进行变形得2sin 23y x π⎛⎫=--⎪⎝⎭以及2sin 23y x π⎛⎫=-⎪⎝⎭,按四个选项分别对2sin 23y x π⎛⎫=- ⎪⎝⎭变形,整理后与2sin 23y x π⎛⎫=--⎪⎝⎭对比,从而可选出正确答案. 【详解】 解:1sin 22sin 22sin 22sin 22233y x x x x x x ππ⎛⎫⎛⎫⎛⎫=-=-=-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1sin 222sin 222sin 223y x x x x x π⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭===-. 对于A :可得2sin 22sin 22sin 22333y x x x πππππ⎡⎤⎛⎫⎛⎫⎛⎫=+-=-+=-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. 故选:A. 【点睛】本题考查了三角函数图像平移变换,考查了辅助角公式.本题的易错点有两个,一个是混淆了已知函数和目标函数;二是在平移时,忘记乘了自变量前的系数.2.已知复数z 满足()1z i i =-,(i 为虚数单位),则z =( )A BC .2D .3【答案】A 【解析】()11z i i i =-=+,故z = A.3.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为 A .甲、乙、丙 B .乙、甲、丙 C .丙、乙、甲 D .甲、丙、乙【答案】A 【解析】 【分析】利用逐一验证的方法进行求解. 【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A . 【点睛】本题将数学知识与时政结合,主要考查推理判断能力.题目有一定难度,注重了基础知识、逻辑推理能力的考查.4.若函数f(x)=a |2x -4|(a>0,a≠1)满足f(1)=19,则f(x)的单调递减区间是( ) A .(-∞,2] B .[2,+∞) C .[-2,+∞) D .(-∞,-2]【答案】B 【解析】 由f(1)=得a 2=, ∴a=或a=-(舍), 即f(x)=(.由于y=|2x-4|在(-∞,2]上单调递减,在[2,+∞)上单调递增,所以f(x)在(-∞,2]上单调递增,在[2,+∞)上单调递减,故选B.5.三棱锥S ABC -中,侧棱SA ⊥底面ABC ,5AB =,8BC =,60B ∠=︒,25SA =,则该三棱锥的外接球的表面积为( ) A .643π B .2563π C .4363π D 2048327π 【答案】B 【解析】由题,侧棱SA ⊥底面ABC ,5AB =,8BC =,60B ∠=︒,则根据余弦定理可得7BC == ,ABC V的外接圆圆心2sin BC r r B ===三棱锥的外接球的球心到面ABC的距离12d SA == 则外接球的半径R ==,则该三棱锥的外接球的表面积为225643S R ππ== 点睛:本题考查的知识点是球内接多面体,熟练掌握球的半径R 公式是解答的关键. 6.复数12i2i+=-( ). A .i B .1i +C .i -D .1i -【答案】A 【解析】试题分析:12(12)(2)2422(2)(2)5i i i i i i i i i +++++-===--+,故选A. 【考点】复数运算【名师点睛】复数代数形式的四则运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式的乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化. 7.金庸先生的武侠小说《射雕英雄传》第12回中有这样一段情节,“……洪七公道:肉只五种,但猪羊混咬是一般滋味,獐牛同嚼又是一般滋味,一共有几般变化,我可算不出了”.现有五种不同的肉,任何两种(含两种)以上的肉混合后的滋味都不一样,则混合后可以组成的所有不同的滋味种数为( ) A .20 B .24 C .25 D .26【答案】D 【解析】 【分析】利用组合的意义可得混合后所有不同的滋味种数为23455555C C C C +++,再利用组合数的计算公式可得所求的种数. 【详解】混合后可以组成的所有不同的滋味种数为23455555205126C C C C +++=++=(种),故选:D. 【点睛】本题考查组合的应用,此类问题注意实际问题的合理转化,本题属于容易题. 8.下列命题中,真命题的个数为( )①命题“若1122a b <++,则a b >”的否命题; ②命题“若21x y +>,则0x >或0y >”;③命题“若2m =,则直线0x my -=与直线2410x y -+=平行”的逆命题. A .0 B .1C .2D .3【答案】C 【解析】 【分析】否命题与逆命题是等价命题,写出①的逆命题,举反例排除;原命题与逆否命题是等价命题,写出②的逆否命题后,利用指数函数单调性验证正确;写出③的逆命题判,利用两直线平行的条件容易判断③正确. 