直流电动机论文
- 格式:doc
- 大小:46.00 KB
- 文档页数:8
XX大学本科毕业论文(设计、创作)题目:基于直流电机的精准定位系统设计学生姓名:学号:院(系):电子信息工程学院专业:电子信息工程入学时刻:二00八年九月导师姓名:职称/学位:导师所在单位:完成时刻:二0一二年五月基于直流电机的精准定位系统设计摘要为达到某医疗操纵系统平安、快速、精准定位的技术要求,并保证系统的稳固和靠得住性,专门采纳内部资源丰硕的MSP430F149为主控芯片,配合利用高性能带有光电编码器的直流电机。
从数字式直流电机定位系统的数学模型动身,选取电流,和电机转速作为反馈信号,采纳PWM调制作为系统的输出信号,操纵电机的转速,形成一个双闭环反馈直流脉宽调速系统。
并以工程操纵中普遍应用的PI算法作为系统的核心操纵方案,从而实现系统的高速,精准定位。
关键字:MSP430F149;直流电机;光电编码器;PWM ;PI操纵Design of precise Positing system Based on DC motorAbstractIn order to keep an medical control system operating safely,fastly, position accurately, and ensure the stability and reliability , we specifically use the internal resources MSP430F149 as the main chip, in conjunction with high-performance DC motor with optical encoder. Base on the mathematical model of the digital dc motor positioning system, we choose the current and the motor speed as feedback signals, using the PWM as the system output signal, forming a double closed loop feedback speed regulation system to control the motor speed. In order to realize the system of thigh speed and accurate location, we use the extensive application in project —the PI algorithm as the Core control theory.Keywords: MSP430F149 ;DC motor; PI ;Double closed loop目录1 引言 (1)1.1 开发背景 (1)1.2 选题的目的与意义 (1)2 系统的设计方式研究 (2)2.1 执行电机的选择 (2)2.1.1 伺服电机 (3)2.1.2 步进电机 (4)2.1.3 综述 (5)2.2 位置和速度传感器的选择 (6)2.2.1 光电编码器 (6)2.2.2 霍耳式传感器 (8)2.3 直流定位系统的数学模型分析 (8)2.3.1 直流电机调速方式概述 (8)2.3.2 转速、电流双闭环直流调速系统 (10)3 硬件电路设计 (13)3.1 直流电机精准定位系统整体方案设计 (13)3.2 MSP430F149单片机系统 (13)3.3 隔离与驱动电路 (14)3.3.1 隔离单元模块 (14)3.3.2 电机驱动模块 (15)3.3.3 过流爱惜模块 (16)3.4 反馈电路 (17)3.4.1 速度检测电路 (17)3.4.2 电流反馈电路 (18)4 操纵软件设计 (18)4.1 整体程序模块 (18)4.2 操纵算法模块 (19)5 终止语 (20)要紧参考文献 (21)致谢 (22)引言1.1 开发背景现代工业生产中,电动机是要紧的操纵执行部件,目前在直流电机拖动系统中已大量采纳晶闸管(即可控硅)装置向电动机供电的KZ—D拖动系统,取代了笨重的发电动一电动机的F—D系统,又伴随着电子技术的高度进展,促使直流电机调速慢慢由模拟化向数字化转变,专门是运动操纵芯片的应用,使直流电机调速技术又进入到一个新的时期,智能化、高靠得住性已成为它进展的趋势。
直流无刷电机毕业设计毕业设计论文论文题目:直流无刷电机学生姓名:学生学号:专业班级:指导教师:日期:AbstractBrushless DC Motor摘要无刷直流电机是最近发展起来的结合了多学科技术的一种新型电机,结合机电一体化,具有高速度、高效率、高动态响应、高热容量和高可靠性、免维护等优点,同时还具有低噪声和长寿命等特点。
非常适合使用在24小时连续运转的产业机械及空调冷冻主机、风机水泵、空气压缩机负载;低速高转矩及高频繁正反转不发热的特性,更适合应用于机床工作母机及牵引电机的驱动;其稳速运转精度比直流有刷电机更高,比矢量控制或直接转矩控制速度闭环的变频驱动还要高,性能价格比更好,是现代化调速驱动的最佳选择。
目前无刷电机已广泛应用于各种领域,如医疗仪器、分析仪器、材料处理、过程控制、机床工业、纺织工业、轻工机械、电动自行车等。
无刷直流电机的控制要比普通有刷电机的控制要复杂得多。
目前直流电机的控制方法主要有两种,一种是采用专用得直流电机控制芯片,如Motorola公司的MC33035;另一种控制方法各个厂家根据自己的需求采用单片机或DSP进行开发设计。
本设计主要采用嵌入式单片机ATMEGA48写入控制程序,从而形成一种高性能直流无刷电机控制器。
其不但能实现MC33035直流电机控制芯片的全部功能,而且具有接口灵活,功能完善,成本低廉、全数字控制等优点,用户能根据不同应用场合进行灵活配置。
关键词:无刷直流电机、HALL、PWM目录Abstract ............................................................................................... 错误!未定义书签。
摘要..................................................................................................... 错误!未定义书签。
直流电动机的应⽤第九章应⽤实例-本科毕业论⽂第九章应⽤实例在本章中,将前⼏章所学的内容进⼀步扩展,设计并完成⼏个完整的应⽤实例,巩固所学的知识。
特别是提⾼程序设计和调试能⼒。
9.1 直流电动机的应⽤直流电动机的基本知识 1)直流电动机⼯作原理直流电动机就是将直流电能转换为机械能的转动装置。
