第五章 异方差性 思考题
- 格式:doc
- 大小:580.00 KB
- 文档页数:22
第二章异方差性、自相关性和多重共线性思考与练习参考答案2.1参考答案答:随机误差项方差随观察单位而变的现象为异方差。
影响:(1)尽管OLS估计仍无偏,但起方差不再有效(即最小方差性不具备),且模型误差项方差估计有偏.(2)t检验、F 检验失效,从而对参数、模型整体的显著性判断不可靠.(3)预测精度低,模型的应用失效.2.2参考答案答:G---Q检验原理:(1)假定随机误差项方差σ2t 与某一解释变量Xti成正(负)相关;(2)对样本观察值按Xi升序排列后去除中间的部分样本值;(3)分别以剩下的两部分样本值为子样,利用OLS法计算各自的方差估计值;(4)以两子样的方差估计值构造F统计量,判断两子样的方差是否差异显著。
若显著,则存在异方差;否则反之。
White检验原理:通过构造辅助回归模型e2t =β+tipiix∑=1β+tjpjitiijxx∑=1,β来判断零假设H0:①E(Ut)=2σ(t=1,2,3……N) ,并且②模型设定Y=XB+U正确若检验显著,则否定零假设,从而认为存在异方差或者模型设定错误;若检验不显著,则接受零假设。
White、Park和Glecses检验均使用辅助回归模型来探测住回归方程系数显著性检验来探测异方差性。
其间区别在于:Park和Glecses检验是通过辅助回归方程系数显著性来探测异方差;而White检验则是通过辅助回归方程整体显著性来检验探测主回归模型是否存在异方差性或者设定误差。
2.3参考答案答:WLS发实质上为模型变换法.考虑回归模型Y t =b 0+b 1x t +U t ,假设其存在异方差性并且Var(U t )=2t σ=K 2其中K 为常数,对远模型使用权数为W t =1/)/(t x t 的WLS 法进行估计时,实质上是对原模型作了变换,变换后的形式为:)(t tx f Y =)(0t x f b +)(1t tx f x b +)(t tx f v经过转换后,模型的异方差性被清除了。
第五章课后答案5.1(1)因为22()i i f X X =,所以取221iiW X =,用2i W 乘给定模型两端,得 312322221i i ii i i i Y X u X X X X βββ=+++ 上述模型的随机误差项的方差为一固定常数,即22221()()i i i iu Var Var u X X σ==(2)根据加权最小二乘法,可得修正异方差后的参数估计式为***12233ˆˆˆY X X βββ=-- ()()()()()()()***2****22232322322*2*2**2223223ˆi i i i i i i i i i i i i i i i i iW y x W x W y x W x x W x W x W x x β-=-∑∑∑∑∑∑∑()()()()()()()***2****23222222332*2*2**2223223ˆii ii i i iii i i ii i i i i iW y x W x W y x W x x Wx W x W x x β-=-∑∑∑∑∑∑∑其中22232***23222,,iii i i i iiiW XW X W Y X X Y WWW ===∑∑∑∑∑∑******222333i i i i i x X X x X X y Y Y=-=-=- 5.2(1)2222211111 ln()ln()ln(1)1 u ln()1Y X Y X Yu u X X X u ββββββββββ--==+≈=-∴=+[ln()]0()[ln()1][ln()]11E u E E u E u μ=∴=+=+=又(2)[ln()]ln ln 0 1 ()11i i iiP P i i i i P P i i E P E μμμμμμμ===⇒====∑∏∏∑∏∏不能推导出所以E 1μ()=时,不一定有E 0μ(ln )= (3) 对方程进行差分得:1)i i βμμ--i i-12i i-1lnY -lnY =(lnX -X )+(ln ln 则有:1)]0i i μμ--=E[(ln ln5.3(1)该模型样本回归估计式的书写形式为:Y = 11.44213599 + 0.6267829962*X (3.629253) (0.019872)t= 3.152752 31.5409720.944911R =20.943961R = S.E.=9.158900 DW=1.597946 F=994.8326(2)首先,用Goldfeld-Quandt 法进行检验。
