价层电子对互斥理论使用
- 格式:ppt
- 大小:683.50 KB
- 文档页数:20
运用价层电子对互斥理论判断分子构型作者:闫象全来源:《中学化学》2016年第01期一、价层电子对互斥理论要点由价层电子对互斥理论可以归纳得到以下的四个要点:1.分子或离子的空间构型决定了中心原子周围的价层电子数。
2.价层电子对尽可能彼此远离,使它们之间的斥力最小。
3.通常采取对称结构,分子的构型总是采取电子对排斥力平衡的形式。
4.ABn型分子的几何构型取决于中心原子A的价层中电子对的排斥作用。
二、推断分子或离子空间构型的步骤1.确定中心原子中价层电子对数(1)中心原子价层电子对总数和对数①中心原子价层电子总数等于中心原子A的价电子数加上配体在成键过程中提供的电子数,如CCl4:4+1×4=8②氧族元素的原子作中心原子时,价电子数为6,如H2O、H2S;作配体时,提供电子数为0,如在CO2中O提供的是0个电子。
③处理离子体系时,要加减离子价。
如:PO3-4:5+0×4+3=8;NH+4:5+1×4-1=8。
④总数除以2,即可得电子对数:总数为奇数时,对数进1。
例如:总数为9,对数为5。
⑤中心原子价层电子对数计算公式:价层电子对数=(中心原子价电子数+配位原子提供的电子数-离子电荷代数值)/2如PO3-4:磷原子的价层电子对数=[5+0-(-3)]/2=4;NH3:氮原子价层电子对数=(5+1×3)/2=4。
(2)根据中心原子价层电子对数,找到相应电子对的排布,这种排布方式可使电子对之间的斥力最小(见表1)。
三角形四面体三角双锥八面体(3)分子的构型取决于中心原子的价层电子对数目及电子对的构型。
(4)配位原子按相应的几何构型排布在中心原子周围,每1对电子连接1个配位原子,剩下未结合的电子便是孤对电子,孤对电子的位置会影响分子的空间构型。
孤对电子与成键电子对比较的原则是:孤对-孤对的排斥力>>孤对-成键电子对的排斥力>成键-成键电子对的排斥力。
第7讲价层电子对互斥理论根据预习里已经学习的内容,你发现常见分子或者离子的空间构型可以通过记忆获取。
但是,分子或者微粒的种类数目有许许多多,陌生微粒的空间构型应该如何推断呢?1.价层电子对互斥理论(VSEPR)分子中的价层电子对包括σ键电子对和中心原子上的孤电子对,由于电子对的相互排斥作用,而趋向尽可能彼此远离,分子尽可能采取对称的立体构型,以减小斥力。
2.价层电子对的确定方法(1)a 表示中心原子的价电子数。
对主族元素:a =最外层电子数; 对于阳离子:a =价电子数-离子电荷数; 对于阴离子:a =价电子数+|离子电荷数|。
(2)x 表示与中心原子结合的原子数。
(3)b 表示与中心原子结合的原子最多能接受的电子数,氢为1,其他原子=8-该原子的价电子数。
3.VSEPR 模型预测分子或离子的立体构型 (1)中心原子上的价电子都用于形成共价键的分子讲义一、导入二、知识讲解知识点1 价层电子对互斥理论平面三角形正四面体形(2)中心原子上有孤电子对的分子对于中心原子上有孤电子对(未用于形成共价键的电子对)的分子,中心原子上的孤电子对也要占据中心原子周围的空间,并互相排斥使分子呈现不同的立体构型。
VSEPR模型与分子的立体构型不一定一致,分子的立体构型指的是成键电子对的立体构型,不包括孤电子对(未用于形成共价键的电子对)。
两者是否一致取决于中心原子上有无孤电子对,当中心原子上无孤电子对时,两者的构型一致;当中心原子上有孤电子对时,两者的构型不一致。
三、例题精析【教学建议】此处内容主要用于教师课堂的精讲,每个题目结合试题本身、答案和解析部分,教师有的放矢的进行讲授或与学生互动练习。
例题11.用价层电子对互斥理论判断SO3的分子构型为()A.正四面体形B.V形C.三角锥形D.平面三角形解析:选D SO3中S原子的价层电子对数为3,其全部用于形成共价键,S原子周围有3个氧原子,属于平面三角形。
例题22.连线题。
价层电子对互斥理论使用价层电子对互斥理论是一种用来解释电子在能级上分布的理论。
该理论认为,在一个多电子系统中,电子倾向于占据不同的能级,这是因为电子之间存在一种互斥作用。
这种互斥作用源于电子之间的库仑排斥和泡利不相容原理。
库仑排斥是指电子之间由于带正电的原子核引力作用而产生的互斥力。
当两个电子靠近时,它们之间产生的排斥力会增加,使得电子倾向于占据不同的能级。