直流电动机具有良好的调速性能、较⼤的启动转矩和过载能⼒强等诸多优点,因此在许多⾏业中应⽤⼴泛。
特别在全国⼤学⽣电⼦设计竞赛中,微型直流电机、电动⼩车多次作为控制类题⽬主要控制对象。
微型直流电机(包括玩具直流电机、⼩型直流减速电机等)⼀般为永磁式直流电动机。
永磁式直流电动机由定⼦磁极、转⼦、换向器、电刷、机壳、轴承等构成。
定⼦磁极采⽤永磁体(永久磁钢),定⼦的作⽤是产⽣主磁场。
转⼦为进⾏能量转换的电枢,在磁场中产⽣感应电动势和电磁转矩。
直流电机定⼦固定有环状永磁体,电流通过转⼦上的线圈产⽣安培⼒,当转⼦上的线圈与磁场平⾏时,再继续旋转受到的磁场⽅向将改变,因此此时转⼦末端的电刷跟换向⽚交替接触,从⽽线圈上的电流⽅向也改变,产⽣的洛伦兹⼒⽅向不变,所以电机能保持⼀个⽅向转动。
要改变直流电机旋转⽅向,只需要改变转⼦线圈电压极性。
直流电机转速公式:Φ-=e ad C IR U n 式中,U d 为电机外加直流电压,R a 为电枢绕组电阻,Ce Φ为电机常数,I 为电机电流,电机电流与负载⼤⼩有关。
从直流电机转速公式可见,只要改变电枢电压就能实现直流电机的⽆极调速。
2)直流电机驱动电路⼩功率直流电机驱动电路可以采⽤如图9_1所⽰的H 桥开关电路。
这种驱动电路可以很⽅便地实现直流电机的四象限运⾏,即正转、正转制动、反转和反转制动。
UA 和UB 是互补的TTL 驱动信号。
由于⼤功率PNP 晶体管价格⾼,难实现,所以这个电路只在⼩功率电机驱动中使⽤。
当四个功率开关全⽤NPN 晶体管时,需要解决两个上桥臂晶体管(BG1和BG3)的基极电平偏移问题。
电动机论文摘要本文介绍了电动机的原理、分类、工作原理、应用领域以及未来发展趋势。
首先,我们介绍了电动机的基本原理,包括电动机的组成部分和工作原理。
之后,我们介绍了电动机的分类,主要包括直流电动机和交流电动机。
对于每种类型的电动机,我们讨论了其优缺点和适用范围。
然后,我们介绍了电动机的工作原理,包括电动机的输入和输出功率之间的转换。
接着,我们列举了电动机在各个领域的应用,包括工业制造、交通运输和家庭电器等。
最后,我们讨论了电动机的未来发展趋势,包括提高效率、减少能耗和环境友好等方面的改进。
1. 引言电动机是一种将电能转换为机械能的设备,它在现代社会的各个方面发挥着重要的作用。
电动机广泛应用于工业制造、交通运输、家庭电器等领域。
本文将介绍电动机的原理、分类、工作原理、应用领域以及未来发展趋势。
2. 电动机的原理电动机由定子和转子组成。
定子是固定的部分,包含绕组和磁铁。
转子是旋转的部分,也包含绕组和磁铁。
当通过定子绕组通电时,产生的磁场会与转子磁铁相互作用,使转子受到力矩的作用而旋转。
电动机可以根据其工作原理和结构分类。
主要的分类方法包括直流电动机和交流电动机。
3.1 直流电动机直流电动机是最早被广泛应用的电动机之一。
它的工作原理是通过直流电流在定子和转子之间产生磁场,使转子旋转。
直流电动机具有转速范围广、转速可调、启动转矩大等优点,常用于需要高启动转矩和可调速运行的场合。
3.2 交流电动机交流电动机是目前应用最广泛的电动机之一。
它的工作原理是通过交流电流在定子和转子之间产生磁场,使转子旋转。
交流电动机具有结构简单、体积小、成本低等优点,广泛应用于工业制造、交通运输和家庭电器等领域。
4. 电动机的工作原理电动机的工作原理是输入功率转化为输出功率。
输入功率由电源提供,经过电动机的变换和传递,最终转化为机械功。
电动机的工作原理可以用下式表示:$$ P_{\\text{输入}} = P_{\\text{输出}} + P_{\\text{损耗}} $$其中,$P_{\\text{输入}}$为电动机的输入功率,$P_{\\text{输出}}$为电动机的输出功率,$P_{\\text{损耗}}$为电动机的损耗功率。
直流无刷电动机原理及应用论文直流无刷电动机(Brushless DC Motor,BLDC)是一种基于电子通断器件控制电机旋转方向和速度的电动机。
相比于传统的直流有刷电动机,BLDC电动机具有更高的效率、更长的寿命、更低的噪音和更高的可靠性等优势,在各个领域得到广泛的应用。
本文将重点探讨BLDC电动机的工作原理和应用。
首先,BLDC电动机的工作原理。
BLDC电动机由定子和转子两部分组成。
定子上包含若干个线圈,并按照一定的序列连接在一起,形成一个三相对称的定子线圈组。
转子上则安装有永磁体,在齿轮上切割一定数量的磁极,使得转子上每个磁极的极性均相邻两个相同。
当BLDC电动机通电时,通过外部电子通断器件按照一定的顺序控制定子线圈的通断,从而形成一个旋转的磁场。
转子上的磁极受到这个旋转的磁场作用,从而顺应旋转运动,带动负载旋转。
BLDC电动机的应用非常广泛。
首先,在家用电器中,BLDC电动机被广泛应用于洗衣机、空调、冰箱等领域。
由于BLDC电动机具有高效、低噪音的特点,使得家用电器具有更好的性能和用户体验。
其次,在汽车领域,BLDC电动机被应用于新能源汽车、电动自行车等交通工具中。
BLDC 电动机通过电能转换为机械能,实现车辆的驱动,提高了汽车的能源利用率和环境友好性。
再次,在工业生产中,BLDC电动机被广泛应用于机械设备、工业机器人等领域。
BLDC电动机具有高效、精准的控制性能,提高了工业设备的生产效率和可靠性。
最后,在航空航天工程中,BLDC电动机被应用于航空器、卫星等航天器件中。
BLDC电动机具有体积小、重量轻、噪音低等特点,适用于空间有限的环境。
当然,BLDC电动机也存在一些挑战和发展方向。
首先,电子通断器件的性能和可靠性对BLDC电动机的工作效果至关重要。
当前,有关电子通断器件的研发和改进仍然是一个热门领域,需要进一步提升其性能和可靠性。
其次,BLDC电动机的功率密度和散热问题也需要解决。
随着电动车等领域对BLDC电动机功率需求的增加,如何在减小体积的同时提升功率密度和散热效果,是一个需要注意的问题。
电动机的原理及其应用论文1. 引言电动机是一种将电能转化为机械能的设备,广泛应用于各个领域的机械和电气设备中。
本文将介绍电动机的工作原理,并探讨其在工业、交通以及家庭等领域中的应用。
2. 电动机的工作原理电动机的工作原理是基于电流与磁场相互作用产生力矩从而驱动转子旋转。
常见的电动机主要分为直流电动机和交流电动机两种类型。
2.1 直流电动机直流电动机是利用直流电流通过线圈产生的旋转磁场与永磁体的磁场相互作用,从而产生旋转力矩。
直流电动机具有结构简单、容易控制转速和转向等特点,广泛应用于机床、电力机车以及家用电器等领域。
2.2 交流电动机交流电动机是利用交流电流通过线圈产生的旋转磁场与定子的磁场相互作用,从而产生旋转力矩。
交流电动机一般分为异步电动机和同步电动机两种类型。
•异步电动机:异步电动机的转子与旋转磁场的速度不同步,通过电动机的构造设计可以使其运行在不同的工况下,广泛应用于工业生产中。
