第六章 汽车行驶的平顺性
- 格式:docx
- 大小:41.14 KB
- 文档页数:16
第一章汽车的动力性1汽车动力性:指汽车在良好路面上直线行驶时由汽车受到的纵向外力决定的、所能达到的平均行驶速度。
2汽车动力性主要由三方面指标来评定:1)汽车的最高车速µamax:是指在水平良好的路面(混凝土或沥青)上汽车能达到的最高行驶车速2)汽车的加速时间t:表示汽车的加速能力。
常用原地起步加速时间与超车加速时间来表明汽车的加速能力原地起步加速时间指汽车由Ⅰ挡或Ⅱ挡起步,并以最大的加速强度(包括选择恰当的换挡时机)逐步换至最高挡后到某一预定的距离或车速所需的时间。
超车加速时间指用最高档或次高挡由某一较低车速权利加速至某一高速所需的时间3)汽车的最大爬坡度ⅰmax:是指Ⅰ挡最大爬坡度。
汽车的上坡能力实用满载(或某一载质量)时汽车在良好路面上的最大爬坡度ⅰmax表示的。
3汽车的驱动力:地面对驱动轮的反作用力Ft(方向与Fo相反)即是驱动汽车的外力,此外力称为汽车的驱动力。
4汽车驱动力公式Ft=5汽车驱动力图6汽车的行驶阻力的分类1)滚动阻力Ff2)空气阻力Fw(汽车直线行驶时受到的空气作用力在行驶方向上的分力)空气阻力分为压力阻力与摩擦阻力两部分压力阻力又分为四部分:形状阻力、干扰阻力、内循环阻力、诱导阻力3)坡度阻力Fi(汽车重力沿坡道的分力表现为汽车的坡度阻力)道路阻力:由于坡度阻力和滚动阻力均属于与道路有关的阻力,而且均与汽车重力成正比,故可以把这两种阻力合在一起称作道路阻力4)加速阻力Fj(汽车加速行驶时,需要克服其质量加速运动时的惯性力)7汽车行驶方程式Ft=Ff+Fw+Fi+Fj (N)Ff=Wf f-滚动阻力系数 W-车轮负荷Fw=C D Au a²/21.15 C D-空气阻力系数A-迎风面积m²u a-汽车行驶速度km/hFi=Gsinα G-汽车重力Fj=δm d u/d t δ-汽车旋转质量换算系数 m-汽车质量kg d u/d t 行驶加速度m/s²第二章汽车的燃油经济性1汽车的燃油经济性:在保证动力性的条件下,汽车以尽量少的油消耗量经济行驶的能力2汽车燃油经济性的评价指标:汽车的燃油经济性常用一定运行工况下汽车行驶百公里的燃油消耗量或一定燃油量能使汽车行驶的里程来衡量。
第六章汽车⾏驶的平顺性第六章汽车⾏驶的平顺性6.1 平顺性的评价汽车⾏驶平顺性,是指汽车在⼀般⾏驶速度范围内⾏驶时,能保证乘员不会因车⾝振动⽽引起不舒服和疲劳的感觉,以及保持所运货物完整⽆损的性能。
由于⾏驶平顺性主要是根据乘员的舒适程度来评价,⼜称为乘坐舒适性。
汽车作为⼀个复杂的多质量振动系统,其车⾝通过悬架的弹性元件与车桥连接,⽽车桥⼜通过弹性轮胎与道路接触,其它如发动机、驾驶室等也是以橡胶垫固定于车架上。
在激振⼒作⽤(如道路不平⽽引起的冲击和加速、减速时的惯性⼒等)以及发动机振动与传动轴等振动时,系统将发⽣复杂的振动。
这种振动对乘员的⽣理反应和所运货物的完整性,均会产⽣不利的影响;乘员也会因为必须调整⾝体姿势,加剧产⽣疲劳的趋势。
车⾝振动频率较低,共振区通常在低频范围内。
为了保证汽车具有良好的平顺性,应使引起车⾝共振的⾏驶速度尽可能地远离汽车⾏驶的常⽤速度。
在坏路上,汽车的允许⾏驶速度受动⼒性的影响不⼤,主要取决于⾏驶平顺性,⽽被迫降低汽车⾏车速度。
其次,振动产⽣的动载荷,会加速零件磨损乃⾄引起损坏。
此外,振动还会消耗能量,使燃料经济性变坏。