【详解】①的逆命题为“若a b >,则1122a b <++”, 令1a =-,3b =-可知该命题为假命题,故否命题也为假命题;②的逆否命题为“若0x ≤且0y ≤,则21x y +≤”,该命题为真命题,故②为真命题; ③的逆命题为“若直线0x my -=与直线2410x y -+=平行,则2m =”,该命题为真命题. 故选:C. 【点睛】本题考查判断命题真假. 判断命题真假的思路:(1)判断一个命题的真假时,首先要弄清命题的结构,即它的条件和结论分别是什么,然后联系其他相关的知识进行判断.(2)当一个命题改写成“若p ,则q ”的形式之后,判断这个命题真假的方法:①若由“p ”经过逻辑推理,得出“q ”,则可判定“若p ,则q ”是真命题;②判定“若p ,则q ”是假命题,只需举一反例即可.9.5(12)(1)x x ++的展开式中2x 的系数为( ) A .5 B .10 C .20 D .30【答案】C 【解析】 【分析】由5(12)(1)x x ++=5(1)x +52(1)x x ++知,展开式中2x 项有两项,一项是5(1)x +中的2x 项,另一项是2x与5(1)x +中含x 的项乘积构成.由已知,5(12)(1)x x ++=5(1)x +52(1)x x ++,因为5(1)x +展开式的通项为5rrC x ,所以展开式中2x 的系数为2155220C C +=. 故选:C. 【点睛】本题考查求二项式定理展开式中的特定项,解决这类问题要注意通项公式应写准确,本题是一道基础题. 10.若()12nx -的二项展开式中2x 的系数是40,则正整数n 的值为( ) A .4 B .5 C .6 D .7【答案】B 【解析】 【分析】先化简()12n x -的二项展开式中第1r +项()112rrn r r n T C x -+=⋅⋅-,然后直接求解即可【详解】()12nx -的二项展开式中第1r +项()112r r n r r n T C x -+=⋅⋅-.令2r =,则()2232n T C x =⋅-,∴2440n C =,∴4n =-(舍)或5n =. 【点睛】本题考查二项展开式问题,属于基础题11.框图与程序是解决数学问题的重要手段,实际生活中的一些问题在抽象为数学模型之后,可以制作框图,编写程序,得到解决,例如,为了计算一组数据的方差,设计了如图所示的程序框图,其中输入115x =,216x =,318x =,420x =,522x =,624x =,725x =,则图中空白框中应填入( )A .6i >,7SS =B .6i …7SS = C .6i >,7S S = D .6i …,7S S =【分析】 依题意问题是()()()22212712020207S x x x ⎡⎤=-+-+⋯+-⎣⎦,然后按直到型验证即可. 【详解】根据题意为了计算7个数的方差,即输出的()()()22212712020207S x x x ⎡⎤=-+-+⋯+-⎣⎦, 观察程序框图可知,应填入6i >,7SS =, 故选:A. 【点睛】本题考查算法与程序框图,考查推理论证能力以及转化与化归思想,属于基础题.12.已知椭圆()222210x y a b a b +=>>的右焦点为F ,左顶点为A ,点P 椭圆上,且PF AF ⊥,若1tan 2PAF ∠=,则椭圆的离心率e 为( ) A .14B .13C .12D .23【答案】C 【解析】 【分析】不妨设P 在第一象限,故2,b P c a ⎛⎫ ⎪⎝⎭,根据1tan 2PAF ∠=得到2120e e --=,解得答案.【详解】不妨设P 在第一象限,故2,b P c a ⎛⎫⎪⎝⎭,21tan 2b aPAF a c ∠==+,即2220a ac c --=, 即2120e e --=,解得12e =,1e =-(舍去).故选:C . 【点睛】本题考查了椭圆的离心率,意在考查学生的计算能力. 二、填空题:本题共4小题,每小题5分,共20分。
高考数学三轮复习冲刺模拟试题05三角函数02三、解答题 1. 已知函数.(1)求函数图象的对称轴方程; (2)求的单调增区间.(3)当时,求函数的最大值,最小值.2. 如图,在平面直角坐标系中,以轴为始边作两个锐角,它们的终边分别与单位圆交于两点.已知的横坐标分别为.(1)求的值;(2)求的值.3.设函数22()(sin cos )2cos (0)f x x x x ωωωω=++>的最小正周期为23π. (Ⅰ)求ω的值; (Ⅱ)求()f x 在区间-63ππ⎡⎤⎢⎥⎣⎦,上的值域; (Ⅲ)若函数()y g x =的图像是由()y f x =的图像向右平移2π个单位长度得到,求()y g x =的单调增区间.4.在△ABC 中,a,b,c 分别为角A,B,C 的对边,A 为锐角,已知向量→p =(1,3cos 2A ),→q =(2sin 2A,1-cos2A),且→p ∥→q .