•同步电动机:同步电动机的转子与旋转磁场的速度保持同步,通常用于对精度要求较高的设备,如电力发电机组。
3. 电动机的应用电动机作为一种能量转换设备,广泛应用于各个领域。
以下是电动机在工业、交通以及家庭等领域的具体应用:3.1 工业领域•机床设备:电动机作为驱动装置,用于控制机床的转速和运动轨迹,实现加工工件的高效率和高精度。
•泵和风机:电动机驱动泵和风机,用于输送液体、气体以及空气等,在工业生产过程中起到关键的输送作用。
•电动工具:电动螺丝刀、电动钻等工具依靠电动机的转动来实现工作功能,提高工作效率。
3.2 交通领域•电动汽车:电动汽车使用电动机驱动车辆,代替传统的燃油发动机,减少了对化石能源的依赖,对环境更加友好。
•电动自行车:电动自行车利用电动机的动力辅助骑行,提高了骑行的舒适性和效率,成为现代城市交通的便捷选择。
3.3 家庭领域•家用电器:家庭中的洗衣机、冰箱、吸尘器等家用电器都依赖于电动机的运转,实现各种功能。
小功率永磁无刷直流电动机的设计和仿真研究摘要永磁无刷直流电动机是把电机、电子和稀土材料的高新技术产品发展紧密的结合在一起的新型电机,它具有单位体积转矩高、重量轻、转矩惯量小、控制简单、能耗少和调速性能好等优点,因而在航天航空、数控机床、机器人、汽车、计算机外围设备、军事等领域及家用电器等方面都获得了广泛的应用。
因此,设计性能优异的永磁无刷直流电机具有重要的理论意义和应用价值。
本论文系统的研究了35w小功率永磁无刷直流电机的本体设计,包括设计方法、有限元分析、性能计算、软件仿真等。
本文主要的研究内容如下:1、综述了永磁无刷直流电机的研究现状、存在问题和发展前景,分析了永磁无刷直流电机的基本理论。
2、建立永磁无刷直流电机的数学模型,先利用解析法对该电机进行电磁设计,然后利用有限元法对电机进行优化。
3、基于星形连接三相三状态的控制电路,利用Infolytic公司的MagNet电磁场分析软件建立了永磁无刷直流电机的有限元分析模型,仿真分析其静态气隙磁场分布及动态带负载时的电机特性。
并将软件仿真所得结果与设计计算结果进行比较分析,验证了设计方法的正确性。
关键词:电机设计,无刷直流电动机,有限元分析,稳态特性第一章绪论1.1永磁无刷直流电动机的发展状况永磁无刷直流电动机是一种新型的电动机,其应用广泛,相关技术仍然在不断的发展中,该类电动机的发展充分体现了现代电动机理论、电力电子技术和永磁材料的发展过程。
其中,永磁材料、大功率开关器件、高性能微处理器等的快速发展对永磁无刷直流电动机的进步功不可没。
1821年9月,法拉第建立的世界上第一台电机就是永磁电机,自此奠定了现代电机的基本理论基础。
十九世纪四十年代,人们研制成功了第一台直流电动机。
1873年,有刷直流电动机正式投入商业应用。
从此以后,有刷直流电动机就以其优良的转矩特性在运动控制领域得到了广泛的应用,占据了极其重要的地位。
随着生产的发展和应用领域的扩大,对直流电动机的要求也越来越高。
直流电机调速论文1、课题背景随着时代的进步和科技的发展,电机调速系统在工农业生产、交通运输以及日常生活中起着越来越重要的作用,因此,对电机调速的研究有着积极的意义.长期以来,直流电机被广泛应用于调速系统中,而且一直在调速领域占居主导地位,这主要是因为直流电机不仅调速方便,而且在磁场一定的条件下,转速和电枢电压成正比,转矩容易被控制;同时具有良好的起动性能,能较平滑和经济地调节速度。
因此采用直流电机调速可以得到良好的动态特性。
由于直流电动机具有优良的起、制动性能,宜与在广泛范围内平滑调速。
在轧钢机、矿井卷机、挖掘机、金属切削机床、造纸机、高层电梯等领域中得到广泛应用。
近年来交流调速系统发展很快,然而直流控制系统毕竟在理论上和在时间上都比较成熟,而且从反馈闭环控制的角度来看,它又是交流系统的基础,长期以来,由于直流调速系统的性能指标优于交流调速系统。
因此,直流调速系统一直在调速系统领域内占重要位置。
2、课题功能本次课程设计主要是设计一个直流电机的驱动电路,在给定速度后,当负载变化时,速度是稳定的,构建一个闭环的控制系统。
本论文介绍了基于ATmega16单片机来实现最优PID控制的直流脉冲(PWM)调速系统,并且详细论述了该系统的控制方法、结构、参数设计、程序设计等方面的问题。
该系统结构简单,调速性能好,性能价格比高,真正实现了直流调速系统的高精度控制。
3、系统设计3.1设计要求设计一个直流电机的驱动电路,在给定速度后,当负载变化时,速度是稳定的,构建一个闭环的控制系统。
3.2总体设计方案3.2.1设计思路题目要求设计一个直流电机的驱动电路,系统可以分为控制部分和显示部分。
设计中采用A Tmega16芯片为主控制核心,行列式键盘为控制部分,显示部分采用液晶LCM1602显示。
通过单片机软件产生PWM波来控制电机,经过测速电路和PID算法,实现电机速度的实时测量反馈和调节。
3.2.2方案论证与设计1、系统控制设计方案论证与选择方案一:采用MCS-51系列的单片机和专用的PWM芯片及外部D/A转换电路,同时结合PID算法实现实时控制。
第一章直流电动机简介1.1直流电动机的发展近三十年来针对异步电动机变频调速的研究,归根到底是在寻找控制异步电动机转矩的方法,稀土永磁无刷直流电动机必将以其宽调速、小体积、高效率和稳态转速误差小等特点在调速领域显现优势。
无刷直流电动机是在有刷直流电动机的基础上发展起来的,这一渊源关系从其名称中就可以看出来。
有刷直流电动机从19世纪40年代出现以来,以其优良的转矩控制特性,在相当长的一段时间内一直在运动控制领域占据主导地位。
但是,有机械接触电刷-换向器一直是电流电机的一个致命弱点,它降低了系统的可靠性,限制了其在很多场合中的使用。
为了取代有刷直流电动机的机械换向装置,人们进行了长期的探索。
早在1917年,Bolgior就提出了用整流管代替有刷直流电动机的机械电刷,从而诞生了无刷直流电机的基本思想。
无刷直流电机因为具有直流有刷电机的特性,同时也是频率变化的装置,所以又名直流变频,国际通用名词为BLDC.无刷直流电机的运转效率,低速转矩,转速精度等都比任何控制技术的变频器还要好,所以值得业界关注.本产品已经生产超过55kW,可设计到400kW,可以解决产业界节电与高性能驱动的需求。
我国对无刷直流电动机的研究起步较晚。
1987年,在北京举办的联邦德国金属加工设备展览会上,SIEMENS和BOSCH两公司展出了永磁自同步伺服系统和驱动器,引起了国内有关学者的广泛注意,自此国内掀起了研制开发和技术引进的热潮。
经过多年的努力,目前,国内已有无刷直流电动机的系列产品,形成了一定的生产规模。
1.2直流电机的结构直流电机的结构应由定子和转子两大部分组成。
直流电机运行时静止不动的部分称为定子,定子的主要作用是产生磁场,由机座、主磁极、换向极、端盖、轴承和电刷装置等组成。