因此,减少汽车本⾝的振动,不仅关系到乘坐的舒适和所运货物的完整,⽽且关系到汽车的运输⽣产率、燃料经济性、使⽤寿命和⼯作可靠性等。
汽车⾏驶平顺性的评价⽅法,通常是根据⼈体对振动的⽣理反应及对保持货物完整性的影响来制订的,并⽤振动的物理量,如频率、振幅、加速度、加速度变化率等作为⾏驶平顺性的评价指标。
⽬前,常⽤汽车车⾝振动的固有频率和振动加速度评价汽车的⾏驶平顺性。
试验表明,为了保持汽车具有良好的⾏驶平顺性,车⾝振动的固有频率应为⼈体所习惯的步⾏时,⾝体上、下运动的频率。
它约为60~85次/分(1HZ ~1.6HZ),振动加速度极限值为0.2~0.3g。
为了保证所运输货物的完整性,车⾝振动加速度也不宜过⼤。
如果车⾝加速度达到1g,未经固定的货物就有可能离开车厢底板。
汽车理论》知识点最新全总结汽车理论》知识点全总结第一部分:填空题第一章:汽车的动力性1.汽车的动力性指标主要是汽车的最高车速Umax、汽车的加速时间t和汽车的最大爬坡度imax,从获得尽可能高的平均行驶速度的观点出发。
2.常用原地起步加速时间和超车加速时间来表明汽车的加速性能。
3.汽车在良好路面的行驶阻力包括滚动阻力、空气阻力、坡道阻力和加速阻力。
4.汽车的驱动力系数是驱动力与径向载荷之比。
5.汽车动力因数D=Ψ+δdu/g dt。
6.汽车行驶的总阻力可表示为:∑F=Ff+Fw+Fj+Fi,其中滚动阻力是主要由轮胎变形所产生的阻力。
7.汽车加速时产生的惯性阻力是由平移质量和旋转质量对应的惯性力组成。
8.附着率是指汽车直线行驶状况下,充分发挥驱动力作用时要求的最低地面附着系数。
9.汽车行驶时,地面对驱动轮的切向反作用力不应小于滚动阻力、加速阻力与坡道阻力之和,同时也不可能大于驱动轮法向反作用力与附着系数的乘积。
10.当车速达到某一临界车速时,滚动阻力迅速增长,此时轮胎发生驻波现象。
第二章:汽车的燃油经济性1.国际上常用的燃油经济性评价方法主要有两种:以欧洲为代表的百公里燃油消耗量和以美国为代表的每加仑燃油所行驶的距离。
2.评价汽车燃油经济性的循环工况一般包括等速行驶、加速、减速和怠速停车多种情况。
3.货车采用拖挂运输可以降低燃油消耗量,主要原因有两个:带挂车后阻力增加,发动机的负荷率增加,使燃油消耗率b下降;汽车列车的质量利用系数(即装载质量与整车整备质量之比)较大。
4.从结构方面提高汽车的燃油经济性的措施有:缩减轿车尺寸和减轻质量、提高发动机经济性、适当增加传动系传动比和改善汽车外形与轮胎。
5.发动机的燃油消耗率取决于发动机的种类、设计制造水平和汽车行驶时发动机的负荷率。
6.等速百公里油耗正比于等速行驶时的行驶阻力与燃油消耗率,反比于传动效率。
第三章:汽车动力装置参数的选定1.汽车动力装置参数系指发动机的功率和传动系的传动比,它们对汽车的动力性和燃油经济性有很大影响。
第六章6.l 、设通过座椅支承面传至人体垂直加速度的谱密度为一白噪声,Ga ( f )=0.132m -⋅s 。
求在0.5~80H Z 频率范围加权加速度均方根值a w 和加权振级L aw ,并由表6-2查出相应人的主观感觉。
答:21805.02])()([df f G f W a a w ⎰⋅=805.125.1244225.05.121.011.041.0*5.0[dff df df f df ⎰⎰⎰⎰+⋅⋅+⋅⋅+⋅=28.24=⇒)(200a a Lg L waw=70.147)1028.24(206==-Lg查173P 图知:人的主观感觉为极不舒适。