这种互斥作用对电子分布起到了显著的作用。
泡利不相容原理是指每个电子的量子态必须是唯一的。
根据泡利不相容原理,任意两个电子不能具有相同的量子态,即它们的自旋量子数必须不同。
这意味着电子不能全部集中在同一个能级上,而是倾向于分布在不同的能级上,以满足泡利不相容原理。
基于价层电子对互斥理论,可以解释许多电子结构的现象。
首先,可以解释原子的层次结构。
根据互斥理论,电子会填充不同的能级,从低能级开始,一直填充到高能级。
这解释了原子的能级结构和化学性质。
其次,互斥理论还可以解释原子和分子中电子的排布。
在原子中,电子遵循互斥原则,尽量占据不同的价层。
在分子中,电子在不同原子之间的共享和分配也遵循互斥原则。
这解释了化学键的形成和分子的几何结构。
互斥理论还有助于理解电子在固体中的行为。
固体中的电子被束缚在晶体中,组成电子云。
根据互斥理论,这些束缚电子也遵循互斥原则,尽量占据不同的能级。
这解释了导体、绝缘体和半导体的电子行为,以及电子在带隙里的分布。
此外,互斥理论还有助于解释多电子体系的能量分布。
根据互斥原理,电子将占据能量较低的态,使得多电子体系的总能量降低。
这解释了多电子体系的稳定性和能级分布。
总结来说,价层电子对互斥理论是一种解释电子在能级上分布的理论。
这一理论是基于库仑排斥和泡利不相容原理的,可以解释多种电子结构和化学现象。
它为我们理解原子、分子和固体的性质提供了重要的理论依据。
用价层电子对互斥理论判断
用价层电子对互斥理论判断
价层电子(P-type Electron)是一种由硅原子衍生出来的电子,它们
被普遍用于互斥理论的判断。
互斥理论认为,当两个或更多的事物相
互抵消,那么他们之间就会发生冲突,而且任何一方都无法控制另一方。
价层电子可以用来判断这种情况,它们能够识别出互斥的特性,
从而使研究者能够准确地分辨两个或多个对象之间的冲突和抵消关系。
价层电子可以识别出一种特定的电势,即互斥的电势,它们可以检测
出的电势的强弱程度可以用于判断两个或多个对象之间是否存在互斥
关系。
这种电势的强弱程度可以用以下几种方式来判断:一是电子探
测器,可以检测电势的强弱程度;二是电路分析仪,可以检测电势的
变化;三是仪器仪表,可以检测电势的稳定性。
通过这些方式,研究
者可以准确地判断两个或多个对象之间是否存在互斥关系。
价层电子的使用也有一定的局限性,例如,它们只能用于检测电势,
而不能用于检测其他物理参数,或者当电势变化时,它们也无法识别。
因此,研究者在使用价层电子来判断互斥理论时,必须要小心,以免
出现偏差。
总之,价层电子可以用来判断互斥理论,但是也要注意使用时的局限性,以免出现偏差。
价层电子对互斥理论使用价层电子对互斥理论(Valence Shell Electron Pair Repulsion, VSEPR)是一种用来预测分子几何构型的理论。
价层电子对互斥理论认为,分子中的电子对会通过排斥力互相排开,使得分子呈现特定的立体构型。
这一理论的应用范围广泛,涵盖了许多重要的化学现象和反应,如分子的形状、化学键的角度和键长等。
价层电子对互斥理论的基本假设是,共价键形成后,其中的电子对会在空间中尽可能远离彼此,并尽量使得分子的排斥能最小化。
在这个理论中,分子中的电子对分为两类:价电子对和非键电子对。
价电子对是分子中连接原子之间共享的电子对,而非键电子对是分子中存在但不共享的电子对。
根据价层电子对互斥理论,分子的立体几何构型可以通过以下步骤预测:1.找出分子中的中心原子和周围原子。
中心原子是通常有最多键数的原子,而周围原子是连接到中心原子的所有原子。
2.计算中心原子的价态电子数(通过查阅元素周期表中的配位数)以及非键电子对数(查物种中不参与共价键的电子对数)。
将计算结果与周围原子的合计价电子数(和价态电子数和非键电子数相加)相减,得到中心原子周围的价电子对数。
3.根据中心原子周围的价电子对数,确定分子的基本几何构型。
常见的几何构型包括线性型、三角形平面型、四面体型、平面正方形型等。
4.考虑非键电子对对几何构型的影响。
非键电子对对立体构型的影响比价电子对更大,因为它们比较“胖”,所以它们会占据更大的空间,引起更强烈的排斥效应。
根据非键电子对的位置,可以调整立体构型,使其适应非键电子对的位置。
总体而言,价层电子对互斥理论提供了一种直观的方法来预测分子几何构型。