运行时转动的部分称为转子,其主要作用是产生电磁转矩和感应电动势,是直流电机进行能量转换的枢纽,所以通常又称为电枢,由转轴、电枢铁心、电枢绕阻、换向器和风扇等组成。
基于D S P的直流电机控制系统设计摘要:直流电机由于励磁磁场和电枢磁场完全解耦,可以独立控制,因此具备良好的调速性能,出力大、调速范围宽和易于控制,广泛应用于电力拖动系统中;而随着对电机控制要求的不断提高,普通的单片机越来越不能满足对电机控制的要求,DSP技术的发展正好为先进控制理论以及复杂控制算法的实现提供了有力的支持;本设计采用美国TI公司专门为电机数字化控制设计的16位定点DSP 控制器TMS320LF2407作为微控制器;该芯片集DSP信号高速处理能力及适用于电机控制优化的外围电路于一体,可以为高性能传动控制技术提供可靠高效的信号处理与控制硬件;电机的控制系统是由检测装置、主控制器、功率驱动器以及上位机组成,其中DSP控制器是电机控制系统的关键部分,负责对电机的反馈信号进行处理并输出控制信号来控制电机的转动;关键词:直流电机; DSP; PID控制器; PWMThe Design of DC Motor Control System Based on DSP Abstract:The DC motor armature magnetic field and the excitation completely decoupled, it can be independently controlled, so it has a good speed performance, contribute to a large power, widely speed range, and easy to control, so it is widely used in electric drive systems. With the motor control required for continuous improvement, common single MCU can't meet requirements of the motor control well, DSP technology just for the advanced control theory and complex control algorithm implementation provides a strong support.This design uses the American TI company specially for motor control design of digital 16 fixed-point DSP controller TMS320LF2407 as the controller. The chip set DSP signal the high processing capacity and used in motor control optimization the periphery of the circuit in a body, high performance driving control technology to provide reliable and efficient signal processing and control hardware. Motor control system is composed of detection devices, the main controller, power driver and PC componen ts, whichDSP controller is a key part of the motor control system , responsible for the motor feedback signal processing and output control sig n al to control the rotation of the motor.Keywords:DC motor, DSP, PID controller, PWM目录第1章绪论课题概述课题研究的背景电气传动是以电动机的转矩和转速为控制对象,按生产机械工艺要求进行电动机转速控制的自动化系统;根据电动机的不同,工程上通常把电气传动分为直流电气传动和交流电气传动两大类;纵观电气传动的发展过程,交流与直流两大电气传动并存于各个时期的各大工业领域内,虽然它们所处的地位和作用不同,但它们始终随着工业技术而发展的;特别是随着电力电子技术和微电子学的发展,在相互竞争中完善着自身,发生着变更;由于直流电机具有良好的线性调速特性,简单的控制性能,因此在工业场合应用广泛;近代,随着生产技术的发展,对电气传动在起制动、正反转以及调速能力、静态特性和动态响应方面都提出了更高的要求,所以计算机控制电力拖动控制系统已成为计算机应用的一个重要内容;直流调速系统在工农业生产中有着更为广泛的应用;随着计算机技术和电力电子技术的飞速发展,两者的有机结合使电力拖动控制技术产生了新的变化;电力电子技术、计算机技术和直流拖动技术的组合是技术领域的交叉,具有广泛的应用前景;有不少的研究者己经在用DSP作为控制器进行研究;直流调速控制系统的控制方法经历了机械式的、双机组式的、分立元件电路式的、集成电路式的、单片机式的发展过程;随着数字信号处理器DSP的出现,给直流调速控制提供了新的手段和方法;将计算机技术的最新发展成果运用在直流调速系统中,在经典控制的基础之上探讨一种新的控制方法,为计算机技术在电力拖动控制系统中的应用做些研究性的工作;用计算机技术实现直流调速控制系统,计算机的选型很多;经过选择,选取DSP芯片作为控制器;直流调速系统的内容十分丰富,有开环控制系统,有闭环控制系统;有单闭环控制系统,有双闭环控制系统和多闭环控制系统;有可逆调速系统,有不可逆调速系统等9;开展本课题研究的控制对象是闭环直流调速系统;研究的目的是利用计算机硬件和软件发展的最新成果,对控制系统升级进行研究;研究工作是在对控制对象全面回顾总结的基础上,重点对控制部分展开研究,它包括对实现控制所需要的硬件和软件环境的探讨,控制策略和控制算法的探讨等内容;目前,对于控制对象的研究和讨论很多,有比较成熟的理论,但实现控制的方法和手段随着技术的发展,特别是计算机技术的发展,不断地进行技术升级;这个过程经历了从分立元件控制,集成电路控制和单片计算机控制等过程;每一次的技术升级都是控制系统的性能有较大地提高和改进;随着新的控制芯片的出现,给技术升级提供了新的可能;电机控制是DSP应用的主要领域,随着社会的发展以及对电机控制要求的日益提高,DSP将在电机控制领域中发挥越来越重要的作用;课题研究的目的及意义长期以来,直流电机一直占据着速度控制和位置控制的统治地位;由于它具有良好的线性调速特性,简单的控制性能,高质高效的平滑运转的特性,尽管近年来不断受到其它电动机的挑战,但到目前为止,就其性能来说仍无其它电动机可比;在控制系统的构成上,本课题对硬件电路进行了设计,而这个硬件系统具有一定的通用性,也即可以将它作为一个硬件平台,在其它过程控制中应用;另外,由DSP的特点量身订做,可以在其它的控制系统中根据不同的要求进行外围电路的设计,进而来构成硬件系统,这样既便于设计思想的物化,又使得设计系统更加紧凑,不浪费资源;本直流电机控制系统采用经典的数字增量式PID控制算法,在本文中对数字增量式PID控制的理论、设计和实现进行了较为详细的论述; 