6.2、设车速u =20m /s ,路面不平度系380q 10*56.2)(G m n -=,参考空间频率n o =0.1-1m 。
画出路面垂直位移、速度和加速度)(G q f 、)(G q f 、)(G qf 的谱图。
画图时要求用双对数坐标,选好坐标刻度值,并注明单位。
解:228220q 20*1.0*10*56.2)()(G f f u n n G f q -==29110*12.5f-= 20*1.0*10*56.2*4)(4)(G 282202q -==ππu n n G f q-710*2.02=22842204q *1.0*10*56.2*16)(16)(G f uf n n G f q -==ππ 2-710*99.3f =画出图形为:6.3、设车身-车轮二自由度汽车模型,其车身部分固有频率f o =2Hz 。
它行驶在波长λ=5m 的水泥接缝路上,求引起车身部分共振时的车速u n (km/h)。
该汽车车轮部分的固有频率f t =10Hz ,在砂石路上常用车速为30km/h 。
问由于车轮部分共振时,车轮对路面作用的动载所形成的搓板路的波长λ=?答:①当激振力等于车辆固有频率时,发生共振,所以发生共振时的车速为:2*5u 0a =⋅=f λs m /10=②搓板路的波长 :m 65106.3/30==λ6.4、设车身单质量系统的幅频 |z /q | 用双对数坐标表示时如习题图6所示。
汽车理论第四版(余志生著)课后答案下载汽车理论第四版(余志生著)课后答案下载本书为全国高等学校机电类专业教学指导委员会汽车与拖拉机专业小组制订的规划教材,并于“九五”期间被教育部立项为“普通高等教育九五部级重点教材”和“面向21世纪课程教材”,于“十五”期间被教育部立项为“普通高等教育十五国家级规划教材”。
本书根据作用于汽车上的外力特性,分析了与汽车动力学有关的汽车各主要使用性能:动力性、燃油经济性、制动性、操纵稳定性、行驶平顺性及通过性。
各章分别介绍了各使用性能的评价指标与评价方法,建立了有关的动力学方程,分析了汽车及其部件的结构形式与结构参数对各使用性能的影响,阐述了进行性能预测的基本计算方法。
各章还对性能试验方法作了简要介绍。
另外,还介绍了近年来高效节能汽车技术方面的新发展。
本书为学生提供了进行汽车设计、试验及使用所必需的专业基础知识。
汽车理论第四版(余志生著):推荐理由点击此处下载汽车理论第四版(余志生著)课后答案汽车理论第四版(余志生著):书籍目录第4版前言第3版前言第2版前言第1版前言常用符号表第一章汽车的动力性第一节汽车的动力性指标。
第二节汽车的驱动力与行驶阻力一、汽车的驱动力二、汽车的行驶阻力三、汽车行驶方程式第三节汽车的驱动力,行驶阻力平衡图与动力特性图一、驱动力一行驶阻力平衡图二、动力特性图第四节汽车行驶的附着条件与汽车的附着率一、汽车行驶的附着条件二、汽车的附着力与地面法向反作用力三、作用在驱动轮上的地面切向反作用力四、附着率第五节汽车的功率平衡第六节装有液力变矩器汽车的动力性参考文献第二章汽车的燃油经济性第一节汽车燃油经济性的评价指标第二节汽车燃油经济性的计算第三节影响汽车燃油经济性的因素一、使用方面二、汽车结构方面第四节装有液力变矩器汽车的燃油经济性计算第五节电动汽车的研究一、混合动力电动汽车的特点二、混合动力电动汽车的结构三、混合动力电动汽车的节油原理四、能量管理策略五、实例分析一一丰田混合动力电动汽车Prius六、电动汽车的动力性计算第六节汽车