第五章-异方差性-答案第五章 异方差性一、判断题1. 在异方差的情况下,通常预测失效。
( T )2. 当模型存在异方差时,普通最小二乘法是有偏的。
( F )3. 存在异方差时,可以用广义差分法进行补救。
(F )4. 存在异方差时,普通最小二乘法会低估参数估计量的方差。
(F )5. 如果回归模型遗漏一个重要变量,则OLS 残差必定表现出明显的趋势。
( T )二、单项选择题1.Goldfeld-Quandt 方法用于检验( A )A.异方差性B.自相关性C.随机解释变量D.多重共线性2.在异方差性情况下,常用的估计方法是( D )A.一阶差分法B.广义差分法C.工具变量法D.加权最小二乘法3.White 检验方法主要用于检验( A )A.异方差性B.自相关性C.随机解释变量D.多重共线性4.下列哪种方法不是检验异方差的方法( D )A.戈德菲尔特——匡特检验B.怀特检验C.戈里瑟检验D.方差膨胀因子检验5.加权最小二乘法克服异方差的主要原理是通过赋予不同观测点以不同的权数,从而提高估计精度,即( B )A.重视大误差的作用,轻视小误差的作用B.重视小误差的作用,轻视大误差的作用C.重视小误差和大误差的作用D.轻视小误差和大误差的作用6.如果戈里瑟检验表明,普通最小二乘估计结果的残差与有显著的形式的相关关系(满足线性模型的全部经典假设),则用加权最小二乘法估计模型参数时,权数应为( B )A. B. C. D. 7.设回归模型为,其中()2i2i x u Var σ=,则b 的最有效估计量为( D )i e i x i i i v x e +=28715.0i v i x 21i x i x 1ix 1i i i u bx y +=A. B. C. D. ∑=i i x y n 1b ˆ 8.容易产生异方差的数据是( C )A. 时间序列数据B.平均数据C.横截面数据D.年度数据9.假设回归模型为i i i u X Y ++=βα,其中()2i 2i X u Var σ=,则使用加权最小二乘法估计模型时,应将模型变换为( C )。
第五章思考题5.2 各种异方差检验的基本思想是,基于不同的假定,分析随机误差项的方差与解释变量之间的相关性,以判断随机误差项的方差是否随解释变量变化而变化。
其中,戈德菲尔德-夸特检验、怀特检验、ARCH检验和Glejser检验都要求大样本,其中戈德菲尔德-夸特检验、怀特检验和Glejser检验对时间序列和截面数据模型都可以检验,ARCH检验只适用于时间序列数据模型中。
戈德菲尔德-夸特检验和ARCH检验只能判断是否存在异方差,怀特检验在判断基础上还可以判断出是哪一个变量引起的异方差。
Glejser检验不仅能对异方差的存在进行判断,而且还能对异方差随某个解释变量变化的函数形式进行诊断。
5.4 产生异方差的原因:①模型设定误差②测量误差的变化③截面数据中总体各单位的差异。
经济现象中的异方差性:研究低收入组的家庭消费情况与高收入组的家庭消费情况时,由于高收入组家庭有更多的可支配收入,因而消费的分散程度较大,造成不同组别收入的家庭消费偏离均值程度的差异,反映在随机误差项偏离均值的程度时出现异方差。
5.5 异方差对模型的影响:①当模型中的误差项存在异方差时,参数估计仍然是无偏的但方差不再是最小的;②在异方差存在的情况下,参数估计量的方差会比真实估计量的方差大,会严重破坏t检验和F检验的有效性;③Y预测值的精确度降低。
异方差的存在会对回归模型的正确建立和统计推断带来严重后果,不能进行应用分析。
练习题5.1 (1)设f(X i)=X2i 2,则Var(u i)=σ2X2i 2,得:Y i X2i =β11X 2i+β2+β3X3iX2i+u iX2i则Var(u iX2i )=1X 2iVar(u i)=σ25.2 (1)Y=-50.01991+0.X+52.37082Tt = (-1.011) (2.944) (10.067)由上面散点图可知,残差平方随解释变量的增大而增大,可见,模型存在异方差。
