博弈论(完全信息静态博弈)
- 格式:ppt
- 大小:1.34 MB
- 文档页数:71
完全信息静态博弈论模型引言:博弈论是研究决策制定者在不同利益冲突场景下的行为和策略选择的数学模型。
在博弈论中,静态博弈是指参与者在同一时间点做出决策的情况。
完全信息表示每个参与者对于其他参与者的行为和策略选择都有完全的了解。
本文将介绍完全信息静态博弈论模型的基本概念、解决方法以及应用领域。
一、基本概念1.1 参与者完全信息静态博弈中,有两个或多个参与者,每个参与者可以是个体、团体或国家等。
参与者通过制定决策来追求自身的利益。
1.2 策略每个参与者在博弈中可以选择的行动方案称为策略。
策略可以是纯策略,即只选择一个确定的行动;也可以是混合策略,即以一定概率选择不同的行动。
1.3 支付函数支付函数是衡量参与者在不同策略组合下所获得效用或利益的函数。
支付函数可以表示为参与者的收益、成本或效用。
1.4 纳什均衡纳什均衡是指在博弈中,每个参与者选择的策略组合使得没有参与者有动机改变自己的策略。
换言之,每个参与者都在给定其他参与者的策略下做出最优的决策。
二、解决方法2.1 支付矩阵为了描述参与者之间的策略选择和支付函数之间的关系,可以使用支付矩阵。
支付矩阵是一个二维矩阵,行表示一个参与者的策略选择,列表示其他参与者的策略选择,每个元素表示对应策略组合下的支付函数。
2.2 最优响应最优响应是指在其他参与者的策略下,参与者能够选择的最优策略。
通过计算每个参与者的最优响应,可以找到纳什均衡。
2.3 前瞻性在完全信息静态博弈中,参与者可以通过推断其他参与者的策略和支付函数来做出决策。
前瞻性是指参与者能够预测其他参与者的行为并做出相应的反应。
三、应用领域完全信息静态博弈论模型广泛应用于经济学、政治学、生物学等领域。
3.1 经济学博弈论在经济学中有广泛应用,如市场竞争、定价策略、拍卖等。
完全信息静态博弈模型可以帮助分析参与者的决策行为,预测市场的走势和结果。
3.2 政治学在政治学中,博弈论可以用于分析选举、政策制定和国际关系等问题。
第二章 完全信息静态博弈完全信息:每一个参与者对其他所有参与者的策略空间及得益有准确的知识。
静态:所有参与者同时选择策略,每一个参与者事先并不知道其他参与者的具体策略选择第二章 完全信息静态博弈2.1严格优势策略均衡 2.2严格劣势策略消去法 2.3相对优势策略划线法 2.4多重纳什均衡的选择 2.5无限策略博弈反应函数法 2.6混合策略纳什均衡2.1 严格优势策略均衡引子:囚徒困境(Prisoner ’s Dilemma)参与者:囚徒1、囚徒2 策略空间:坦白、抵赖 得益:1、一个坦白并作证,另一个抵赖,抵赖者入狱五年,坦白者将得到宽大释放; 2、都坦白,每人入狱三年;3、都不坦白,每人以妨碍公务罪入狱一年。
得益矩阵 得益矩阵 得益矩阵 囚徒 2 坦白抵赖囚徒1 抵赖11 055 033坦白 坦白策略被称为囚徒1的全面的严格的优势策略。
简称严格优势策略全面的:不论对方采用何种策略,此策略总显示优势 严格的:此策略严格好于其他策略由严格优势策略组成的博弈均衡,称为 “严格优势策略均衡”囚徒困境的严格优势策略均衡为(坦白,坦白) 双方的得益为(-3,-3)启示:“个人理性”与“集体理性”的冲突例1:公共品供给的囚徒困境李四 修不修张 修 三不修不修 00 133111修路的成本为4,各自获得的好处为3例2:价格战百事可乐低价 高价可 低价口口可 高价 乐乐 55 611 633注:囚徒困境得益+6第二章 完全信息静态博弈2.1严格优势策略均衡 2.2严格劣势策略消去法 2.3相对优势策略划线法 2.4多重纳什均衡的选择 2.5无限策略博弈反应函数法 2.6混合策略纳什均衡2.2 严格劣势策略消去法引子:智猪博弈按钮食槽小猪大猪 按一下按钮会有10单位的猪食进槽,但按按钮然后 再跑到猪食槽需要付出2单位成本参与者:大猪、小猪策略空间:按按钮、坐等其食 得益:1、同时按按钮并跑过来,大猪吃到7个单位,小猪 吃到3个单位。