课题研究的现状近些年来,随着现代电力电子技术、控制技术和计算机技术的发展,电机的应用技术也得到了进一步的发展,新产品、新技术层出不穷;除了人们己经熟悉的普通电机外,许多不同用途的特种电机也不断问世,如广泛应用于办公设备的无刷直流电机和高精度的步进电机、用于照相机的超声波电机、用于心脏血液循环系统的微型电机等等;另一方面,由于应用了电力电子技术,电机的控制技术变得更加灵活,效率也更高,如变频器控制的异步电机及伺服系统即是典型的例子1;在实际中,电机应用已由过去简单的起停控制、提供动力为目的应用,上升到对其速度、位置、转矩等进行精确的控制,使被驱动的机械运动符合预想的要求;例如在工业自动化、办公室自动化和家庭住宅自动化方面使用大量的电机,几乎都采用功率器件进行控制,将预定的控制方案、规划指令转变成期望的机械运动;这种新型控制技术己经不是传统的“电机控制”或“电气传动”而是“运动控制”;运动控制使被控机械实现精确的位置控制、速度控制、加速度控制、转矩或力的控制,以及这些被控机械量的综合控制;因此现代电机控制技术离不开功率器件和电机控制器的发展5;电机的控制器经历了从模拟控制器到数字控制器的发展;由于模拟器件的一些参数受外界因素影响较大,并且它的精度也差;所有这些都使得模拟控制器的可重复性比较差,控制效果不理想,因此调速电机的控制器逐渐朝数字化方向发展;数字控制器与模拟控制器相比较,具有可靠性高、参数调整方便、更改控制策略灵活、控制精度高、对环境因素不敏感等优点;随着现有的工业电气传动、自动控制和家电领域对电机控制产品需求的增加用户也不断提高对电机控制技术的要求5;总是希望能在驱动系统中集成更多的功能,达到更高的性能;许多设备试图使用8位或是准16位的微处理器实现电机的闭环控制,然而它们的内部体系结构和计算功能都阻碍了这一要求的实现;例如,在很多领域如工业、家电和汽车,用户希望使用效率高且去掉霍尔效应传感器的电机;这种电机的控制可以通过使用先进的电机控制理论、采用高效的控制算法来实现;但是这可能超出上述微处理器的计算能力;使用高性能的数字信号处理器DSP来解决电机控制器不断增加的计算量和速度需求是目前较为普遍的做法;将一系列外围设备如模数转换器A/D、脉宽调制发生器PWM和数字信号处理器DSP集成在一起,就获得一个既功能强大又非常经济的电机控制专用的DSP芯片;近年来,各种集成化的一单片DSP的性能得到很大的改善,软件和开发工具越来越多,越来越好,价格却大幅度降低;低端产品的价格已接近单片机的价格水平,但却比单片机具有更高的性能价格比;越来越多的单片机用户开始选用DSP器件来提高产品性能,DSP器件取代高档单片机的时机己成熟13;首先,与单片机相比,DSP器件具有较高的集成度;DSP具有更快的CPU,更大容量的存储器,内置有波特率发生器和FIFO缓冲器,提供高速、同步串口和标准异步串口;有的片内集成了A/D和采样/保持电路,可提供PWM输出;更为不同的是,DSP器件为精简指令器件,大多数指令都能在一个周期内完成,并且通过并行处理技术,使一个指令周期内可完成多条指令;同时DSP采用改进的哈佛结构,具有独立的程序和数据空间,允许同时存取程序和数据;又配有内置高速硬件乘法器、多级流水线,使DSP 器件具有高速的数据计算能力;而单片机为复杂指令系统计算机CISC,多数指令要2-3个指令周期来完成;单片机采用冯.诺依曼结构,程序和数据在同一空间存取,同一时刻只能单独访问指令和数据、ALU只能做加法,乘法需要由软件来实现,因此占用较多的指令周期,也就是说速度比较慢;所以,结构上的差异使DSP器件比准16位单片机单指令执行时间快8-10倍,完成一次乘法运算快16-30倍;DSP器件还提供了高度专业化的指令集,提供了FFT快速傅立叶变换和滤波器的运算;此外,DSP器件提供了JTAG Joint Test Action Group接口,具有更先进的开发手段,批量生产测试更方便;其次,基于DSP芯片制造的电机控制器可以降低对传感器等外围器件的要求;通过复杂的算法达到同样的控制性能,降低成本,可靠性高,有利于专利技术的保密;现在各大DSP生产厂家都推出自己的内嵌式DSP电机控制专用集成电路;如占DSP市场份额45%的美国德州仪器公司,凭借自己的实力,推出了电机控制器专用DSP--TMS320C24x;新的TMS320C24x DSP采用TI公司TMS320C2xLP16位定点DSP核,并集成了一个电机事件管理器,后者的特点是可以最佳方式实现对电机的控制;该器件利用TI的可重用DSP核心技术,显示出TI的特殊能力一通过在单一芯片上集成一个DSP和混合信号外设件,制造出面向各种应用的DSP方案;TMS320C24x作为第一个数字电机控制器的专用DSP系列,可支持用于电机控制的指令产生、控制算法处理、数据交流和系统监控等功能;集成的DSP核、最佳化电机控制器事件管理器和单片式A/D设计等诸多功能块加在一起,就可以提供一个单芯片式数字电机控制方案;系列中的TMS320LF2407包括一个30MIPSDSP核、两个事件管理器、32位的中央算术逻辑单元、多达16通道的IO位A/D转换器、64K的I/0空间和一个32K字的闪速存储器,它利用TMS320的定点DSP软件开发工具和JTAG仿真支持,可使电机控制领域的研发人员方便地调试控制器和脱机使用;第三,DSP运算速度快,控制策略中可以使用先进的实时算法,如自适应控制、卡尔曼滤波、状态预估等,大大提高控制系统的品质;而且DSP 控制软件可用C语言或汇编语言编写或者二者嵌套使用;因此采用DSP 芯片制造的电机控制器便于用户的调试和应用;最后,在越来越多的场合,如电动汽车、纺织行业、水泵变频调速系统等,他们往往是规模比较大,时序、组合逻辑都很复杂的情况,这时如果同时运用DSP芯片和一些其它的可编程逻辑器件可以大大减小系统的体积、提高系统运算能力,实现复杂的实时控制;课题研究的内容本文主要研究基于DSP的直流电机控制系统,通过控制算法和调速方法的分析,利用电机调速、DSP芯片控制、上位机通信、按键模块等的基本原理及相关知识,实现对电机的速度控制;整个系统的基本思想就是利用DSP内部资源产生可控制的脉冲控制整流电压,改变串入主回路中的直流电动机的电磁转矩,实现电动机的转速调节;研究内容包括如下:1电机控制系统功能实现的分析;2控制算法与调速方法的分析与设计;3电机驱动、电源模块、按键模块、测速、显示模块的硬件设计与实现;4系统主程序、按键扫描、控制算法、测速、电机速度控制等程序的分析、设计与实现;5电机控制系统整机测试与实现;第2章系统总体设计系统的组成由图2-1可知,该设计包含DSP控制单元、功率驱动单元、检测单元、显示单元、通信单元五个部分;DSP控制单元:对来自上位机的给定信号和来自传感器的反馈信号按一定的算法进行处理,输出相应的PWM波,经过光电隔离部分,送给功率驱动单元;功率驱动单元:对来自DSP控制器的PWM信号进行功率放大后送给直流电动机的电枢两端,驱动电机与负载;速度检测单元:采集电机的速度信息,并送给主控制器;显示单元:将采集到的电机转速信息予以显示;通信单元:负责主控制器与上位机及外设的信息交换;图2-1 系统总体框图2. 