动力性、燃油经济性试验一、路上试验二、室内试验参考文献第三章汽车动力装置参数的选定第一节发动机功率的选择第二节最小传动比的选择第三节最大传动比的选择第四节传动系挡数与各挡传动比的选择第五节利用燃油经济性-加速时间曲线确定动力装置参数一、主减速器传动比的确定二、变速器与主减速器传动比的确定三、发动机、变速器与主减速器传动比的确定参考文献第四章汽车的制动性第一节制动性的评价指标第二节制动时车轮的受力一、地面制动力二、制动器制动力三、地面制动力、制动器制动力与附着力之间的关系四、硬路面上的附着系数第三节汽车的制动效能及其恒定性一、制动距离与制动减速度二、制动距离的分析三、制动效能的恒定性第四节制动时汽车的方向稳定性一、汽车的制动跑偏二、制动时后轴侧滑与前轴转向能力的丧失第五节前、后制动器制动力的比例关系一、地面对前、后车轮的法向反作用力二、理想的前、后制动器制动力分配曲线三、具有固定比值的前、后制动器制动力与同步附着系数四、前、后制动器制动力具有固定比值的汽车在各种路面上制动过程的分析五、利用附着系数与制动效率六、对前、后制动器制动力分配的要求七、辅助制动器和发动机制动对制动力分配和制动效能的影响八、制动防抱装置第六节汽车制动性的试验参考文献第五章汽车的操纵稳定性第一节概述一、汽车操纵稳定性包含的内容二、车辆坐标系与转向盘角阶跃输入下的时域响应三、人一汽车闭路系统四、汽车试验的两种评价方法第二节轮胎的侧偏特性一、轮胎的坐标系二、轮胎的侧偏现象和侧偏力-侧偏角曲线三、轮胎的结构、工作条件对侧偏特性的影响四、回正力矩一一绕OZ轴的力矩五、有外倾角肘轮胎的滚动第三节线性二自由度汽车模型对前轮角输入的响应一、线性二自由度汽车模型的运动微分方程二、前轮角阶跃输入下进入的汽车稳态响应一一等速圆周行驶三、前轮角阶跃输入下的瞬态响应四、横摆角速度频率响应特性第四节汽车操纵稳定性与悬架的关系一、汽车的侧倾二、侧倾时垂直载荷在左、右侧车轮上的'重新分配及其对稳态响应的影响三、侧倾外倾一一侧倾时车轮外倾角的变化四、侧倾转向五、变形转向一一悬架导向装置变形引起的车轮转向角六、变形外倾一一悬架导向装置变形引起的外倾角的变化第五节汽车操纵稳定性与转向系的关系一、转向系的功能与转向盘力特性二、不同工况下对操纵稳定性的要求三、评价高速公路行驶操纵稳定性的试验一一转向盘中间位置操纵稳定性试验四、转向系与汽车横摆角速度稳态响应的关系第六节汽车操纵稳定性与传动系的关系一、地面切向反作用力与“不足-过多转向特性”的关系二、地面切向反作用力控制转向特性的基本概念简介第七节提高操纵稳定性的电子控制系统一、极限工况下前轴侧滑与后轴侧滑的特点二、横摆力偶矩及制动力的控制效果三、各个车轮制动力控制的效果四、四个车轮主动制动的控制效果五、VSC系统的构成六、装有VSC系统汽车的试验结果第八节汽车的侧翻一、刚性汽车的准静态侧翻二、带悬架汽车的准静态侧翻三、汽车的瞬态侧翻第九节汽车操纵稳定性的路上试验一、低速行驶转向轻便性试验二、稳态转向特性试验三、瞬态横摆响应试验四、汽车回正能力试验五、转向盘角脉冲试验六、转向盘中间位置操纵稳定性试验参考文献第六章汽车的平顺性第一节人体对振动的反应和平顺性的评价一、人体对振动的反应二、平顺性的评价方法第二节路面不平度的统计特性一、路面不平度的功率谱密度二、空间频率功率谱密度C。
第六章汽车行驶的平顺性6.1 平顺性的评价汽车行驶平顺性,是指汽车在一般行驶速度范围内行驶时,能保证乘员不会因车身振动而引起不舒服和疲劳的感觉,以及保持所运货物完整无损的性能。