博弈论四种类型之完全信息静态博弈决策需要信息,⼏乎所有需要决策的场合我们都掌握着有限信息,这使得现实中往往是有限信息博弈。
完全信息在这⾥指的是每个参与⼈对其他参与⼈的⽀付函数有着完全的了解。
⽽静态指的是同时⾏动的博弈,或者不同时但后⾏动者不知道之前⾏动者的决策。
在完全信息静态博弈中的均衡是纳什均衡。
最典型的例⼦是囚徒困境与智猪博弈。
下⾯就由这两个例⼦展开,并将在博弈论中的⼀些知识点做出介绍。
【囚徒困境】中基于收益矩阵的模型描述如下:【注】博弈中参与⼈只拥有有限个离散性的纯战略供其选择称为离散型策略。
⽽在另外⼀些博弈中,每个参与者的纯策略可以是来⾃连续范围的⼀个数,如⼚商定价,称为连续型策略。
离散型策略静态博弈可以⽤⽀付表来表⽰,如上图。
对于囚徒A与B来说,⽆论对⽅采取什么策略,⾃⼰的策略是“坦⽩”时总是⽐“抵赖”要好些,在两⼈⽆法通信的情况下,两⼈都会选择“坦⽩”。
【优势战略均衡】在这⾥,⽆论对⽅选择什么,“坦⽩”的收益是严格⼤于“抵赖”,所以“坦⽩”是⼀个严格优势策略,对应的“抵赖”则是⼀个劣势策略。
所有⼈都有⾃⼰的优势策略,由此产⽣的优势策略组合是⼀个优势战略均衡。
但是这⾥需要注意的是,双⽅各⾃的优势策略却导致了集体的利益最差,如果两⼈都选择“抵赖”收益将是各⾃-1,但是优势策略下的收益却是-8.囚徒困境反映了个⼈理性与集体理性的冲突。
个⼈的最优选择从社会⾓度看并不是最优的。
社会⽣活中有很多例⼦:公共品的给予,商家的价格战,团队⽣产中的偷懒(三个和尚没⽔喝),⼩学⽣减负越减越重,各国军备竞赛等。
【如何⾛出囚徒困境】如果有可信的承诺或者是惩罚(第三⽅实施),会使两⼈合作,促进集体利益最⾼。
【智猪博弈】智猪博弈的收益矩阵模型如下:在此处,⼩猪有优势与劣势策略,但⼤猪没有,只能根据⼩猪的策略做出最佳应对,⽽⼩猪不会选择劣势策略,因此剔除⼩猪“按”的策略,此时,⼤猪的策略只能为“等”。
【重复剔除劣势战略均衡】严格劣势策略为不管其他参与⼈怎样选择呢策略,参与⼈选择策略A时的收益严格⼩于策略B时的收益。
完全信息静态博弈例题完全信息静态博弈是博弈论中的一个重要概念,指的是参与者在博弈开始前获得了所有相关信息,并且在博弈过程中没有隐私和未知因素的影响。
在完全信息静态博弈中,参与者同时作出决策,不考虑对方的反应。
下面我们来看一个完全信息静态博弈的例题:假设有两个玩家,分别为甲和乙,他们需要决定是否采取合作或者背叛的策略。
如果两人都选择合作,则每个人会获得3个单位的奖励;如果两人都选择背叛,则每个人都会获得1个单位的奖励;如果一人选择合作而另一人选择背叛,则合作的人将会遭受惩罚,只能获得0个单位的奖励,而背叛的人将获得5个单位的奖励。
在这个博弈中,甲和乙可以通过思考对方的可能策略来做出自己的决策。
从甲的角度来看,他可以考虑乙选择合作还是背叛,对于每种可能的情况,甲可以计算出自己的最佳策略。
如果乙选择合作,甲选择合作的话,他可以获得3个单位的奖励;如果甲选择背叛,他可以获得5个单位的奖励。
因此,对于甲来说,在乙选择合作的情况下,他的最佳策略是选择背叛。
同样地,从乙的角度来看,他可以考虑甲选择合作还是背叛,对于每种可能的情况,乙可以计算出自己的最佳策略。
如果甲选择合作,乙选择合作的话,他可以获得3个单位的奖励;如果乙选择背叛,他可以获得5个单位的奖励。
因此,对于乙来说,在甲选择合作的情况下,他的最佳策略是选择背叛。
综上所述,根据完全信息静态博弈的原理,在这个例题中,甲和乙的最佳策略都是选择背叛。
因此,根据这两个最佳策略,我们可以得出一个纳什均衡解,即双方都选择背叛。
完全信息静态博弈是博弈论中的一个重要分支,通过分析参与者的策略选择和预期收益,可以得出最佳策略和均衡解。
在实际生活中,完全信息静态博弈的思维模式可以帮助我们在竞争和合作的场景中做出更为理性和明智的决策。