2 DSP芯片选择直流电机的调速控制系统一般采用电机专用微处理器,其种类主要包括复杂指令集CISC处理器如工NTEL196MX系列单片微控制器,精简指令集RISC如日立公司SH704x系列单片微控制器,哈佛结构DSP处理器如TI公司T145320F24X系列DSP;一般用于直流电机控制的徽处理器性能要满足以下几个方面:1指令执行速度;2片上程序存储器、数据存储器的容量及程序存储器的类型;3乘除法、积和运算和坐标变换、向量计算等控制计算功能;4中断功能和中断通道的数目;5用于PWM生成硬件单元和可实现的调制范围以及死区调节单元;6用于输入模拟信号的A/D转换器;7价格及开发环境;DSP一般采用哈佛或者改进的哈佛结构,程序空间和数据空间分离,程序的数据总线和地址总线分离,数据的数据总线和地址总线分离;这种结构允许同时访问程序指令和数据,在同一机器周期里完成读和写,并行支持在单机器时钟内同时执行算术、逻辑和位处理操作,极大地提高了执行速度,并且电机控制专用DSP具备丰富的设备和接口资源;TI公司的TMS320系列DSP芯片是目前最有影响、最为成功的数字信号处理器,其产品销量一直处于国际领先地位,是公认的世界DSP霸主;本论文选择了TI公司的TMS320LF2407DSP作为直流电机控制系统的微处理器;TMS320LF2407 DSP 控制器介绍TMS320LF2407 DSP是专为数字电机控制和其它控制系统而设计的;是当前集成度最高、性能最强的运动控制芯片;不但有高性能的C2XX CPU 内核,配置有高速数字信号处理的结构,且有控制电机的外设;它将数字信号处理的高速运算功能,与面向电机的强大控制功能结合在一起,成为传统的多微处理器单元和多片系统的理想替代品12;TMS320LF2407的片内外设模块包括:事件管理模块EV、数字输入/输出模块I/O、模数转换模块ADC、串行外设模块SPI、串行通信模块SCI、局域网控制器模块CAN;1事件管理器EVA和EVBTMS320LF2407提供两个事件管理器EVA和EVB模块,每个模块包含两个通用GP定时器、3个全比较/PWM单元、3个捕获单元和一个正交编码脉冲电路;事件管理器位用户提供了众多的功能和特点,在运动控制和电机控制中特别有用;通用定时器:LF2407共有4个通用定时器,每个定时器包括:一个16位的定时器增/减计数的计数器TxCNT;一个16位的定时器比较寄存器TxCMPR;一个16位的定时器周期寄存器TxPR;一个16位的定时器控制寄存器TxCON;可选择的内部或外部输入时钟;各个GP定时器之间可以彼此独立工作或相互同步工作;与其有关的比较寄存器可用作比较功能或PWM波形发生;每个GP定时器的内部或外部的输入时钟都可进行可编程的预定标,它还向事件管理器的子模块提供时毕;每个通用定时器有4种可选择的操作模式:停止/保持模式、连续增计数模式、定向增/减计数模式、逢续增/减计数模式;当计数器值和比较寄存器值相等时,比较匹配发生,从而在定时器的PWM输出引脚TxPWM/TxCMP上产生CMP/PWM 脉冲,可设置控制寄存器GPTCON中的相应位,选择下溢、比较匹配或周期匹配时自动启动片内A/D转换器;比较单元:LF2407有6个比较单元,每个EV模块有3个;每个比较单元又有两个相关的PWM输出,比较单元的时基由通用定时器1 EVA模块和通用定时器3 EVB模块提供;每个比较单元和通用定时器1或通用定时器3,死区单元及输出逻辑可在两个特定的器件引脚上产生一对具有可编程死区以及输出极性可控的PWM输出;在每个EV模块中有6个这种与比较单元相关的PWM输出引脚,这6个特定的PWM输出引脚可用于控制三相交流感应电机和直流无刷电机;由比较方式控制寄存器所控制的多种输出方式能轻易地控制应用广泛的开关磁阻电机和同步磁阻电机;捕获单元:捕获单元被用于高速I/O的自动管理器,它监视输入引脚上信号的变化,记录输入事件发生时的计数器值,即记录下所发生事件的时刻;该部件的工作由内部定时器同步,不用CPU干预;LF2407共有6个捕获单元,CAP1,CAP2,CAP3可选择通用定时器1或2作为它们的时基,但CAP1和CAP2一定要选择相同的定时器作为它们的时基;CAP4,CAP5,CAP6可选择通用定时器3或4作为它们的时基,同样CAP4和CAP5也一定要选择相同的定时器作为它们的时基;每个单元各有一个两级的FIFO缓冲堆栈;当捕获发生时,相应的中断标志被置位,并向CPU发中断请求;若中断标志己被置位,捕获单元还将启动片内A/D转换器;正交编码脉冲QEP单元:常用的位置反馈检测元件为光电编码器或光栅尺,它直接将电机角度和位移的模拟信号转换为数字信号,其输出一般有相位差为90°的A、B两路信号和同步脉冲信号C;A、B两路脉冲可直接作为LF2407的CAP1/QEP1和CAP2/QEP2引脚的输入;正交编码脉冲电路的时基由通用定时器2或通用定时器4提供,但通用定时器必须设置成定向增/减计数模式,并以正交编码脉冲电路作为时钟源;2数字输入/输出模块I/ODSP器件的数子输入/输出引脚均为功能复用引脚;即这些引脚既可作为通用I/O功能双向数据输入/输出引脚,也可作特殊功能PWM输出、捕获输入、串行输入输出等引脚;数子I/O模块负责对这些引脚进行控制和设置;两种功能的选择由I/O复用控制寄存器MCRx,x=A,B,C来控制;当引脚作为通用I/O时,由数据和方向控制寄存器PxDATDIR,x=A,B,C,D,E,F指出各I/O引脚的数据方向输入还是输出和当前引脚对应的电平高或低;读通用I/O引脚的电平或向引脚输出电平,实际上是对相应的寄存器PxDATDIR进行读写操作;3模数转换器ADC模块在自动控制系统中,被控制或被检测的对象,如温度、压力、流量、速度等都是连续变化的物理量,通过适当的传感器如温度传感器、压力传感器、光电传感器等将他们转换为连续变化的电压或电流即模拟量;模数转换器ADC就是用来讲这些模