由于行驶平顺性主要是根据乘员的舒适程度来评价,又称为乘坐舒适性。
汽车作为一个复杂的多质量振动系统,其车身通过悬架的弹性元件与车桥连接,而车桥又通过弹性轮胎与道路接触,其它如发动机、驾驶室等也是以橡胶垫固定于车架上。
在激振力作用(如道路不平而引起的冲击和加速、减速时的惯性力等)以及发动机振动与传动轴等振动时,系统将发生复杂的振动。
这种振动对乘员的生理反应和所运货物的完整性,均会产生不利的影响;乘员也会因为必须调整身体姿势,加剧产生疲劳的趋势。
车身振动频率较低,共振区通常在低频范围内。
为了保证汽车具有良好的平顺性,应使引起车身共振的行驶速度尽可能地远离汽车行驶的常用速度。
在坏路上,汽车的允许行驶速度受动力性的影响不大,主要取决于行驶平顺性,而被迫降低汽车行车速度。
其次,振动产生的动载荷,会加速零件磨损乃至引起损坏。
此外,振动还会消耗能量,使燃料经济性变坏。
因此,减少汽车本身的振动,不仅关系到乘坐的舒适和所运货物的完整,而且关系到汽车的运输生产率、燃料经济性、使用寿命和工作可靠性等。
汽车行驶平顺性的评价方法,通常是根据人体对振动的生理反应及对保持货物完整性的影响来制订的,并用振动的物理量,如频率、振幅、加速度、加速度变化率等作为行驶平顺性的评价指标。
目前,常用汽车车身振动的固有频率和振动加速度评价汽车的行驶平顺性。
试验表明,为了保持汽车具有良好的行驶平顺性,车身振动的固有频率应为人体所习惯的步行时,身体上、下运动的频率。
它约为60~85次/分(1HZ ~1.6HZ),振动加速度极限值为0.2~0.3g。
为了保证所运输货物的完整性,车身振动加速度也不宜过大。
如果车身加速度达到1g,未经固定的货物就有可能离开车厢底板。
所以,车身振动加速度的极限值应低于0.6~0.7g。
6.2.1.1 平顺性评价指标在综合大量资料基础上,国际标准化组织ISO提出了ISO 2631《人体承受全身振动的评价指南》。
该标准用加速度均方根值(rms)给出了在中心频率1~80HZ振动频率范围内人体对振动反应的三种不同的感觉界限。
我国参照ISO2631制定了国家标准《汽车平顺性随机输入行驶试验方法》和《客车平顺性评价指标及极限》。
ISO 2631用加速度均方根值给出了人体在1~80Hz振动频率范围内对振动反应的三个不同感觉界限:舒适-降低界限、疲劳-工效降低界限和暴露极限。
舒适-降低界限与保持舒适有关。
在此极限内,人体对所暴露的振动环境主观感觉良好,并能顺利完成吃、读、写等动作。
与保持工作效率有关。
当驾驶员承受振动在此极限内时,能保持正常地进行驾驶。
暴露极限通常作为人体可以承受振动量的上限。
当人体承受的振动强度在这个极限之内,将保持健康或安全。
三个界限只是振动加速度容许值不同。
“暴露极限”值为“疲劳-工效降低界限”的2倍(增加6dB);“舒适-降低界限”为“疲劳-工效降低界限的1/3.15(降低10dB);而各个界限容许加速度值随频率的变化趋势完全相同。
图6-15a和图6-15b分别为在双对数坐标下的垂直和水平方向振动对人体影响的“疲劳-工效降低界限”。
在一定的频率下,随着暴露(承受振动)时间加长,感觉界限容许的加速度值下降。
所以,可用达到某一界限允许暴露时间来衡量人体感觉到的振动强度的大小。
由图6-15的曲线族可知,人体最敏感的频率范围,对于垂直振动为4~8Hz;对于水平振动为1~2Hz以下。
在2.8Hz以下,同样的暴露时间,水平振动加速度容许值低于垂直振动。
