单叶双曲面与双曲抛物面直母线-资料
- 格式:ppt
- 大小:235.52 KB
- 文档页数:12
§4.7 单叶双曲面与双曲抛物面的直母线一、直纹曲面:柱面和锥面都可以由一族直线所构成. 由一族直线所构成的曲面叫做直纹面, 而构成曲面的那族直线叫做这个曲面的一族直母线. 柱面与锥面都是直纹面.二、直母线:1.单叶双曲面+-=1是直纹面, 它有两族直母线,它们的方程分别为(λ, μ为参数, 且不全为零)与(λ', μ'为参数,且不全为零)注: 此处是把y项移到右边而得到的直母线方程; 同样也可把x项移到右边得到另一组直母线方程, 两组直母线方程的表达形式可能不一样, 但其方向矢量是平行的, 把它们化为标准方程后会发现它们表示同一组直母线. 双曲抛物面情况类似.2. 双曲抛物面-=2z也是直纹面, 也有两族直母线,方程分别为(λ为参数) 与(λ'为参数)3. 单叶双曲面上两族直母线的大概分布情况如图4-16.4. 双曲抛物面上两族直母线的大概分布情况如图4-17.三、性质:1. 单叶双曲面上异族的任意两条直母线必共面, 而双曲抛物面上异族的任意两条直母线必相交.2. 单叶双曲面或双曲抛物面上同族的任意两条直母线总是异面直线, 而且双曲抛物面同族的全体直母线平行于同一平面.3. 对于单叶双曲面和双曲抛物面上的每一点, 两族直母线中各有一条通过这一点.例1. 试求单叶双曲面+-z2=1上通过点(2, -3, 1)的直母线.解:单叶双曲面+-z2=1的两族直母线方程为与将点(2, -3, 1)代入上面的两组方程, 求得λ=0 与λ': μ'=1:1,代入直母线族的方程, 得过(2, -3, 1)的两条直母线为与即与例2. 求在双曲抛物面-=z上平行于平面3x+2y-4z=0的直母线.解:设双曲抛物面的一族直母线中与已知平面平行的直母线为它的方向矢量为 {-,,-}, 由已知条件有3×+2×+(-4)×=0,解得u=0, 从而求得满足条件的直母线为同理可得另一族直母线中满足条件的直母线为例3. 试证单叶双曲面+-=1的任意一条直母线在xOy坐标面上的射影,一定是其腰椭圆的切线.证明:只须对u族直母线情形证明成立即可. 设u族直母线中一条直线l的方程为l:则l在xOy坐标面上的射影直线l'可以看成是直线l在xOy坐标面上的射影柱面与xOy平面的交线l':现只须证明l'与单叶双曲面的腰椭圆只交于一点即可, 从而l'与腰椭圆相切. 事实上由上式有代入腰椭圆方程得该式左端是一个完全平方式, 故方程只有一组解, 即l'与腰椭圆只有一个交点.例4. 求与两直线==与==相交, 而且与平面2x+3y-5=0平行的直线的轨迹.解: 设满足条件的直线l的方向矢量为{X, Y, Z}, 点P(x, y, z)是l上任意一点, 因l与两已知直线相交, 故有=0,=0.即有(y-2z+2)X+(3z-x+3)Y+(2x-3y-12)Z=0,(-2y-2z+8)X+(2x+3z+12)Y+(2x-3y+24)Z=0.又l与已知平面平行, 从而 2X+3Y=0,由于X, Y, Z不全为零, 由以上三式得=0,化简整理得-=z.这是一双曲抛物面.例5. 求与下列三条直线与==都共面的直线所构成的曲面.解: 设{X, Y, Z}是满足条件的直线l的方向矢量, P(x, y, z)是l上任意一点, 因l 与已知三直线都共面, 故有=0, =0,=0.或由于X, Y, Z不全为零, 从而有=0,化简整理得x2+y2-z2=1.这是一单叶双曲面.作业题:1. 试求双曲抛物面-=2z在点(4, 0, 2)的直母线方程.2. 求通过直纹曲面z=xy上点(1, 1, 1)的直母线方程.。
单叶双曲面与双曲抛物面的教法
椭球-椭圆
双曲面-抛物面
(1) 双曲面:
1)定义:双曲面是单叶双曲面的特殊情况,由特定的二次多项式表示,它在三维空间中是一个曲面,它有二维和一维空间投影,它可以被椭
圆曲线拟合。
双曲面的特点是其曲率固定,且四条边界是正交的。
2)参数方程:双曲面的参数方程为
$\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$,其中$a,b,c$都
大于零。