(2)模型存在异方差,可通过变换模型、进行对数变换和加权最小二乘法来估计参数。
第五章异方差性习题与答案1、产生异方差的后果是什么?2、下列哪种情况是异方差性造成的结果?(1)OLS估计量是有偏的(2)通常的t检验不再服从t分布。
(3)OLS估计量不再具有最佳线性无偏性。
3、已知模型:乙=0o+0]X”+02X2i+"i式中,乙为某公司在第i个地区的销售额;X“为该地区的总收入;X2,为该公司在该地区投入的广告费用(£=0,1,2……,50)。
(1)由于不同地区人口规模乙可能影响着该公司在该地区的销售,因此有理由怀疑随机误差项g是异方差的。
假设b,依赖于总体£•的容量,逐步描述你如何对此进行检验。
需说明:A、零假设和备择假设;B、要进行的回归;C、要计算的检验统计值及它的分布(包括自由度);D、接受或拒绝零假设的标准。
(2)假设q =陋-逐步描述如何求得BLUE并给出理论依据。
4、下表数据给出按学位和年龄划分的经济学家的中位数工薪:表1经济学家的工资表中位数工薪(以千美元计算)年龄硕士博士25-29&08.830-349.29.635-3911.011.040-4412.812.545-4914.213.650-5414.714.355-5914.515.060—6413.515.065-6912.015.0(1)有硕士学位和有博士学位经济学家的中位数工薪的方差相等么?(2)如果相等,你会怎样检验两组平均中位数工薪相等的假设?(3)在年龄35至5岁之间的经济学家,有硕士学位的比有博士学位的赚更多的钱,那么你会怎样解释这一发现?5、为了解美国工作妇女是否受到歧视,可以用美国统计局的“当前人口调查” 中的截面数据,研究男女工资有没有差别。
这项多元回归分析研究所用到的变量有:W—雇员的工资率(美元/小时)1表示雇员为女性,0表示女性意外的雇员。
ED:受教育的年数。
AGE:年龄对124名雇员的样本进行的研究得到回归结果为:(括号内为估计的t值)W = -6.41 -2.76sex + 0.99ED + 0.12AGE R2 -0.867 E = 23.2求:(1)该模型调整后的决定系数艮2 (2)各估计值的标准差为多少?(3)检验美国工作妇女是否受到歧视,为什么?(4)按此模型预测一个30岁受教育16年的美国男性的平均每小时的工作收入为多少美元?6、下表给出了2000年中国部分省市城镇居民每个家庭平均全年可支配收入X 与消费支出Y的统计数据。
计量经济学课后思考题答案庞皓版第一章绪论思考题1.1怎样理解产生于西方国家的计量经济学能够在中国的经济理论研究和现代化建设中发挥重要作用?答:计量经济学的产生源于对经济问题的定量研究,这是社会经济发展到一定阶段的客观需要。
计量经济学的发展是与现代科学技术成就结合在一起的,它反映了社会化大生产对各种经济因素和经济活动进行数量分析的客观要求。
经济学从定性研究向定量分析的发展,是经济学逐步向更加精密、更加科学发展的表现。
我们只要坚持以科学的经济理论为指导,紧密结合中国经济的实际,就能够使计量经济学的理论与方法在中国的经济理论研究和现代化建设中发挥重要作用。
1.2理论计量经济学和应用计量经济学的区别和联系是什么?答:计量经济学不仅要寻求经济计量分析的方法,而且要对实际经济问题加以研究,分为理论计量经济学和应用计量经济学两个方面。
理论计量经济学是以计量经济学理论与方法技术为研究内容,目的在于为应用计量经济学提供方法论。
所谓计量经济学理论与方法技术的研究,实质上是指研究如何运用、改造和发展数理统计方法,使之成为适合测定随机经济关系的特殊方法。
应用计量经济学是在一定的经济理论的指导下,以反映经济事实的统计数据为依据,用计量经济方法技术研究计量经济模型的实用化或探索实证经济规律、分析经济现象和预测经济行为以及对经济政策作定量评价。
1.3怎样理解计量经济学与理论经济学、经济统计学的关系?答:1、计量经济学与经济学的关系。
联系:计量经济学研究的主体—经济现象和经济关系的数量规律;计量经济学必须以经济学提供的理论原则和经济运行规律为依据;经济计量分析的结果:对经济理论确定的原则加以验证、充实、完善。
区别:经济理论重在定性分析,并不对经济关系提供数量上的具体度量;计量经济学对经济关系要作出定量的估计,对经济理论提出经验的内容。