频率在2.8Hz以上则相反。
为了用“疲劳-工效降低界限”评价汽车平顺性,首先要对经过汽车座椅传至人体的振动进行频谱分析,得到1/3倍频带的加速度均方值谱。
ISO 2631推荐的两种评价方法是1/3倍频带分别评价法和总加速度加权均方值评价法。
6.2.1.2 1/3倍频带分别评价法直接分别评价法是把“疲劳-工效降低界限”及由计算或频谱分析仪处理得到的1/3倍频带的加速度均方值画在同一张频谱图上。
然后,检查各频带的加速度均方差是否都保持在界限值之下。
1/3倍频带上限频率与下限频率的比值为(6-28) 中心频率为(6-29)上限频率、下限频率与中心频率的关系为(6-30) 分析带宽为(6-31) 将振动传至人体加速度的功率谱密度,对所对应的1/3倍频带中心频率在带宽区间积分,得到各个1/3倍频带的加速度均方值分量,即(6-32)带宽加速度均方根值分量的大小,不能真正反映人体感觉振动强度的大小。
为此,引入人体对不同频率振动敏感程度的频率加权函数。
将人体最敏感频率范围以外的各1/3倍频带加速度均方根值分量进行频率加权,等效于4~8Hz(垂直)、1~2Hz(水平)的分量数值。
即按人体感觉的振动强度相等的原则,折算为最敏感的频率范围。
用和最敏感频率范围的允许加速度均方值根值比较,确定按疲劳-工效降低界限或舒适降低界限允许的暴露时间和。
加权加速度均方根值分量的计算式为(6-33) 式中:--第i频带的中心频率,Hz;--频率加权函数。
为(6-34) 水平方向振动的频率加权函数为(6-35)加权加速度均方根值分量反映了人体对各1/3倍频带振动强度的感觉。
1/3倍频带分别评价法的评价指标就是中的最大值。
此法认为,当有多个频带的振动能量作用于人体时,各频带的作用无明显联系,对人体的影响主要是由单个影响最突出的频带所造成。
因此,要改善行驶平顺性,主要避免振动能量过于集中,尤其是在人体最敏感的频率范围内,不应该有突出的尖峰。
6.2.1.3 总加权值评价法在处理平顺性试验结果或计算设计参数对振动的影响时,通常还采用传至人体振动的加速度均方根值或车身振动的加速度均方根值作为评价平顺性的指标。
这种方法比较简单,适用振动频率分布相似的条件下进行对比。
和值等于1~80Hz中20个1/3倍频带加速度均方根值分量或平方和的平方根。
即式中:N-频带数。
总加权值反映了全部振动能量的大小,而且振动加速度均值为零,所以和代表加速度幅值波动的范围。
总加权值还可利用计权滤波网络,由均方根值检波器读出。
在《汽车平顺性随机输入行驶试验方法》(GB4970-85)和《客车平顺性评价指标及极限》(GB/T12477-90)中均把总加速度加权均方根值列为平顺性评价指标之一。
当各1/3倍频带加速度加权均方根值分量彼此相等时,1/3倍频带分别评价指标和总加速度加权均方根值的关系为(6-37) 式中,n为总的频带数。
在只有一个1/3倍频带有值的窄带振动条件下(n=1),能量分布都集中在该1/3倍频带内。
总加速度加权均方根值显然就是前面1/3频带分别评价方法所考虑的,对人体影响最突出的那个频带的加速度均方值。
= (6-38) 只是此值已折算到人体最敏感的频率范围,所以,可将值与“疲劳-工效降低界限”上人体最敏感频率范围的容许值比较来进行评价。
汽车座椅传递给人体的振动主要是10Hz以下的宽带随机振动,总频带数n约为10。
