高中物理 第3章 原子核与放射性 第2节 原子核衰变及半衰期教师用书 鲁科版选修3-5
- 格式:doc
- 大小:284.50 KB
- 文档页数:10
鲁科版选修(3-5)高二物理第3章第2节课件:原子
核衰变及半衰期
导读:本文鲁科版选修(3-5)高二物理第3章第2节课件:原子核衰变及半衰期,仅供参考,如果觉得很不错,欢迎点评和分享。
鲁科版选修(3-5)第3章第2节《原子核衰变及半衰期》ppt 学习目标:1.知道天然放射现象,了解放射性及放射性元素的概念.
2.知道三种射线的本质和特点.
3.知道原子核衰变的规律,知道α衰变、β衰变的本质.
4.理解半衰期概念,会应用半衰期公式解决相关问题.
重点难点:
1.天然放射现象,三种射线的本质及特征.
2.原子核的衰变规律、半衰期概念的理解.
本站课件均从网络收集或是会员上传,版权归原作者所有,请大家尊重作者的劳动成果,并积极上传自己的作品与大家一起分享交流,帮助别人就是帮助自己!
普通下载。
第2节原子核衰变及半衰期1.了解天然放射现象及其规律.(重点)2.知道三种射线的本质,以及如何利用磁场区分它们.(重点)3.知道放射现象的实质是原子核的衰变. 4.知道两种衰变的基本性质,并掌握原子核的衰变规律.(重点)5.理解半衰期的概念.(重点+难点)一、天然放射现象1.定义:物质能自发地放出射线的现象.2.物质放出射线的性质,叫做放射性.3.具有放射性的元素,叫做放射性元素.4.天然放射现象最先是由贝克勒尔于1896年发现的.人类对原子核变化规律的认识,是从天然放射现象的发现开始的.天然放射性现象的发现有何意义?提示:天然放射现象使人们认识到原子核具有复杂的内部结构.二、放射线的本质1.α射线是高速运动的氦原子核粒子流.速度约为光速的0.1倍,电离作用很强,穿透能力很弱.2.β射线是高速运动的电子流,速度约为光速的0.9倍,电离作用较弱,穿透本领较强.3.γ射线是波长很短的电磁波,它的电离作用很弱,穿透能力很强.1.(1)α射线实际上就是氦原子核,α射线具有较强的穿透能力.( )(2)β射线是高速电子流,很容易穿透黑纸,也能穿透几毫米厚的铝板.( )(3)γ射线是能量很高的电磁波,电离作用很强.( )提示:(1)×(2)√(3)×三、原子核的衰变种类方程规律原子核的衰变α衰变:放出α粒子的衰变23892U→23490Th+42He质量数、核电荷数守恒β衰变:放出β粒子的衰变23490Th→23491Pa+-1 eγ衰变2.(1)原子核发生衰变,变成了一种新的原子核.( )(2)原子核衰变时质量是守恒的.( )(3)β衰变时放出的电子就是核外电子.( )提示:(1)√(2)×(3)×四、半衰期1.定义:放射性元素的原子核有半数发生衰变需要的时间.2.公式:m=M⎝⎛⎭⎪⎫12t/τ.m为该元素剩余的质量,M为该元素原来的质量,t为经过的时间,τ为半衰期.3.影响因素:元素半衰期的长短由原子核自身因素决定,跟原子所处的物理状态(如温度、压强)或化学状态(如单质、化合物)无关.4.适用条件:半衰期描述的是大量原子核的统计行为,说明在大量原子核群体中,经过一定时间将有一定比例的原子核发生衰变.3.(1)半衰期可以表示放射性元素衰变的快慢.( )(2)半衰期是放射性元素的大量原子核衰变的统计规律.( )(3)对放射性元素加热时,其半衰期缩短.( )提示:(1)√(2)√(3)×对三种射线的认识1.