2、计量经济学与经济统计学的关系。
联系:经济统计侧重于对社会经济现象的描述性计量;经济统计提供的数据是计量经济学据以估计参数、验证经济理论的基本依据;经济现象不能作实验,只能被动地观测客观经济现象变动的既成事实,只能依赖于经济统计数据。
第五章 异方差性一、判断题1. 在异方差的情况下,通常预测失效。
( T )2. 当模型存在异方差时,普通最小二乘法是有偏的。
( F )3. 存在异方差时,可以用广义差分法进行补救。
(F )4. 存在异方差时,普通最小二乘法会低估参数估计量的方差。
(F )5. 如果回归模型遗漏一个重要变量,则OLS 残差必定表现出明显的趋势。
( T ) 二、单项选择题1.Goldfeld-Quandt 方法用于检验( A )A.异方差性B.自相关性C.随机解释变量D.多重共线性 2.在异方差性情况下,常用的估计方法是( D )A.一阶差分法B.广义差分法C.工具变量法D.加权最小二乘法 3.White 检验方法主要用于检验( A )A.异方差性B.自相关性C.随机解释变量D.多重共线性 4.下列哪种方法不是检验异方差的方法( D )A.戈德菲尔特——匡特检验B.怀特检验C.戈里瑟检验D.方差膨胀因子检验 5.加权最小二乘法克服异方差的主要原理是通过赋予不同观测点以不同的权数,从而提高估计精度,即( B )A.重视大误差的作用,轻视小误差的作用B.重视小误差的作用,轻视大误差的作用C.重视小误差和大误差的作用D.轻视小误差和大误差的作用 6.如果戈里瑟检验表明,普通最小二乘估计结果的残差与有显著的形式的相关关系(满足线性模型的全部经典假设),则用加权最小二乘法估计模型参数时,权数应为( B ) A. B.C. D.7.设回归模型为,其中()2i2i x u Var σ=,则b 的最有效估计量为( D )A. B.C. D. ∑=ii x y n 1b ˆ8.容易产生异方差的数据是( C )A. 时间序列数据B.平均数据C.横截面数据D.年度数据9.假设回归模型为i i i u X Y ++=βα,其中()2i 2i X u Var σ=,则使用加权最小二乘法估计模i e i x i i i v x e +=28715.0i v i x 21i x i x 1ix 1i i i u bx y +=∑∑=2ˆxxy b 22)(ˆ∑∑∑∑∑--=x x n y x xy n b xyb=ˆ型时,应将模型变换为( C )。
计量经济学第五章异⽅差性参考答案讲解第五章异⽅差性课后题参考答案 5.1(1)因为22()i i f X X =,所以取221iiW X =,⽤2i W 乘给定模型两端,得 312322221i i ii i i i Y X u X X X X βββ=+++ 上述模型的随机误差项的⽅差为⼀固定常数,即22221()()i i i iu Var Var u X X σ==(2)根据加权最⼩⼆乘法,可得修正异⽅差后的参数估计式为***12233Y X X βββ=-- ()()()()()()()***2****22232322322*2*2**2223223?i i i i i i i i i i i i i i i i i iW y x W x W y x W x x W x W x W x x β-=-∑∑∑∑∑∑∑()()()()()()()***2****23222222332*2*2**2223223?ii ii i i iii i i ii i i i i iW y x W x W y x W x x Wx W x W x x β-=-∑∑∑∑∑∑∑其中22232***23222,,iii i i i iiiW XW X W Y X X Y WWW ===∑∑∑∑∑∑******222333i i i i i x X X x X X y Y Y=-=-=- 5.2 (1)2222211111 ln()ln()ln(1)1 u ln()1Y X Y X Yu u X X X u ββββββββββ--==+≈=-∴=+ [ln()]0 ()[ln()1][ln()]11E u E E u E u µ=∴=+=+=⼜(2)[ln()]ln ln 0 1 ()11i i iiP P i i i i P P i i E P E µµµµµµµ===?