若各都相等,则(6-39) 实际上,各1/3不相等,实际测算为(6-40) 因ISO 2631图中给出的界限值是针对1/3倍频带分别评价法给的,用总加速度加权均方根值进行评价时,允许界限值也要相应调整,即比ISO2631 给的允许值增大到2倍,否则会偏于保守。
为了便于分析,需要对由多质量组成的汽车振动系统进行简化。
图6-16为经过简化的振动系统模型。
在研究振动时,常将汽车由当量系统代替,即把汽车视为由彼此相联系的悬挂质量与非悬挂质量所组成。
汽车的悬挂质量由车身、车架及其上的总成所构成。
该质量通过质心的横轴Y的转动惯量为,悬挂质量由减振器和悬架弹簧与车轴、车轮相连。
车轮、车轴构成的非悬挂质量为,车轮再经过具有一定弹性和阻尼的轮胎支承路面上。
悬架结构、轮胎、悬挂质量和非悬挂质量是影响汽车平顺性的重要因素。
6.2.2.1 悬挂结构悬挂结构主要指弹性元件、导向装置与减振装置,其中弹性元件与悬架系统中阻尼影响较大。
6.2.2.1.1 弹性元件将汽车车身看成一个在弹性悬架上作单自由度振动的质量时,其固有频率为(6-41) 式中:-悬架刚度,;-悬挂重力,;-重力加速度,;-悬挂重力作用下的悬架的静挠度,mm。
(6-42) 由式(6-41)可见,减少悬架刚度C,可降低车身的固有频率。
当汽车的其它结构参数不变时,要使悬架系统有低的固有频率,悬架就必须具备很大的静挠度。
它是指汽车满载时,刚度不变的悬架在静载荷下的变形量。
对变刚度悬架,静挠度是由汽车满载时,悬架上的静载荷和与相应的瞬时刚度来确定。
目前,汽车悬架的静挠度的变化范围见表6-3。
表6-3 汽车悬架静挠度的变化范围,单位:mm 车型轿车货车大客车越野车悬架静挠度100~300 50~110 70~150 60~130汽车前、后悬架静挠度的匹配对行驶平顺性也有很大影响,若前、后悬架的静挠度以及振动频率都比较接近,共振的机会减少。
为了减少车身纵向角振动,通常后悬架的静挠度要比前悬架的小些。
据统计,一般取=(0.7~0.9) 。
对于短轴距的微型汽车,为了改善其乘坐舒适性,把后悬架设计得软一些,也就是使>。
为了防止汽车在不平路面上行驶时经常冲击缓冲块,悬架还应有足够的(指悬架平衡位置到悬架与车架相碰时的变形)。
前、后悬架的动挠度常根据其相应的静挠度选取,其数值主要取决于车型和经常使用的路面状况,动挠度值与静挠度之间的关系为(6-43)越野车的可按货车范围取上限,以减少车轮悬空和悬架击穿现象。
减少悬架刚度,即增大静挠度,可提高汽车行驶平顺性。
但刚度降低会增加非悬挂质量的高频振动位移。
而大幅度的车轮振动有时会使车轮离开地面,前轮定位角也将发生显著变化,在紧急制动时会产生严重的汽车“点头”现象。
转弯时因悬架侧倾刚度的降低,会使车身产生较大的侧倾角。
为了防止路面对车轮的冲击而使悬架与车架相撞,要相应地增加动挠度,即要有较大的缓冲间隙,对纵置钢板弹簧,就要增加弹簧长度等,从而使悬架布置发生困难。
为了使悬架既有大的静挠度又不影响其它性能指标,可采取一些相应措施,如采用悬架刚度可变的非线性悬架。
由于非线性悬架的刚度随动行程增大,就可以在同样的动行程中,得到比线性悬架更多的动容量(指悬架从静载荷时的位置起,变形到与车架部分接触时的最大变形)。
悬架的动容量越大,对缓冲块撞击的可能性就越小。
现代货车在后悬架上采用钢板弹簧加副簧即为此种最简易的办法。
为使载荷增减时,静挠度保持不变,较为理想的是在悬架系统中设置自动调节车身高度的装置。
这样,悬架弹性特性曲线就应如图6-17所示那样一条曲线。