三种射线的比较α射线β射线γ射线组成高速氦核流高速电子流光子流(高频电磁波) 带电荷量2e -e 0 质量4m p m p=1.67×10-27kgm p1 840静止质量为零速度0.1c 0.9c c在电场或磁场中偏转与α射线反向偏转不偏转贯穿本领最弱用纸能挡住较强穿透几毫米的铝板最强穿透几厘米的铅板对空气的电离作用很强较弱很弱在空气中的径迹粗、短、直细、较长、曲折最长通过胶片感光感光感光2.三种射线产生的机理α射线核内两个中子和两个质子结合得比较紧密,有时会作为一个整体从较大的原子核中抛射出来.原子核发生一次α衰变,质子数和中子数分别减少2β射线核中的中子可以转化为一个质子和一个电子,产生的电子从核中发射出来,这就是β射线,由于该电子来源于原子核,它的速度远大于阴极射线中的电子和核外绕核旋转的电子γ射线原子核的能量也是不连续的,同样存在着能级,能级越低越稳定.放射性原子核在发生α衰变、β衰变后产生的新核往往处于高能级,当它向低能级跃迁时,辐射γ光子.由于原子核中的能级跃迁辐射出的光子能量非常大,故γ光子的频率很大将α、β、γ三种射线分别射入匀强磁场和匀强电场,如图表示射线偏转情况中正确的是( )A .①③B .①④C .②③D .②④[思路点拨] 求解本题应把握以下两点:(1)α粒子、β粒子在磁场中偏转,求半径再比较.(2)α粒子、β粒子在电场中做平抛运动,求偏向位移再比较.[解析] 已知α粒子带正电,β粒子带负电,γ射线不带电,根据正、负电荷在磁场中运动受洛伦兹力方向和正、负电荷在电场中受电场力方向,可知①、②、③、④四幅图中,α、β粒子的偏转方向都是正确的,偏转的程度如下:带电粒子在磁场中做匀速圆周运动,其半径r =mvBq,将其数据代入,则α粒子与β粒子的半径之比为:r αr β=m αmβ·v αv β·q βq α=411 840×0.1c 0.99c ×12≈3711. 由此可见①正确,②错误.带电粒子垂直进入匀强电场,设初速度为v 0,垂直电场线方向位移为x ,沿电场方向位移为y ,则有:x =v 0t ,y =qE 2m t 2,消去t 可得:y =qEx 22mv 20.对某一确定的x 值,α、β粒子沿电场线偏转距离之比为y αy β=q αq β·m βm α·v 2βv 2α=21×11 8404×(0.99c )2(0.1c )2≈138. 由此可见③错误,④正确. [答案] B求解此类题目要熟知以下两点(1)三种射线的带电性质.(2)正、负电荷在电场或磁场中的运动规律及解题方法.1.如图,放射性元素镭衰变过程中释放出α、β、γ三种射线,分别进入匀强电场和匀强磁场中,下列说法正确的是( )A .①表示γ射线,③表示α射线B .②表示β射线,③表示α射线C .④表示α射线,⑤表示γ射线D .⑤表示β射线,⑥表示α射线解析:选C.γ射线为电磁波,在电场、磁场中均不偏转,故②和⑤表示γ射线,A 、B 、D 项错;α射线中的α粒子为氦的原子核,带正电,在匀强电场中,沿电场方向偏转,故③表示α射线,由左手定则可知在匀强磁场中α射线向左偏,故④表示α射线,C 项对.正确理解原子核的衰变天然放射现象说明原子核具有复杂的结构.原子核放出α粒子或β粒子(并不表明原子核内有α粒子或β粒子,原子核内不可能有α粒子或电子)后变成新的原子核,这种变化称为原子核的衰变.1.衰变规律:原子核衰变前后的核电荷数和质量数都守恒.2.衰变方程(1)原子核放出一个α粒子就说明它发生了一次α衰变,新核的质量数比原来的核减少了4,而核电荷数减少2,用通式表示为:α衰变:A Z X ―→A -4Z -2Y +42He.