====∑∏∏∑∏∏不能推导出所以E 1µ()=时,不⼀定有E 0µ(ln )= (3)对⽅程进⾏差分得:1)i i βµµ--i i-12i i-1lnY -lnY =(lnX -X )+(ln ln则有:1)]0i i µµ--=E[(ln ln5.3(1)该模型样本回归估计式的书写形式为:Y = 11.44213599 + 0.6267829962*X (3.629253) (0.019872)t= 3.152752 31.5409720.944911R =20.943961R = S.E.=9.158900 DW=1.597946 F=994.8326(2)⾸先,⽤Goldfeld-Quandt 法进⾏检验。
第五章 异方差性 思考题5.1 简述什么是异方差 ? 为什么异方差的出现总是与模型中某个解释变量的变化有关 ?5.2 试归纳检验异方差方法的基本思想 , 并指出这些方法的异同。
5.3 什么是加权最小二乘法 , 它的基本思想是什么 ?5.4 产生异方差的原因是什么 ? 试举例说明经济现象中的异方差性。
5.5 如果模型中存在异方差性 , 对模型有什么影响 ? 这时候模型还能进行应用分析吗 ?5.6 对数变化的作用是什么 ? 进行对数变化应注意什么 ? 对数变换后模型的经济意义有什么变化 ? 5.7 怎样确定加权最小二乘法中的权数 ? 练习题5.1 设消费函数为 12233i i i i Y X X u βββ=+++其中,i Y 为消费支出;2i X 为个人可支配收入;3i X 为个人的流动资产;i u 为随机误差项 ,并且 E(i u )=0,Var(i u )= 222i X σ( 其中2σ为常数) 。
试回答以下问题 : 1) 选用适当的变换修正异方差 , 要求写出变换过程 ; 2) 写出修正异方差后的参数估计量的表达式。
5.2 根据本章第四节的对数变换 , 我们知道对变量取对数通常能降低异方差性 , 但需对这种模型的随机误差项的性质给予足够的关注。
例如 ,设模型为21Y X u ββ=,对该模型中 的变量取对数后得12ln ln ln ln Y X u ββ=++1) 如果ln u 要有零期望值 ,u 的分布应该是什么 ? 2) 如果 E(u )=1, 会不会 E(ln u )=0? 为什么 ? 3) 如果 E(ln u ) 不为零 , 怎样才能使它等于零 ?5.3 表 5.8 给出消费 Y 与收入 X 的数据 , 试根据所给数据资料完成以下问题 :1) 估计回归模型12Y X u ββ=++中的未知参数1β和2β, 并写出样本回归模型的书写格式;2) 试用 GOMeld-Quandt 法和 White 法检验模型的异方差性 3 3) 选用合适的方法修正异方差。
第五章 异方差性思考题5.1 简述什么是异方差?为什么异方差的出现总是与模型中某个解释变量的变化有关?答 :设模型为),....,,(....n 21i X X Y i i 33i 221i =μ+β++β+β=,如果其他假定均不变,但模型中随机误差项的方差为),...,,()(n 21i Var 2i i =σ=μ,则称i μ具有异方差性。
由于异方差性指的是被解释变量观测值的分散程度是随解释变量的变化而变化的,所以异方差的出现总是与模型中某个解释变量的变化有关。
5.2 试归纳检验异方差方法的基本思想,并指出这些方法的异同。
答:各种异方差检验的共同思想是,基于不同的假定,分析随机误差项的方差与解释变量之间的相关性,以判断随机误差项的方差是否随解释变量变化而变化。
其中,戈德菲尔德-跨特检验、怀特检验、ARCH 检验和Glejser 检验都要求大样本,其中戈德菲尔德-跨特检验、怀特检验和Glejser 检验对时间序列和截面数据模型都可以检验,ARCH 检验只适用于时间序列数据模型中。
戈德菲尔德-跨特检验和ARCH 检验只能判断是否存在异方差,怀特检验在判断基础上还可以判断出是哪一个变量引起的异方差。
Glejser 检验不仅能对异方差的存在进行判断,而且还能对异方差随某个解释变量变化的函数形式进行诊断。
5.3 什么是加权最小二乘法?它的基本思想是什么?答:以一元线性回归模型为例:12i i i Y X u ββ=++经检验i μ存在异方差,公式可以表示为22var()()i i i u f X σσ==。