3)特征:双曲面有两个极轴:$x$和$z$轴;它有两个椭圆曲线为投影:椭圆$\frac{x^2}{a^2}+\frac{z^2}{c^2}=1$和
$\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$
(2) 双曲抛物面:
1)定义:双曲抛物面是由特定的一次多项式表示的抛物面,在三维空
间构成一个双曲面,它与椭球有着类似的几何结构,双曲抛物面的特
点是它的抛物度恒定,边界曲线与xy平面的交点为椭圆。
2)参数方程:双曲抛物面的参数方程为$\frac{x^2}{a^2}-
\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$,其中$a,b,c$都大于零。
3)特征:双曲抛物面有两个极轴:$x$和$z$轴;它有两个椭圆曲线为投影:椭圆$\frac{x^2}{a^2}+\frac{z^2}{c^2}=1$和$\frac{y^2}{b^2}-\frac{z^2}{c^2}=1$。
3.单叶双曲回转面由一直母线绕一条与它交叉的直导线回转而形成的曲面。
如一直母线AB绕与其交叉的直导线OO为轴回转,则形成了单叶双曲回转面。
其投影如图9-15所示。
4.双曲抛物面由一直母线沿两条交叉的两直导线运动,运动中所有素线始终平行某一导平面而形成的曲面,如图9-16所示。
交叉两直线AB和CD为导线,P 为导平面,AC为直母线,它与导平面P平行,CP为铅垂面。
当直母线AC运动到A1 C1 位置时,仍保持与交叉两直线相交,且与导平面P平行,这样连续运动所形成的曲面即为一双曲抛物面。
该曲面用水平面截切得截交线为双曲线,如果正平面或侧平面截切得截交线为抛物线,故因此得名双曲抛物面。
图9-14锥状面图 9-15单叶双曲回转面的投影曲纹面以任意的平面曲线为母线绕回转轴旋转而形成的曲面称为曲纹面。
常见曲纹面有回转椭球面、回转抛物面等。
1.回转椭球面回转椭球面是椭圆绕其自身的长轴或短轴旋转而形成的曲面。
图 9-17所示的回转椭球面的投影,是绕长轴旋转形成的,正面投影是椭圆本身大小,而水平投影是以短轴为直径的圆。
2.回转抛物面回转抛物面是抛物线绕其对称轴旋转而形成的曲面。
回转抛物面的正面投影就是抛物线本身,而水平投影是圆,如图 9-18所示。
图 9-16 双曲抛物面图 9-17回转椭圆面 图9-18回转抛物面4.7单叶双曲面与双叶双曲面的直母线1、 求下列直纹面的直母线族方程: (1)(2)解:(1)从原方程得:x y z +-=axy z =222y z x -=-即:亦即:为了避免取极限,将上方程写成:(1)若将原方程变形为:,则可得到:(2)若令,,则(2)便是(1)原曲面的直母线族是(1),其中不全为零。
(2)原方程变形为:亦即:(1)y y z x z x ⋅-=-+))((⎩⎨⎧-=-=+⇔=--=+y t z x ty z x t z x yy z x )(⎩⎨⎧-=-=+sy t z x tyz x s )()(222x z y -=-⎩⎨⎧-=-=+ux z y v vxz y u )()()(21s t u -=)(21s t v +=∴t s ,ay x z=tay x z==⎩⎨⎧==∴t ay xt z由得: (2)(1)(2)即这原曲面的两组直母线族方程。
双叶双曲面和单叶双曲面
双叶双曲面和单叶双曲面如下:
一、曲率不同:
双叶双曲面的高斯曲率为正。
尽管它具有正曲率,但是具有另一适当选择的度量的双叶双曲面也可以用作双曲线几何的模型。
单叶双曲面的高斯曲率为负,两片双曲面的高斯曲率为正。
尽管它具有正曲率,但是具有另一适当选择的度量的两张双曲面也可以用作双曲线几何的模型。
二、定义不同:
双曲面是二次曲面,其可以被定义为三个变量中的二维多项式的点的集合的表面。
在二次曲面中,双曲面的特征在于不仅具有对称中心,而且让平面和其相交还能形成锥体、柱体等。
双曲面还具有三对垂直对称轴和三对垂直对称平面。
单叶双曲面,也称为双曲面。
它是一个连接表面,每个点都具有负高斯曲率。
这意味着任何点处的切线平面与双曲面相交成两条线,因此单叶双曲面是双重曲面。
,它具有两片双曲面,也称为椭圆双曲面。
表面有两个连接的部件,每个点都有正高斯曲率。