(1)若a 2-c 2=b 2-mbc,求实数m 的值;(2)若a=3,求△ABC 面积的最大值,以及面积最大是边b,c 的大小.5.设函数22()cos()2cos ,32xf x x x R π=++∈.(Ⅰ) 求()f x 的值域;(Ⅱ) 记△ABC 的内角A 、B 、C 的对边长分别为a 、b 、c,若()1f B =,1b =,c =求a 的值.6.已知向量⎪⎭⎫⎝⎛-=-=21,cos 3),1,(sin x b x a ,函数()x f +=)(·2-a (1)求函数)(x f 的最小正周期T 及单调减区间(2)已知c b a ,,分别是△ABC 内角A,B,C 的对边,其中A 为锐角,4,32==c a 且1)(=A f ,求A,b 和△ABC 的面积S7.已知函数1sin cos )2sin sin 32()(2+⋅-=xx x x x f .(Ⅰ)求()f x 的定义域及最小正周期; (Ⅱ)求()f x 在区间[,]42ππ上的最值.8. (本小题满分13分)在△ABC 中,A ,C 为锐角,角A ,B ,C 所对应的边分别为a ,b ,c ,且32=,5cos A sinC 。
(1)求(+)cos A C 的值;(2)若-a c ,求a ,b ,c 的值; (3)已知(++)=2tan A C α,求212+sin cos cos ααα的值。
9.(本小题满分13分,已知函数2((2-)+2(-)(R)612f x x sin x x ππ∈(1)求函数()f x 的最小正周期; (2)求使函数()f x 取得最大值的x 集合; (3)若(0,)2πθ∈,且5()=3f θ,求4cos θ的值。
10.已知函数f(x)=2cosxsin(x+π/3)-3sin 2x+snxcosx(1)求函数f(x)的单调递减区间;(2)将函数f(x)的图象沿水平方向平移m 个单位后的图象关于直线x=π/2对称,求m 的最小正值.11.已知A(cos α,sin α),B(cos β,sin β),且5|AB|=2,(1)求cos(α-β)的值;(2)设α∈(0,π/2),β∈(-π/2,0),且cos(5π/2-β)=-5/13,求sin α的值.12.已知函数f (x )=sin ⎪⎭⎫ ⎝⎛+47πx +cos ⎪⎭⎫⎝⎛-43πx ,x ∈R(共12分) (1)求f (x )的最小正周期和最小值;(6分) (2) 已知cos (β-α )=54,cos (β+α )= -54,0<α<β≤2π,求证:[f (β)] 2-2=0.(6分)13.在△ABC 中,A ,B 为锐角,角A ,B ,C 所对应的边分别为a ,b ,c ,且cos2a=53,sinB=1010(共12分)(1)求A+B 的值;(7分)(2)若a-b=2-1,求a ,b ,c 的值。
(5分)14.已知函数22()sin cos 3cos f x x x x x =++,x R ∈.求:(I) 求函数()f x 的最小正周期和单调递增区间; (II) 求函数()f x 在区间[,]63ππ-上的值域.15.在△ABC 中,2AB AC AB AC ⋅=-=u u u r u u u r u u u r u u u r ;(1)求:AB 2+AC 2的值;(2)当△ABC 的面积最大时,求A的大小.16.已知函数2()sin sin()2f x x x x π=⋅+,R x ∈(1)求函数)(x f 的最小正周期; (2)若⎥⎦⎤⎢⎣⎡-∈2,12ππx ,求函数)(x f 的值域17.已知函数f (x )=-1+23sin x cos x +2cos 2x .(1)求f (x )的单调递减区间;(2)求f (x )图象上与原点最近的对称中心的坐标;(3)若角α,β的终边不共线,且f (α)=f (β),求tan(α+β)的值.18.(本小题满分13分)已知函数)(1cos 2)62sin()(2R x x x x f ∈-+-=π(1)求)(x f 的单调递增区间;(2)在△ABC 中,三内角A,B,C 的对边分别为a,b,c ,已知21)(=A f ,b,a,c 成等差数列,且9=⋅AC AB ,求a 的值.参考答案三、解答题1.解:(I). …3分令.∴函数图象的对称轴方程是……5分(II)故的单调增区间为…8分(III) , …… 10分. …… 11分当时,函数的最大值为1,最小值为. … 13分2. 解:(Ⅰ)由已知得:.∵为锐角∴.∴.∴.--------------------6分3.1 4.(5.解,解得1=a 或2.6.解所以,单调减区间为)(],32,62[Z k k k ∈+-ππππ(2)⎪⎭⎫ ⎝⎛-∈-⎪⎭⎫⎝⎛∈=⎪⎭⎫⎝⎛-=65,662,2,0,162sin )(πππππA A A A f Θ, 3,262πππ==-∴A A ,由A bc c b a cos 2222-+=得0442=+-b b ,解得2=b 故32sin 21==A bc S 7.