选取权数 i w ,当2i σ 越小 时,权数i w 越大。
当 2i σ越大时,权数i w 越小。
将权数与 残差平方相乘以后再求和,得到加权的残差平方和:2i 21i 2i i X Y w e w )(**β-β-=∑∑,求使加权残差平方和最小的参数估计值**ˆˆ21ββ和。
这种求解参数估计式的方法为加权最小二乘法。
第五章 异方差性 思考题5.1 简述什么是异方差 ? 为什么异方差的出现总是与模型中某个解释变量的变化有关 ?5.2 试归纳检验异方差方法的基本思想 , 并指出这些方法的异同。
5.3 什么是加权最小二乘法 , 它的基本思想是什么 ?5.4 产生异方差的原因是什么 ? 试举例说明经济现象中的异方差性。
5.5 如果模型中存在异方差性 , 对模型有什么影响 ? 这时候模型还能进行应用分析吗 ?5.6 对数变化的作用是什么 ? 进行对数变化应注意什么 ? 对数变换后模型的经济意义有什么变化 ? 5.7 怎样确定加权最小二乘法中的权数 ? 练习题5.1 设消费函数为 12233i i i i Y X X u βββ=+++其中,i Y 为消费支出;2i X 为个人可支配收入;3i X 为个人的流动资产;i u 为随机误差项 ,并且 E(i u )=0,Var(i u )= 222i X σ( 其中2σ为常数) 。
试回答以下问题 : 1) 选用适当的变换修正异方差 , 要求写出变换过程 ; 2) 写出修正异方差后的参数估计量的表达式。
5.2 根据本章第四节的对数变换 , 我们知道对变量取对数通常能降低异方差性 , 但需对这种模型的随机误差项的性质给予足够的关注。
例如 ,设模型为21Y X u ββ=,对该模型中 的变量取对数后得12ln ln ln ln Y X u ββ=++1) 如果ln u 要有零期望值 ,u 的分布应该是什么 ? 2) 如果 E(u )=1, 会不会 E(ln u )=0? 为什么 ? 3) 如果 E(ln u ) 不为零 , 怎样才能使它等于零 ?5.3 表 5.8 给出消费 Y 与收入 X 的数据 , 试根据所给数据资料完成以下问题 :1) 估计回归模型12Y X u ββ=++中的未知参数1β和2β, 并写出样本回归模型的书写格式;2) 试用 GOMeld-Quandt 法和 White 法检验模型的异方差性 3 3) 选用合适的方法修正异方差。
第五章 异方差性 思考题5.1 简述什么是异方差 ? 为什么异方差的出现总是与模型中某个解释变量的变化有关 ?5.2 试归纳检验异方差方法的基本思想 , 并指出这些方法的异同。
5.3 什么是加权最小二乘法 , 它的基本思想是什么 ?5.4 产生异方差的原因是什么 ? 试举例说明经济现象中的异方差性。
5.5 如果模型中存在异方差性 , 对模型有什么影响 ? 这时候模型还能进行应用分析吗 ?5.6 对数变化的作用是什么 ? 进行对数变化应注意什么 ? 对数变换后模型的经济意义有什么变化 ? 5.7 怎样确定加权最小二乘法中的权数 ? 练习题5.1 设消费函数为 12233i i i i Y X X u βββ=+++其中,i Y 为消费支出;2i X 为个人可支配收入;3i X 为个人的流动资产;i u 为随机误差项 ,并且 E(i u )=0,Var(i u )= 222i X σ( 其中2σ为常数) 。
试回答以下问题 :1) 选用适当的变换修正异方差 , 要求写出变换过程 ; 2) 写出修正异方差后的参数估计量的表达式。
5.2 根据本章第四节的对数变换 , 我们知道对变量取对数通常能降低异方差性 , 但需对这种模型的随机误差项的性质给予足够的关注。
例如 ,设模型为21Y X u ββ=,对该模型中 的变量取对数后得12ln ln ln ln Y X u ββ=++1) 如果ln u 要有零期望值 ,u 的分布应该是什么 ? 2) 如果 E(u )=1, 会不会 E(ln u )=0? 为什么 ? 3) 如果 E(ln u ) 不为零 , 怎样才能使它等于零 ?5.3 表 5.8 给出消费 Y 与收入 X 的数据 , 试根据所给数据资料完成以下问题 :1) 估计回归模型12Y X u ββ=++中的未知参数1β和2β, 并写出样本回归模型的书写格式;2) 试用 GOMeld-Quandt 法和 White 法检验模型的异方差性 3 3) 选用合适的方法修正异方差。