(2)原子核放出一个β粒子就说明它发生了一次β衰变,新核的质量数不变,而核电荷数增加了1,用通式表示为:β衰变:A Z X ―→ A Z +1Y + 0-1 e.(3)γ射线经常是伴随α衰变和β衰变而产生,往往是衰变后的新核向低能级跃迁时辐射出来的一份能量,原子核放出一个γ光子不会改变它的质量数和核电荷数.3.两个重要的衰变23892U ―→234 90Th +42He ,234 90Th ―→234 91Pa + 0-1 e.4.对核反应过程的说明(1)核反应过程一般都是不可逆的,所以核反应方程只能用单向箭头表示反应方向,不能用等号连接.(2)核反应的生成物一定要以实验为基础,不能凭空只依据两个守恒求出生成物来写核反应方程.(3)核反应中遵循质量数守恒而不是质量守恒,核反应过程中反应前后的总质量一般会发生变化.(4)当放射性物质发生连续衰变时,原子核中有的发生α衰变,有的发生β衰变,同时伴随着γ辐射,这时可连续放出三种射线.238 92U 放射性衰变有多种可能途径,其中一途径是先变成210 83Bi ,而21083Bi 可以经一次衰变变成210a X(X 代表某一种元素),也可以经一次衰变变成 b81Ti ,210a X 和 b81Ti 最后都变成20682Pb ,衰变路径如图所示,则图中( )A .a =82,b =211B .①是β衰变,②是α衰变C .①是α衰变,②是β衰变 D. b81Ti 经过一次α衰变变成20682Pb [思路点拨] 求解本题应注意以下两点:(1)发生一次α衰变,质量数减少4,核电荷数减少2,根据质量数变化求α衰变的次数.(2)发生一次β衰变,质量数不变,核电荷数增加1,再根据电荷数变化确定β衰变的次数.[解析]21083Bi 经一次衰变变成210a X ,由于质量数不变,所以只发生了一次β衰变,核电荷数增加1即a =83+1=84,①是β衰变.21083Bi 经一次衰变变成 b81Ti ,由于核电荷数减少2,所以只发生了一次α衰变,质量数减少4,即b =210-4=206,②是α衰变,故A 、C 项均错误,B 项正确;20681Ti 变成20682Pb ,质量数不变,核电荷数增加1,所以只能经过一次β衰变,故D 项错误.[答案] B有关连续衰变确定衰变次数的问题应注意的两点(1)由于β衰变不改变质量数,可先根据质量数守恒,确定α衰变次数. (2)再根据总核电荷数守恒,确定β衰变次数.2.原子核23892U 经放射性衰变①变为原子核23490Th ,继而经放射性衰变②变为原子核234 91Pa ,再经放射性衰变③变为原子核23492U ,放射性衰变①、②和③依次为( )A .α衰变、β衰变和β衰变B .β衰变、α衰变和β衰变C .β衰变、β衰变和α衰变D .α衰变、β衰变和α衰变解析:选A.23892U ――→①234 90Th ,质量数少4,电荷数少2,说明①为α衰变.23490Th ――→②234 91Pa ,质子数加1,质量数不变,说明②为β衰变,中子转化成质子.23491Pa ――→③234 92U ,质子数加1,质量数不变,说明③为β衰变,中子转化成质子.故选A.对半衰期的理解1.常用公式:N 余=N 原⎝ ⎛⎭⎪⎫12t τ,m =M ⎝ ⎛⎭⎪⎫12tτ.式中N 原、M 表示衰变前的放射性元素的原子数和质量,N 余、m 表示衰变后尚未发生衰变的放射性元素的原子数和质量,t 表示衰变时间,τ表示半衰期.2.规律的特征:放射性元素的半衰期是稳定的,是由元素的原子核内部因素决定,跟原子所处的物理状态(如压强、温度)或化学状态(如单质、化合物)无关.3.