拟电压或电流转换成计算机能够识别的数字量的模块;TMS320LF2407期间内部有一个10为的模数转换器ADC;该模块能够对16个模拟输入信号进行采样/保持和A/D转换,通道的转换顺序可以编程选择;4串行通信接口SCI模块2407器件的串行通信接口SCI模块是一个标准的通信异步接收/发送UART可编程串行通信接口;SCI支持CPU与其他异步串口采用标准不返回零NRZ模块进行异步串行数字通信;SCI有空闲线和地址位两种多处理器通信方式;两个输入/输出引脚:SCIRXDSCI接收数据引脚和SCITXDSCI发送数据引脚;SCI通过一个16位的波特率选择寄存器,可编程选择64K种不同速率的波特率;SCI支持半双工和全双工操作,发送器和接收器的操作可以通过中断或转换状态标志来完成;5串行外设接口SPI模块串行外设接口SPI模块是一个高速同步串行输入/输出I/O口,它能使可编程长度1—16位的串行位流以可编程的位传输速率输入或输出器件;SPI可作为一种串行总线标准,以同步方式实现两个设备之间的信息交换,即两个设备在同一时钟下工作;SPI通常用于DSP控制器与外部设备或其他控制器之间的通信,用SPI可以构成多机通信系统,SPI还可以作为移位寄存器、显示驱动器和模数转换器ADC等器件的外设扩展口;6CAN控制器模块LF24xx系列DSP控制器作为第一个具有片上CAN控制模块的DSP芯片,给用户提供一个设计分布式或网络化运动控制系统的无限可能;CAN总线是一种多主总线,通信介质可以是绞线、同轴电缆或光导纤维,通信速率可达1 Mbps,通信距离可达10km;CAN协议的一个最大特点是废除了传统的站地址编码,而代之以对通信数据块进行编码,使网络内的节点个数在理论上不受限制;由于CAN 总线具有较强的纠错能力,支持差分收发,因而适合高干扰环境,并具有较远的传输距离;2407的CAN控制器模块是一个16位的外设模块,支持CAN2. 0B协议;CAN模块有6个邮箱MBOX0—MBOX5;有用于0,1,2和3号的邮箱的本地屏蔽寄存器和15个控制/状态寄存器;CAN模块既有可编程的位速率、中断方式和CAN总线唤醒功能;自动回复远程请求;自动再发送功能在发送时出错或仲裁是丢失数据的情况下;总线出错诊断和自测模式; 硬件方案论证测速传感器的选择方案一:使用测速发电机,输出电动势E和转速n成线性关系,即E=kn,其中k是常数;改变旋转方向时,输出电动势的极性即相应改变;方案二:采用霍尔传感器,霍尔元件是磁敏元件,在被测的旋转体上装一磁体,旋转时,每当磁体经过霍尔元件,霍尔元件就发出一个信号,经放大整形得到脉冲信号,送运算;方案三:在电机的转轴上套一码盘,利用光电对管测脉冲,每转一圈OUT端输出若干个脉冲;本设计中码盘每转一圈,输出4个脉冲经比较,方案一中的测速放电机安装不如方案二中霍尔元件安装方便,并且准确率也没方案二的高,并且方案二不需A/D转换,直接可以被DSP接收;但方案二的霍尔传感器的采购不是很方便,故采用方案三,它具有方案二的几乎所有的优点;方案三中可以采用定时的方法:是通过定时器记录脉冲的周期T,这样每分钟的转速:M=60/4T=15/T;0也可以采用。
直流电动机引言Motor as the main mechanical and electrical energy conversion device,其应用范围已遍及国民经济的各个领域和人们的日常生活。
无论是在工农业生产,交通运输,国防,航空航天,医疗卫生,商务和办公设备中,还是在日常生活的家用电器和消费电子产品(如电冰箱,空调,DVD 等)中,都大量使用着各种各样的电动机。
据资料显示,在所有动力资源中,百分之九十以上来自电动机。
同样,我国生产的电能中有百分之六十是用于电动机的。
电动机与人的生活息息相关,密不可分。
电气时代,电动机的调速控制一般采用模拟法,对电动机的简单控制应用比较多。
简单控制是指对电动机进行启动,制动,正反转控制和顺序控制。
这类控制可通过继电器,可编程控制器和开关元件来实现。
还有一类控制叫复杂控制,是指对电动机的转速,转角,转矩,电压,电流,功率等物理量进行控制。
[13]摘要直流电机的特点及其发展概况,然后介绍了直流电机在工业控制等领域中的具体应用,同时阐述了直流电机控制中有待研究的问题。
并在此基础之上介绍了本课题的选题背景和意义。
直流电动机控制的发展历史常用的控制直流电动机有以下几种:第一,最初的直流调速系统是采用恒定的直流电压向直流电动机电枢供电,通过改变电枢回路中的电阻来实现调速。
这种方法简单易行设备制造方便,价格低廉。
但缺点是效率低、机械特性软、不能在较宽范围内平滑调速,所以目前极少采用。
第二,三十年代末,出现了发电机-电动机(也称为旋转变流组),配合采用磁放大器、电机扩大机、闸流管等控制器件,可获得优良的调速性能,如有较宽的调速范围(十比一至数十比一)、较小的转速变化率和调速平滑等,特别是当电动机减速时,可以通过发电机非常容易地将电动机轴上的飞轮惯量反馈给电网,这样,一方面可得到平滑的制动特性,另一方面又可减少能量的损耗,提高效率。
但发电机、电动机调速系统的主要缺点是需要增加两台与调速电动机相当的旋转电机和一些辅助励磁设备,因而体积大,维修困难等。
第三,自出现汞弧变流器后,利用汞弧变流器代替上述发电机、电动机系统,使调速性能指标又进一步提高。
特别是它的系统快速响应性是发电机、电动机系统不能比拟的。
但是汞弧变流器仍存在一些缺点:维修还是不太方便,特别是水银蒸汽对维护人员会造成一定的危害等。
第四,1957年世界上出现了第一只晶闸管,与其它变流元件相比,晶闸管具有许多独特的优越性,因而晶闸管直流调速系统立即显示出强大的生命力。
由于它具有体积小、响应快、工作可靠、寿命长、维修简便等一系列优点,采用晶闸管供电,不仅使直流调速系统经济指标上和可靠性有所提高,而且在技术性能上也显示出很大的优越性。
晶闸管变流装置的放大倍数在10000以上,比机组(放大倍数10)高1000倍,比汞弧变流器(放大倍数1000)高10倍;在响应快速性上,机组是秒级,而晶闸管变流装置为毫秒级。
[14]从20世纪80年代中后期起,以晶闸管整流装置取代了以往的直流发电机电动机组及水银整流装置,使直流电气传动完成一次大的跃进。
同时,控制电路也实现了高度集成化、小型化、高可靠性及低成本。
以上技术的应用,使直流调速系统的性能指标大幅提高,应用范围不断扩大,直流调速技术不断发展。
随着微型计算机、超大规模集成电路、新型电子电力开关器件和新型传感器的出现,以及自动控制理论、电力电子技术、计算机控制技术的深入发展,直流电动机控制也装置不断向前发展。
微机的应用使直流电气传动控制系统趋向于数字化、智能化,极大地推动了电气传动的发展。
近年来,一些先进国家陆续推出并大量使用以微机为控制核心的直流电气传动装置,如西门子公司的SIMOREG K 6RA24、ABB公司的PAD/PSD等等。