5.4 表 5.9 给出 1985 年我国北方地区农业总产值 , 农用化肥量、农用水利、农业劳动力、户均固定资产以及农机动力数据 , 要求 :1) 试建立我国北方地区农业产出线性模型 ;2) 选用适当的方法检验模型中是否存在异方差 ;3) 如果存在异方差 , 采用适当的方法加以修正。
地区农业总产值(亿元)农业劳动力(万人)灌溉面积(万公顷)化肥用量(万吨)户均固定资产(元)农机动力(万马力)北京19.64 90.1 33.84 7.5 394.3 435.3 天津14.4 95.2 34.95 3.9 567.5 450.7 河北149.9 1639 .0 357.26 92.4 706.89 2712.6 山西55.07 562.6 107.9 31.4 856.37 1118.5 内蒙古60.85 462.9 96.49 15.4 1282.81 641.7 辽宁87.48 588.9 72.4 61.6 844.74 1129.6 吉林73.81 399.7 69.63 36.9 2576.81 647.6 黑龙江104.51 425.3 67.95 25.8 1237.16 1305.8 山东276.55 2365.6 456.55 152.3 5812.02 3127.9 河南200.02 2557.5 318.99 127.9 754.78 2134.5 陕西68.18 884.2 117.9 36.1 607.41 764 新疆49.12 256.1 260.46 15.1 1143.67 523.3 *1马力=0.735kW5.5 表 5.10 中的数据是美国 1988 研究与开发 (R&D) 支出费用 (Y) 与不同部门产品销售量 (X) 。
试根据资料建立一个回归模型 , 运用 Glejser 方法和 White 方法检验异方差 , 由此决定异方差的表现形式并选用适当方法加以修正。
表 5.10 美国工业群体销售、研发、利润数据 ( 单位 :106 美元 ) 工业群体销售量X R&D费用Y 利润Z1.容器与包装6375.3 62.5 185.12.非银行业金融11626.4 92.9 1569.53.服务行业14655.1 178.3 276.84.金属与采矿21869.2 258.4 2828.15.住房与建筑26408.3 494.7 225.96.一般制造业32405.6 1083 3751.97.休闲娱乐35107.7 1620.6 2884.18.纸张与林木产品40295.4 421.7 4645.79.食品70761.6 509.2 5036.410.卫生保健80552.8 6620.1 13869.911.宇航95294 3918.6 4487.812.消费者用品101314.3 1595.3 10278.913.电器与电子产品116141.3 6107.5 8787.314.化工产品122315.7 4454.1 16438.815.五金141649.9 3163.9 9761.416.办公设备与电算机175025.8 13210.7 19774.517.燃料230614.5 1703.8 22626.618.汽车293543 9528.2 18415.4 5.6 表 5.11 给出收入和住房支出样本数据 , 建立住房支出模型。
表 5.11 收入和住房支出样本数据假设模型为12i i i Y X u ββ=++, 其中 ,Y 为住房支出 ,X 为收入。
试求解下列问题 :1) 用OLS 求参数的估计值、标准差、拟合优度。
2) 用 GoMeld-Quandt 方法检验异方差 ( 假设分组时不去掉任何样本值 ) 。
3) 如果模型存在异方差 , 假设异方差的形式是222I i X σσ=,试用加权最小二乘法重新估计1β和2β的估计值、标准差、拟合优度。
5.7 表 5.12 给出 1969 年 20 个国家的股票价格变化率 (Y) 和消费者价格变化率 (X) 的一个横截面数据。