这种方法在有机化学中得到广泛应用,可以帮助化学家设计分子、预测分子性质以及理解化学反应的机制。
需要注意的是,该理论是基于一些基本假设和经验规则的简化模型,因此在一些情况下可能会有局限性。
在实际应用中,需要结合其他的理论和实验数据来更准确地预测和解释分子的几何构型。
价层电子对互斥理论使用价层电子对互斥理论(Valence Shell Electron Pair Repulsion Theory)是一种用于推测分子几何形状的理论。
该理论假设电子对在空间中互相排斥,因此分子的几何构型可以通过电子对的排布来确定。
价层电子对是指与原子之间能够形成共价键或孤对电子的电子对。
理论基础:1.电子对之间的排斥力最小化。
同种电子对之间的排斥力较大,不同种电子对之间的排斥力较小。
2.单独的电子对比成对的电子对更容易被其他电子云所靠近。
3.电子对的排布趋向于最大程度的分离。
根据这些原则,我们可以预测分子的排布形态。
分子的电子对排布方式有多种形态,包括线性、平面三角形、平面四边形、平面五边形、笼形、六边形、八面体等。
以氨分子(NH3)为例,氮原子有5个电子,其中3个与3个氢原子形成共价键,剩下的2个是孤对电子。
根据价层电子对互斥理论,孤对电子会占据较大的空间,使得氨分子呈现出一个三角形构型。
再以甲烷(CH4)为例,碳原子有4个电子,与4个氢原子形成共价键。
根据价层电子对互斥理论,这4个电子对会互相排斥,使得甲烷分子呈现出一个正方形构型。
另外一个例子是水分子(H2O),氧原子有6个电子,与两个氢原子形成共价键,剩下的2个是孤对电子。
根据价层电子对互斥理论,这两个孤对电子会占据较大的空间,使得水分子呈现出一个倾斜的构型。
从上述示例可以看出,通过价层电子对互斥理论,我们可以推测出分子的几何构型,进而推断分子的性质和反应行为。
这为有机化学、无机化学以及生物化学等领域的研究提供了有力的理论基础。
然而,价层电子对互斥理论也有其局限性。
例如在一些分子中,价层电子对排布方式可能不符合预期,这可能是由于额外的电子云效应或分子内相互作用的影响。
此外,该理论只适用于描述小分子的几何构型,对于大分子或者有多个中心原子的分子来说并不适用。
尽管如此,价层电子对互斥理论依然是化学中一项重要的理论工具,为我们理解分子结构和性质提供了实质性的帮助,并促进了分子设计、药物研发以及催化反应等方面的进展。
2价层电子对互斥模型的应用——判断分子或离子的立体构型价层电子对互斥模型认为,在一个共价分子中,中心原子周围电子对排布的立体构型主要决定于中心原子的价电子层中电子对的数目。
所谓价层电子对包括成键的σ电子对和未成键的孤电子对。
价层电子对各自占据的位置倾向于彼此分离得尽可能地远些,这样电子对彼此之间的排斥力最小,整个分子最为稳定。
这样也就决定了分子的立体结构。
因此利用价层电子对互斥模型可以预测简单分子或离子的立体结构。
利用VSEPR模型推断分子或离子的立体构型的具体步骤如下:1.确定中心原子A价层电子对数目中心原子A的价电子数与配位体X提供共用的电子数之和的一半,就是中心原子A价层电子对的数目。
例如BF3分子,B原子有3个价电子,三个F原子各提供一个电子,共6个电子,所以B原子价层电子对数为3。
如果讨论的是离子,则应加上或减去与离子电荷相应的电子数。
如PO3-4中P原子的价层电子数应加上3,而NH+4中N原子的价层电子数则应减去1。
2.确定价层电子对的立体构型由于价层电子对之间的相互排斥作用,它们趋向于尽可能地相互远离。
于是价层电子对的立体构型与价层电子对数目的关系如下表所示:3.确定分子的立体构型价层电子对有成键电子对和孤电子对之分,价层电子对的总数减去成键电子对数,得孤电子对数。
根据成键电子对数和孤电子对数,可以确定相应的较稳定的分子立体构型。
判断分子立体构型时应注意:(1)如果在价层电子对中出现孤电子对时,价层电子对立体构型还与下列斥力顺序有关:孤对—孤对>孤对—键对>键对—键对。
因此,价层电子对立体构型为正三角形和正四面体时,孤电子对的存在会改变键对电子的分布空间。
(2)对于分子中有双键、三键等多重键时,使用价层电子对理论判断其分子构型时,双键的两对电子和三键的三对电子只能作为一对电子来处理。
或者说在确定中心原子的价电子层电子对总数时,不包括形成π键的电子。
实例分析:判断HCHO分子和HCN分子的立体构型。