3蛮力法
- 格式:ppt
- 大小:187.00 KB
- 文档页数:38
第三章 蛮力法1.选择排序SelectionSort(A[0..n-1])for i=0 to n-2 domin=ifor j=i+1 to n-1 doif A[j]<A[min]min=jswap A[i] and A[min]2.冒泡排序BubbleSort(A[0..n-1])// 输入:数组A,数组中的元素属于某偏序集// 输出:按升序排列的数组Afor i=0 to n-2 dofor j=0 to n-2-i doif A[j+1]<A[j] swap A[j] and A[j+1]3.改进的冒泡算法ALGORITHM BubbleSortImproved( A[0,…,n –1] )// 冒泡排序算法的改进// 输入:数组A,数组中的元素属于某偏序集// 输出:按升序排列的数组Afor i ← 0 to n – 2 doflag ← Truefor j ← 0 to n – 2 – i doif A[j+1] < A[j]swap(A[j], A[j+1])flag ← False// 如果在某一轮的比较中没有交换,则flag为True,算法结束returnif flag = True4. 顺序查找算法算法 SwquentialSearch2(A[0...n],k)//顺序查找算法的实现,它用了查找键来作限位器//输入:一个n个元素的数组A和一个查找键K//输出:第一个值等于K的元素的位置,如果找不到这样的元素就返回 -1A[n]<--ki<--0while A[i]!=K doi<--i+1if i<n return iElse return -15. 蛮力字符串匹配算法 BruteForceStringMatch(T[0...n-1],P[0...m-1])//该算法实现了蛮力字符串匹配代表一段文本//输入:一个n个字符的数组T[0...n-1]// 一个m个字符的数组P[0..m-1]代表一个模式//输出:如果查找成功的话,返回文本的第一个匹配字串中第一个字符的位置, // 否则返回-1For i<--0 to n-m doj<--0While j<m and P[j]=T[i+j]doj<--i+1If j=m return ireturn -1合并排序最差Θ(nlog2n)快速排序最优Θ(nlog2n)最差Θ(n2)平均Θ(1.38nlog2n)选择排序 Θ(n2)冒泡排序 Θ(n2)插入排序最差Θ(n2)最优 Θ(n)平均 Θ(n2)第四章 分治法合并排序算法 MergeSort(A[0..n-1] )排序 // 递归调用mergesort来对数组 A[0...n-1]// 输入:一个可排序数组A[0..n-1]// 输出:非降序排列的数组A[0..n-1]if n > 1n/2 -1]copy A[0.. n/2 -1] to B[0..n/2 -1]copy A[ n/2 ..n-1] to C[0..MergeSort( B )MergeSort( C )Merge( B,C,A )两个数组合并的算法算法 Merge(B[0..p-1],C[0..q-1],A[0..p+q-1])//将两个有序数组合并成一个有序的数组和C[0...q-1]//输入:两个有序数组B[0...p-1]//输出:A[0..p+q-1]中已经有序存放了B和C中的元素 i=0,j=0,k=0;while i<p and j<q do≤C[j]if B[i]A[k]=B[i], i=i+1elseA[k]=C[j], j=j+1k=k+1if i=pcopy C[j..q-1] to A[k..p+q-1]elsecopy B[i..p-1] to A[0..p+q-1]快速排序算法QuickSort(A[l..r])// 使用快速排序法对序列或者子序列排序或者序列本身A[0..n-1]// 输入:子序列A[l..r]// 输出:非递减序列Aif l < rs ← Partition( A[l..r] )QuickSort( A[l..s-1] )QuickSort( A[s+1..r] )//s是中轴元素/基准点,是数组分区位置的标志实现分区的算法Partition( A[l..r] )// 输入:子数组A[l..r]// 输出:分裂点/基准点pivot的位置p ← A[l]i ← l; j ← r+1repeat≥ prepeat i ←i + 1until A[i]≤ prepeat j ← j – 1 until A[j]swap( A[i], A[j] )≥ juntil iswap( A[i], A[j] )swap( A[l], A[j] )return j折半查找BinarySearch( A[0..n-1], k )// 输入:已排序大小为n的序列A,待搜索对象k// 输出:如果搜索成功,则返回k的位置,否则返回-1 l=0,r=n-1;While l≤rmid= (l+r)/2if k = A[mid] return midelse if k < A[mid] r=m-1else l=m+1return -1Strassen矩阵Strassen方法M1=A11(B12-B22)M2=(A11+A12)B22M3=(A21+A22)B11M4=A22(B21-B11)M5=(A11+A22)(B11+B22)M6=(A12-A22)(B21+B22)M7=(A11-A21)(B11+B12)第五章 减治法插入排序ALGORITHM InsertionSort( A[0..n-1] )// 对给定序列进行直接插入排序// 输入:大小为n的无序序列A// 输出:按非递减排列的序列Afor i ← 1 to n-1 dotemp ← A[i]j ← i-1while j ≥ 0 and A[j] > temp doA[j+1] ← A[j]j ← j –1A[j+1] ←temp深度优先查找算法 BFS(G)//实现给定图的深度优先查找遍历//输入:图G=<V,E>//输出:图G的顶点,按照被DFS遍历第一次访问到的先后次序,用连续的整数标记,将V中的每个顶点标记为0,表示还“未访问”count =0//记录这是第几个访问的节点标记为 unvisitedmark each vertex with 0//∈ V dofor each vertex vif v is marked with 0dfs(v)dfs(v)//递归访问所有和v相连接的未访问顶点,然后按照全局变量count的值//根据遇到它们的先后顺序,给它们附上相应的数字count = count + 1mark v with countv dofor each vertexw adjacent toif w is marked with 0dfs(w)广度优先BFS(G)/实现给定图的深度优先查找遍历//输入:图G=<V,E>//输出:图G的顶点,按照被BFS遍历第一次访问到的先后次序,用连续的整数标记,将V中的每个顶点标记为0,表示还“未访问”count =0mark each vertex with 0for each vertex v∈ V dobfs(v)bfs(v)//递归访问所有和v相连接的未访问顶点,然后按照全局变量count的值//根据遇到它们的先后顺序,给它们附上相应的数字count = count + 1mark v with countinitialize queue with vwhile queue is not empty doa = front of queuefor each vertex w adjacent to a doif w is marked with 0count = count + 1mark w with countadd w to the end of the queueremove a from the front of the queue拓扑排序第六章 变治法Gauss消去法GaussElimination(A[1..n], b[1..n])// 输入:系数矩阵A及常数项 b// 输出:方程组的增广矩阵等价的上三角矩阵for i=1 to n doA[i][n+1] =b[i]for j= i+1 to n dofor k = i to n+1 do– A[i][k]*A[j][i]/A[i][i]A[j][k] = A[j][k]堆排序堆排序主要包括两个步骤:对于给定的数组构造相应的堆。
蛮力法、分治法、减治法三种方法的理解和处理问题的类型的归纳一、蛮力法蛮力法是一种基础且直接的问题解决策略,通常用于寻找问题的答案或解决方案。
其核心理念在于,通过逐一检查所有可能的解决方案,从而找到问题的答案或找到最佳的解决方案。
在蛮力法中,我们通常需要投入较多的时间和计算资源,尤其是在面对大规模或复杂的问题时。
蛮力法的应用范围广泛,包括但不限于以下几种类型的问题:1. 排序问题:例如,对一个数组进行排序,我们可以使用蛮力法,通过比较每对元素并交换它们的位置,使得整个数组有序。
2. 查找问题:例如,在排序数组中查找一个特定的元素,我们可以使用蛮力法,逐一检查数组中的每个元素直到找到目标元素。
3. 组合与排列问题:例如,计算给定集合的所有可能排列或组合,我们可以使用蛮力法,通过逐一排列或组合所有可能的元素组合得到答案。
二、分治法分治法是一种将复杂问题分解为更小、更易于处理的子问题的方法。
通过将问题分解为独立的子问题,我们可以分别解决每个子问题,然后将这些解决方案组合起来,形成原始问题的解决方案。