表 5.12 1969 年 20 个国家的股票价格变化率 {Y} 和消费者价格变化率 {X} 国家 股票价格变化率%Y 消费者价格变化率%X 1.澳大利亚 5 4.3 2.奥地利 11.1 4.6 3.比利时 3.2 2.4 4.加拿大 7.9 2.4 5.智利 25.5 26.4 6.丹麦 3.8 4.2 7.芬兰 11.1 5.5 8.法国 9.9 4.7 9.德国 13.3 2.2 10.印度 1.5 4 11.爱尔兰 6.4 4 12.以色列 8.9 8.4 13.意大利 8.1 3.3 14.日本 13.5 4.7 15.墨西哥 4.7 5.2 16.荷兰 7.5 3.6 17.新西兰 4.7 3.6 18.瑞典 8 419.英国7.5 3.920.美国9 2.1试根据资料完成以下问题 :1) 将 Y 对 X 回归并分析回归中的残差 ;2) 因智利的数据出现了异常 , 去掉智利数据后 , 重新作回归并再次分析回归中的残差;3) 如果根据1款的结果你将得到有异方差性的结论,而根据2款的结论你又得到相反的结论 , 对此你能得出什么样的结论 ?5.8 表 5.13 给出的是1998年我国重要制造业销售收入与销售利润的数据。
1) 求销售利润岁销售收入的样本回归函数 , 并对模型进行经济意义检验和统计检验;2) 分别用图形法、Glejser方法、White方法检验模型是否存在异方差 ;3) 如果模型存在异方差 , 选用适当的方法对异方差性进行修正。
5.9 表 5.14 所给资料为 1978~2000 年四川省农村人均纯收入X和人均生活t费支出Y的数据。
s1) 求农村人均生活费支出对人均纯收入的样本回归函数 , 并对模型进行经济意义检验和统计检验 ;2) 选用适当的方法检验模型中是否存在异方差 ;3) 如果模型存在异方差 , 选用造当的方法对异方差性进行修正。
5.10 在 5.9 中用的是时间序列数据 , 而且没有剔除物价上涨因素。
试分析如果剔除物价上涨因素 , 即用实际可支配收入和实际消费支出 , 异方差的问题是否会有所改善? 由于缺乏四川省 1978 年后的农村居民消费价格定基指数 , 以 1978-2000年全国商品零售价格指数(1978年为100)代替 , 如表5.15所示。
表 5.151978~2000 年全国商品零售价格指资料来源 : 中国统计年鉴 2001第五章 异方差性 思考与练习1. 简述什么是异方差?为什么异方差的出现总是与模型中某个解释变量的变化有关?答:异方差性是指模型违反古典假定中的同方差性,即各残差项的方差并非相等。
一般地,由于数据观测质量、数据异常值、某些经济变化的特性、模型设定形式的偏误等原因,导致了异方差的出现。
主要原因往往是重要变量的遗漏,所以很多情况下,异方差表现为残差方差随着某个(未纳入模型的)解释变量的变化而变化。
2. 归纳教材中所介绍的检验异方差的方法的基本思想。
答:本书中给出了5种检验方法:Goldfeld -Quandt 检验,Glejser 检验,Breusch-Pagan 检验,White 检验,ARCH 检验。
其共同的基本思想是:判断随机误差项与解释变量观测值之间的相关性。
对上述每一种检验来说,具体的寻找误差项与解释变量的关系的方法手段有所不一样。
3.什么是加权最小二乘法,它的基本思想是什么?答: 加权最小二乘法是对各个残差的平方赋予不同的权重后求和,求解参数估计值,使加权之后的残差平方和最小。
这种确定参数估计值的方法称为加权最小二乘法。
其基本思想是:在异方差的情形下,方差越小,偏离均值的离散程度越小,越应该受到重视。
即e i 的方差越小,在确定回归线时起的作用越大,反之,起的作用越小。
这样,应该对方差小的e i 赋予较大的权重,对方差大的e i 赋予较小的权重,让各个e i 2提供的信息大致一致。
4.判断下列说法是否正确,并简要说明为什么。
(1) 当异方差出现时,最小二乘估计是有偏的和不具有最小方差特性;答:不正确。
这个时候估计式是无偏的,但是不具有最小方差性。
(2) 当异方差出现时,常用的t 和F 检验失效;答:正确。
由于方差不是常数而是变数,这时一般意义上t 比值的分布是未知的,但肯定不再遵从t-分布,使得t 检验失效;同理,在异方差条件下,F 比值也不再是遵从F-分布,F 检验也失效。
(3) 异方差情况下,通常的OLS 估计一定高估了估计量的标准差;答:一般是低估了其标准差。
(4) 如果OLS 回归的残差表现出系统性,则说明数据中有异方差性;答:是,但同时也要考虑自相关性的存在。