价层电子对互斥理论

  • 格式:doc
  • 大小:189.50 KB
  • 文档页数:5

下载文档原格式

  / 5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

价层电子对互斥理论

价层电子对互斥理论(英文:V alence S hell E lectron P air R epulsion (VSEPR)),是一个用来预测单个共价分子形态的化学模型。理论通过计算中心原子的价层电子数和配位数来预测分子的几何构型,并构建一个合理的路易斯结构式来表示分子中所有键和孤对电子的位置。

[编辑]理论基础

价层电子对互斥理论的基础是,分子或离子的几何构型主要决定于与中心原子相关的电子对之间的排斥作用。该电子对既可以是成键的,也可以是没有成键的(叫做孤对电子)。只有中心原子的价层电子才能够对分子的形状产生有意义的影响。

分子中电子对间的排斥的三种情况为:

∙孤对电子间的排斥(孤-孤排斥);

∙孤对电子和成键电子对之间的排斥(孤-成排斥);

∙成键电子对之间的排斥(成-成排斥)。

分子会尽力避免这些排斥来保持稳定。当排斥不能避免时,整个分子倾向于形成排斥最弱的结构(与理想形状有最小差异的方式)。

孤对电子间的排斥被认为大于孤对电子和成键电子对之间的排斥,后者又大于成键电子对之间的排斥。因此,分子更倾向于最弱的成-成排斥。

配体较多的分子中,电子对间甚至无法保持90°的夹角,因此它们的电子对更倾向于分布在多个平面上。

实际预测

下面是价层电子对互斥理论预测的分子形状表。

没有孤电子对(基本形状)1个孤电子对 2个孤电子对3个孤电子对

电子对数

2

直线型

3

平面三角形型角型

4

四面体型三角锥型角型

5

三角双锥型变形四面体型T字型直线型

6

八面体型四角锥型平面四方形型

7

五角双锥型五角锥型

8

四方反棱柱型

分子类

型分子形状

中心原子价电子对的排

布方式†

分子的几何

构型‡

实例

AX

1E

n

双原子分子

(直线型)

HF、O

2

AX

2E

直线型BeCl

2

、HgCl

2

、CO

2

AX

2E

1

角型NO

2

−、SO

2

、O

3

AX

2E

2

角型H

2

O、OF

2

AX

2E

3

直线型XeF

2

、I

3

AX

3E

平面三角形

BF

3

、CO

3

2−、NO

3

−、SO

3

AX

3E

1

三角锥型NH

3

、PCl

3

AX

3E

2

T字型ClF

3

、BrF

3

AX

4E

四面体型CH

4

、PO

4

3−、SO

4

2−、ClO

4

AX

4E

1

变形四面体

SF

4

AX

4E

2

平面四方形

XeF

4

AX

5E

三角双锥型PCl

5

AX

5E

1

四角锥型ClF

5

、BrF

5

AX

6E

八面体型SF

6

AX

6E

1

五角锥型XeOF

5

−、IOF

5

2−[1]

AX

7E

五角双锥型IF

7

AX

8E

四方反棱柱

XeF2−8

†孤电子对以淡黄色球体表示。

‡分子的实际几何构型,即不包含孤对电子的构型。

价层电子对互斥理论常用AXE方法计算分子构型。这种方法也叫ABE,其中A代表中心原子,X或B代表配位原子,E代表孤电子对。

范例

甲烷分子(CH4)是四面体结构,是一个典型的AX4型分子。中心碳原子周围有四个电子对,四个氢原子位于四面体的顶点,键角(H-C-H)为109°28'。

一个分子的形状不但受配位原子影响,也受孤对电子影响。氨分子(NH3)中心原子杂化类型与甲烷相同(sp3),分子中有四个电子云密集区,电子云分布依然呈四面体。其中三个是成键电子对,另外一个是孤对电子。虽然它没有成键,但是它的排斥力影响着整个分子的形状。因此,这是一个AX3E型分子,整个分子的形状是三角锥形,因为孤对电子是不可“见”的。

事实上,电子对数为七是有可能的,轨道形状是五角双锥。但是它们仅存在于不常见的化合物之中,比如在六氟化氙中,有一对孤电子,它的构型趋向于八面体结构,因为孤对电子倾向于位于五角形的平面上。另一个例子为七氟化碘,碘没有孤电子,七个氟原子呈五角双锥状排列。

电子对数为八也是有可能的,这些化合物一般为四方反棱柱体结构,[2]例子有八氟合氙酸亚硝酰中的 [XeF8]2−离子[3][4]以及八氰合钼(Ⅳ)阴离子 [Mo(CN)8]4−和八氟合锆(Ⅳ)阴离子 [ZrF8]4−。

例外

在一些化合物中VSEPR理论不能正确的预测分子空间构型。

过渡金属化合物

许多过渡金属化合物的几何构型不能用VSEPR理论解释,可以归结于价层电子中没有孤对电子以及核心的d电子与配体的相互作用。[5]这些化合物的结构可以用VALBOND理论预测,包括金属氢化物和烷基配合物(例如六甲基钨),这个理论的基础是sd杂化轨道和三中心四电子键模型。[6][7]晶体场理论是另一个经常可以解释配合物几何构型的理论。

IIA族卤化物