随着现代化步伐的加快,人们生活水平的不断提高,对自动化的需求也越来越高,直流电动机应用领域也不断扩大。
例如,军事和宇航方面的雷达天线,火炮瞄准,惯性导航,卫星姿态,飞船光电池对太阳得跟踪等控制;工业方面的各种加工中心,专用加工设备,数控机床,工业机器人,塑料机械,印刷机械,绕线机,纺织机械,工业缝纫机,泵和压缩机等设备的控制;计算机外围设备和办公设备中的各种磁盘驱动器,各种光盘驱动器,绘图仪,扫描仪,打印机,传真机,复印机等设备的控制;音像设备和家用电器中的录音机,录像机,数码相机,洗衣机,冰箱,电扇等的控制。
Along with the computer, the development of micro-electronics technology and the constantly emerging of the new power electronic power devices, the control strategy of the motor is also profound changes have taken place. Motor control technology due to the development of microelectronics technology, power electronics technology, sensor technology, permanent magnetic material technology, the latest development of computer application technology achievements. Frequency conversion technology and pulse width modulation technology has become the mainstream of motor control technology。
正是这些技术的进步使电动控制技术在近二十年内发生了很大的变化。
其中,电动机控制策略的模拟实现正逐渐退出历史舞台,而采用微处理器,通用计算机,FPGA/CPLD,DSP控制器等现代手段构成的数字控制系统得到了迅速发展。
电动机的驱动部分所采用的功率器件经历了几次的更新换代以后,速度更快,控制更容易的全控型功率器件MOSFET和IGBT逐渐成为主流。
功率器件控制条件的变化和微电子技术的使用也使新型的电动机控制方法能够得到实现。
其中,脉宽调制(PWM)方法,变频技术在直流调速和交流调速系统中得到了广泛应用。
永磁材料技术的突破与微电子技术的结合又产生了一批新型的电动机,如永磁直流电动机,交流伺服电动机,超声波电动机等。
由于有微处理器和传感器作为新一代运动控制系统的组成部分,所以又称这种运动控制系统为智能运动控制系统。
所以应用先进控制算法,开发全数字化智能运动控制系统将成为新一代运动控制系统设计的发展方向。
[17]在那些对电动机控制系统的性能要求较高的场合(如数控机床,工业缝纫机,磁盘驱动器,打印机,传真机等设备中,要求电动机实现精确定位,适应剧烈负载变化),传统的控制算法已难以满足系统要求。
为了适应时代的发展,现有的电动机控制系统也在朝着高精度,高性能,网络化,信息化,模糊化的方向不断前进。
直流电动机控制的研究现状数字直流调速装置,从技术上,它能成功地做到从给定信号、调节器参数设定、直到触发脉冲的数字化,使用通用硬件平台附加软件程序控制一定范围功率和电流大小的直流电机,同一台控制器甚至可以仅通过参数设定和使用不同的软件版本对不同类型的被控对象进行控制,强大的通讯功能使它易和PLC等各种器件通讯组成整个工业控制过程系统,而且具有操作简便、抗干扰能力强等特点,尤其是方便灵活的调试方法、完善的保护功能、长期工作的高可靠性和整个控制器体积小型化,弥补了模拟直流调速控制系统的保护功能不完善、调试不方便、体积大等不足之处,且数字控制系统表现出另外一些优点,如查找故障迅速、调速精度高、维护简单,使其具备了广一阔的应用前景。
[18]国外主要电气公司如瑞典的ABB公司、德国的西门子公司、AEG公司、日本的三菱公司、东芝公司、美国的GE公司、西屋公司等,均已经开发出多个数字直流调速装置,有成熟的系列化、标准化、模板化的应用产品。
我国从20世纪60年代初试制成功第一只硅晶闸管以来,晶闸管直流调速系统也得到迅速的发展和广泛的应用。
目前,晶闸管供电的直流调速系统在我国国民经济各部门得到广泛的应用。
我国关于数字直流调速系统的研究主要有:综合性最优控制,补偿PID控制,PID算法优化,也有的只应用模糊控制技术。
[19]随着新型电力半导体器件的发展,IGBT(绝缘栅双极型晶体管)具有开关速度快、驱动简单和可以自关断等优点,克服了晶闸管的主要缺点。
因此我国直流电机调速也正向着脉宽调制(pulse width modulation,简称PWM)方向发展。
[16]我国现在大部分数字化控制直流调速装置依靠进口。
但由于进口设备价格昂贵,也给出了国产全数字控制直流调速装置的发展空间。
目前,国内许多大专院校、科研单位和厂家也都在开发全数字直流调速装置。
[12]主要研究内容及意义由于变频技术的出现,交流调速一直冲击直流调速,但综观全局,尤其是我国在此领域的现状,再加上全数字直流调速系统的出现,更提高了直流调速系统的精度及可靠性,直流调速系统仍将处于十分重要地位。
对于直流调速系统转速控制的要求有稳速、调速、加速或减速三个方面,而在工业生产中对于后两个要求已能很好地实现,但工程应用中稳速指标却往往不能达到预期的效果,稳速要求即以一定的精度在所需要的转速稳定运行,在各种干扰不允许有过大的转速波动。
稳速很难达到要求原因在于数字直流调速装置中的PID调节器对被控对象及其负载参数变化适应能力差。
直流电机的数学模型很容易得到,这使得经典控制理论在己知被控对象的传递函数才能进行设计的前提得到满足,大部分数字直流调速控制器就是建立在此基础上的。
然而,在实际的传动系统中,电机本身的参数和拖动负载的参数并不如模型那样一成不变,尤其对于中小型电机,在某些应用场合随工况而变化;同时,直流电机本身是一个非线性的被控对象,许多拖动负载含有弹性或间隙等非线性因素,因此,被控对象的参数变化与非线性特性,使得线性常参数PID调节器顾此失彼,不能使系统在各种工况下都能保持设计时的性能指标,往往使得控制系统的鲁棒性差,特别是对于模型参数大范围变化且具有较强非线性环节的系统,常规PID调节器难以满足高精度、快响应的控制要求,常常不能有效克服负载、模型参数的大范围变化以及非线性因素的影响。
在工程上,这种控制器就很有可能满足不了生产的需求,如:轧钢工业同轴控制系统、回转窑传动装置、轧辊磨床拖板电控系统等都需要在生产过程中保持稳定的转速要求,而生产负载参数却是随着工况变化的。