表观遗传学
- 格式:ppt
- 大小:98.00 KB
- 文档页数:39
有复杂突变和表型缺陷的多种人类疾病。
研究发现许多印记基因对胚胎和胎儿出生后 1. 表观遗传学概念表观遗传是与DNA 突变无关的可遗传的表型变化,且是染色质调节的基因转录水平的变 化,这种变化不涉及DNA 序列的改变。
表观遗传学是研究基因的核苷酸序列不发生改变的情 况下,基因表达了可遗传的变化的一门遗传学分支学科。
表观遗:传学内容包括DNA 甲基化、 组蛋白修饰、染色质重塑、遗传印记、随机染色体失活及非编码RNA 等调节研究表明,这些 表观遗传学因素是对环境各种刺激因素变化的反映, 且均为维持机体内环境稳定所必需。
它 们通过相互作用以调节基因表达,调控细胞分化和表型,有助于机体正常生理功能的发挥, 然而表观遗传学异常也是诸多疾病发生的诱因。
因此,进一步了解表观遗传学机 制及其生理病理意义,是目前生物医学研究的关键切入点。
别名:实验胚胎学、拟遗传学、 、外遗传学以及后遗传学表观遗传学是与遗传学 (ge netic) 相对应的概念。
遗传学是指基于基因序列改变所 致基因表达水平变化,如基因突变、基因杂合丢失和微卫星不稳定等;而表观遗传学 则是指基于非基因序列改变所致基因表达水平变化,如和染色质构象变化等;表观基因组学(epigenomics) 则是在基因组水平上对表观遗传学改变的研究。
2. 表观遗传学现象(1) DNA 甲基化是指在DNA 甲基化转移酶的作用下, 合一个甲基基团。
正常情况下,人类基因组“垃圾”序列的 并且总是处于甲基化状态,与之相反,人类基因组中大小为 CpG 二核苷酸的 CpG 岛则总是处于未甲基化状态, 关。
人类基因组序列草图分析结果表明,人类基因组Mb 就有5 — 15个CpG 岛,平均值为每 Mb 含10. 有良好的对应关系 [9]。
由于DNA 甲基化与人类发育和肿瘤疾病的密切关系,特别是 CpG 岛甲基化所致抑癌基因转录失活问题,DNA 甲基化已经成为表观遗传学和表观基因组学的重要研究内容。
表观遗传学课件一、引言表观遗传学是研究基因表达调控机制的一门学科,它涉及到基因序列不发生变化,但基因表达却发生了可遗传的改变。
这种调控机制对于生物体的生长发育、细胞分化、疾病发生等过程具有重要作用。
本文将对表观遗传学的基本概念、调控机制及其在疾病中的应用进行详细阐述。
二、表观遗传学的基本概念1.基因表达调控:基因表达调控是指生物体通过一系列机制,控制基因在特定时间和空间的表达水平。
基因表达调控是生物体生长发育、细胞分化、环境适应等生命现象的基础。
2.表观遗传修饰:表观遗传修饰是指在基因的DNA序列不发生改变的情况下,通过DNA甲基化、组蛋白修饰、染色质重塑等机制调控基因表达的过程。
3.表观遗传学的研究内容:表观遗传学主要研究基因表达调控的分子机制,包括DNA甲基化、组蛋白修饰、染色质重塑、非编码RNA调控等。
三、表观遗传学的调控机制1.DNA甲基化:DNA甲基化是指在DNA甲基转移酶的催化下,将甲基基团转移至DNA分子的过程。
DNA甲基化通常发生在基因的启动子区域,抑制基因表达。
2.组蛋白修饰:组蛋白修饰是指在组蛋白分子上发生的一系列化学修饰,如乙酰化、磷酸化、甲基化等。
这些修饰可以改变组蛋白与DNA的结合状态,从而调控基因表达。
3.染色质重塑:染色质重塑是指染色质结构发生变化,使基因的表达状态发生改变的过程。
染色质重塑可以通过改变核小体结构、DNA甲基化、组蛋白修饰等方式实现。
4.非编码RNA调控:非编码RNA是指不具有编码蛋白质功能的RNA分子,包括miRNA、lncRNA、circRNA等。
这些RNA分子可以通过与mRNA结合、调控转录因子活性等方式调控基因表达。
四、表观遗传学在疾病中的应用1.癌症:表观遗传学在癌症研究中的应用主要涉及肿瘤发生、发展和治疗。
研究发现,癌细胞的表观遗传修饰模式发生改变,导致肿瘤相关基因的表达异常。
通过研究这些表观遗传修饰,可以为癌症的早期诊断、预后评估和治疗提供新靶点。
表观遗传学是与遗传学(genetic)相对应的概念。
遗传学是指基于基因序列改变所致基因表达水平变化,如基因突变、基因杂合丢失和微卫星不稳定等;而表观遗传学则是指基于非基因序列改变所致基因表达水平变化,如DNA甲基化和染色质构象变化等;表观基因组学(epigenomics)则是在基因组水平上对表观遗传学改变的研究。
所谓DNA甲基化是指在DNA甲基化转移酶的作用下,在基因组CpG二核苷酸的胞嘧啶5'碳位共价键结合一个甲基基团。
正常情况下,人类基因组“垃圾”序列的CpG二核苷酸相对稀少,并且总是处于甲基化状态,与之相反,人类基因组中大小为100—1000 bp左右且富含CpG二核苷酸的CpG岛则总是处于未甲基化状态,并且与56%的人类基因组编码基因相关。
人类基因组序列草图分析结果表明,人类基因组CpG岛约为28890个,大部分染色体每1 Mb就有5—15个CpG 岛,平均值为每Mb含10.5个CpG岛,CpG岛的数目与基因密度有良好的对应关系[9]。
由于DNA甲基化与人类发育和肿瘤疾病的密切关系,特别是CpG岛甲基化所致抑癌基因转录失活问题,DNA甲基化已经成为表观遗传学和表观基因组学的重要研究内容。
染色质重塑表观遗传学重塑依赖的染色质重塑与人类疾病染色质重塑复合物依靠水解A TP提供能量来完成染色质结构的改变,根据水解ATP的亚基不同,可将复合物分为SWI/SNF复合物、ISW复合物以及其它类型的复合物。
这些复合物及相关的蛋白均与转录的激活和抑制、DNA的甲基化、DNA修复以及细胞周期相关。
ATRX、ERCC6、SMARCAL1均编码与SWI/SNF复合物相关的ATP酶。
ATRX突变引起DNA甲基化异常导致数种遗传性的智力迟钝疾病如:X连锁α-地中海贫血综合征、Juberg-Marsidi综合征、Carpenter-Waziri综合征、Sutherland-Haan综合征和Smith-Fineman-Myers综合征,这些疾病与核小体重新定位的异常引起的基因表达抑制有关。
名词解释表观遗传学
表观遗传学是指在不改变DNA序列的情况下,通过化学修饰(如甲基化、乙酰化等)或染色体结构改变(如DNA 甲基化、组蛋白修饰、染色质重塑等)来影响基因的表达和功能。
这些修饰可以影响DNA双螺旋的结构,从而影响到DNA与转录因子等蛋白质的相互作用,进而影响基因的转录和表达。
表观遗传学的修饰可以在细胞分裂过程中传递给子细胞,因此可以对细胞的基因表达和功能产生长期的影响。
表观遗传学在许多生物学过程中都起着重要的作用,如细胞分化、胚胎发育、肿瘤发生等。
通过研究表观遗传学,我们可以更好地理解这些生物学过程,并为疾病的治疗和预防提供新的思路和方法。