解:(Ⅰ)由sin 0x ≠得πx k ≠(k ∈Z),故()f x 的定义域为{x ∈R |π,x k ≠k ∈Z}.…………………2分因为1sin cos )2sin sin 32()(2+⋅-=xxx x x f2cos )cos 1x x x =-⋅+2cos 2x x =-π2sin(2)6x =-,………………………………6分所以()f x 的最小正周期2ππ2T ==.…………………7分 (II )由 5[,],2[,],2[,],422636x x x πππππππ挝-?…………..9分 当52,,()1662x x f x πππ-==即时取得最小值,…………….11分 当2,,()2623x x f x πππ-==即时取得最大值.……………….13分8.9.10.xxxcxxxf cossinsin3)cos23sin21(cos2)(2+-+=12. (1)f(x)=sinxcos4+cosxsin 4+cosxcos 4+sinxsin 41分=22sinx-22cosx-22cosx+22sinx1分=2sinx-2cosx1分=2sin(x-4π) 1分∴T=2π1分 f m in (x )=-21分(2)[f (β)] 2-2=4sin 2(β-4π)-2=4·2)22cos(1πβ---2=-2sin β 2分 Sin2β=sin[(β+α)+(β-α)]1分cos2β=-54×54-259=-1∵0<α+β<π ∴sin(α+β)=531分0<β-α<2π∴sin(β-α)=531分 ∴sin2β=53×54+(-54)×53=01分13. (1)cos2A=2cos 2A-1=53∴cos 2A=54∵A 锐角,∴cosA=552 1分sinA=551分sinB=1010 B 锐角 cosB=10103 1分cos (A+B )=552·10103-55·1010=50505=22∴A+B=4π2分(2)∵b a =B Asin sin =101055=2∴⎪⎩⎪⎨⎧-=-=122b a b a 1分 ==>b=1 1分a=21分 C=43π1分c 2=a 2+b 2-2abcosC=5 ∴c=514. 【解】(I): 1cos 23(1cos 2)()3sin 222x x f x x -+=++23sin 2cos 2x x =++2sin(2)26x π=++∴最小正周期22T ππ==,∵222,262k x k k Z πππππ-+≤+≤+∈时()f x 为单调递增函数∴()f x 的单调递增区间为[,],36k k k Z ππππ-+∈ (II)解: ∵()22sin(2)6f x x π=++,由题意得: 63x ππ-≤≤∴52[,]666x πππ+∈-,∴1sin(2)[,1]62x π+∈-,∴()[1,4]f x ∈∴()f x 值域为[1,4]15.解:(1)||2AB AC AB AC ⋅=-=u u u r u u u r u u u r u u u r||2AB AC BC a ⋅===u u u r u u u r u u u r2222cos cos 2b c a bc Abc A ⎧+=+⎨=⎩ 2222||||8AB AC b c ∴+=+=(2)1sin 2ABC S bc A ∆==211cos 2bc A -=2121()2bc-=21()42bc - 2221()422b c +≤-=3当且仅当 b=c=2时A=3π16. (1)21)62sin()(+-=πx x f ,π=T (2)⎥⎦⎤⎢⎣⎡-23,23117. [解析] f (x )=3sin2x +cos2x =2sin(2x +π6),(1)由2k π+π2≤2x +π6≤2k π+3π2(k ∈Z)得k π+π6≤x ≤k π+2π3(k ∈Z),∴f (x )的单调递减区间为[k π+π6,k π+2π3](k ∈Z)(2)由sin(2x +π6)=0得2x +π6=k π(k ∈Z),即x =k π2-π12(k ∈Z), ∴f (x )图象上与原点最近的对称中心的坐标是(-π12,0).18.解:(1)x x x x x x f 2cos 2cos 212sin 231cos 2)62sin()(2+-=-+-=π)62sin(2cos 212sin 23π+=+=x x x 令)(226222Z k k x k ∈+≤+≤-πππππ)(x f 的单调递增区间为)](6,3[Z k k k ∈+-ππππ(2)由21)(=A f ,得21)62sin(=+πA ∵62626ππππ+<+<A ,∴6562ππ=+A ,∴3π=A 由b,a,c 成等差数列得2a=b+c∵9=⋅,∴9cos =A bc ,∴18=bc由余弦定理,得bc c b A bc c b a 3)(cos 22222-+=-+= ∴183422⨯-=a a ,∴23=a。