这种方法在处理复杂问题时非常有效,因为它可以降低问题的复杂性,使我们可以更有效地解决问题。
分治法的应用范围广泛,包括但不限于以下几种类型的问题:1. 排序问题:例如,归并排序就是一种使用分治法的排序算法,它将一个大列表分解为两个小列表,对这两个小列表分别进行排序,然后合并它们以得到有序列表。
2. 搜索问题:例如,二分搜索是一种使用分治法的搜索算法,它将搜索空间一分为二,每次迭代都排除一半的元素,直到找到目标元素或确定元素不存在。
3. 图问题:例如,Dijkstra的算法就是一种使用分治法的图搜索算法,它将图分解为最短路径树,然后通过搜索每个子图的最短路径来解决整个图的最短路径问题。
三、减治法减治法是一种通过减少问题的规模或复杂性来解决问题的方法。
其核心理念在于,通过消除或减少问题的某些部分或特性,从而降低问题的复杂性或规模,使得问题更容易解决。
生物信息学中的基因组组装方法优化研究基因组组装是生物信息学中一项重要的研究任务,其目的是将测序得到的DNA序列片段按照正确的顺序装配成完整的基因组。
随着测序技术的不断进步和生物信息学算法的发展,基因组组装方法也在不断优化和演进。
本文将介绍基因组组装的一些常用方法和近期的优化研究进展。
一、基因组组装的方法1. 重叠布局方法:重叠布局方法是最早也是最基础的基因组组装方法之一。
该方法通过比较测序得到的DNA序列片段之间的重叠关系,确定它们在基因组中的相对位置,进而进行组装。
重叠布局方法的优点是简单易懂,适用于较小的基因组。
然而,对于大型基因组,由于序列碎片过多和严重的重叠问题,重叠布局方法的效果有限。
2. de Bruijn图方法:de Bruijn图方法是目前常用的基因组组装方法之一。
该方法先将DNA序列片段进行k-mer分割,然后依据k-mer之间的连接关系构建有向图,最后在图中寻找路径,从而实现基因组组装。
de Bruijn图方法在处理大型基因组时具有很好的效果,但对于高覆盖度的测序数据以及序列重复区域的处理仍存在一定局限性。
3. 蛮力法:蛮力法是一种穷举搜索的方法,通过尝试不同的组装方式来找到最佳的组装结果。
该方法将测序片段进行所有可能的组合,然后通过比对测序reads与组装结果的一致性得到最佳组装方案。
蛮力法的优势在于可以避免由于序列重叠、测序错误和重复序列等因素导致的组装困难,但其计算复杂度较高,需要耗费大量的时间和计算资源。
二、基因组组装方法的优化研究1. 错误校正和纠正方法:基因组组装过程中数据质量的问题是影响组装结果的重要因素之一。
近期的研究致力于研发有效的错误校正和纠正方法,用于去除测序数据中存在的噪声和错误。
例如,利用高通量测序技术生成的长读长数据,可以提高错误校正和纠错的准确性。
此外,亦可结合机器学习和深度学习技术,通过训练模型来准确预测错误位置和类型,从而提高组装的准确性和效率。
蛮力法的魅力摘要:蛮力法是我们算法中最常使用的算法,虽然巧妙和高效的算法很少来自于蛮力法,但是蛮力法依然是一种重要的算法设计技术。
在实际理论上,蛮力法可以解决可计算领域的各种问题,只是效率的高低不同而已。
因此蛮力法经常用来解决一些较小规模的问题。
蛮力法对于一些重要的问题可以产生一些合理的算法,他们具备一些实用价值,而且不受问题规模的限制。
蛮力法也可以作为某类问题时间性能的底限,来衡量同样问题的更高效算法。
本文将对蛮力法进行深入了解,发掘出蛮力法的价值。
关键字:蛮力法效率算法应用简单结合引言:蛮力法,由于对于解决一些问题时的低效,不够有技巧性,一直为人们所“诟病”。
但是,遍观我们所学的算法,只有蛮力法是可以适合于任何问题的。
而且,简单的招式,练到极致,就是绝招。
我们在解决的问题的时候,首先考虑的也是蛮力法。
只有当蛮力法不能高效处理问题时,我们才会思考其他算法。
这也就说明,蛮力法对于我们设计算法,仍是必不可少的。
1 蛮力法的原理顾名思义,蛮力法即是顺序往下寻找方法,直到问题的解决。
它所依赖的技术是扫描技术,关键是依次处理所有元素。
蛮力法的思想非常简单,没有很多条件的限制,比如动态规划法,必须满足最有性原理才可以使用。
它的方法上也没有缺陷,对于分治法,一旦子问题的规模不同,便不能在使用。
而蛮力法则没有这个要求。
因此,简单,易上手,是蛮力法的基本原理。
1 蛮力法与其他算法的比较大部分算法都是在蛮力法的基础上改进而来的。
这里比较蛮力法中的冒泡排序与分治法中的快速排序。
对于蛮力法,是所以元素都要经过比较之后再排序,显然这是不可取的。
比如2比1大,3比2大,那1和3就没必要再进行比较。
快速排序,就是有选择性的进行比较。
将序列分为两个子序列,用递归实现,从而使得算法的时间复杂度变为nlog2n,这就是技巧的体现(减治法也是如此),从中也可以看出,在蛮力法的基础上,我们可以改造出更好的算法,体现了蛮力法的重要性。