规律的用途:利用天然放射性元素的半衰期可以估测岩石、化石和文物的年代.半衰期是一个统计规律,只对大量的原子核有意义,对少数原子核是没有意义的.某一个原子核何时发生衰变,是不可知的,当原子核数目特别少时,公式不再成立,如10个原子核经过半衰期剩几个?这样的问题无法处理.放射性同位素14C 被考古学家称为“碳钟”,它可以用来判定古生物体的年代,此项研究获得1960年诺贝尔化学奖.(1)宇宙射线中高能量的中子碰到空气中的氮原子后,会形成不稳定的146C ,它很容易发生衰变,放出β射线变成一个新核,其半衰期为5 730年,试写出14C 的衰变方程.(2)若测得一古生物遗骸中的146C 含量只有活体中的25%,则此遗骸距今约有多少年? [思路点拨] (1)根据质量数守恒和电荷数守恒写出衰变方程.(2)由古生物14C 的含量与活体14C 的含量对比可确定其半衰期数,即可计算出古生物的年代.[解析] (1)146C 的β衰变方程为:14 6C ―→0-1e +147N.(2)146C 的半衰期τ=5 730年.生物死亡后,遗骸中的146C 按其半衰期变化,设活体中146C 的含量为N 0,遗骸中的146C 含量为N ,则N =⎝ ⎛⎭⎪⎫12tτN 0≠N 0, 即0.25N 0=⎝ ⎛⎭⎪⎫12t5 730N 0,故t 5 730=2,t =11 460年. [答案] (1)146C ―→0-1e +147N (2)11 460年3.放射性元素的原子核在α衰变或β衰变生成新原子核时,往往会同时伴随________辐射.已知A 、B 两种放射性元素的半衰期分别为T 1和T 2,经过t =T 1·T 2时间后测得这两种放射性元素的质量相等,那么它们原来的质量之比m A ∶m B =________.解析:由半衰期公式m =m 0⎝ ⎛⎭⎪⎫12tT 结合题意可得 m A ·⎝ ⎛⎭⎪⎫12T 1T 2T 1=m B ·⎝ ⎛⎭⎪⎫12T 1T 2T 2,所以m A m B =2T 22T 1.答案:γ 2T 2∶2T 1α衰变、β衰变在磁场中的轨迹分析设有一个质量为M 0的原子核,原来处于静止状态.当发生一次α(或β)衰变后,释放的粒子的质量为m ,速度为v ,产生的反冲核的质量为M ,速度为v ′.1.动量守恒关系:0=mv +Mv ′或mv =-Mv ′.2.在磁场中径迹的特点:当粒子和反冲核垂直进入磁感应强度为B 的匀强磁场时,将在洛伦兹力的作用下做匀速圆周运动,且轨迹如图所示.(1)轨道半径的大小:因为粒子与反冲核的动量大小相等,所以轨道半径与电荷量成反比,即R =mv Bq ∝1q .当发生α衰变时:R αR M =Z -22.当发生β衰变时:R βR M =Z +11.如果测出轨道的半径比,可以求出Z ,从而判定是什么原子核发生了衰变.(2)运行周期的长短:在同样的条件下,运行周期与粒子和反冲核的比荷成反比,即T =2πm Bq ∝m q.(3)径迹的特点:粒子的轨道半径大,反冲核的轨道半径小.α粒子与反冲核带同种电荷,两轨道外切;β粒子与反冲核带异种电荷,两轨道内切;γ射线的径迹为与反冲核的径迹相切的直线.静止在匀强磁场中的某放射性元素的原子核,当它放出一个α粒子后,其速度方向与磁场方向垂直,测得α粒子和反冲核轨道半径之比为44∶1,如图所示,则下列说法错误的是( )A .α粒子与反冲核的动量大小相等,方向相反B .原来放射性元素的原子核电荷数为90C .反冲核的电荷数为88D .α粒子和反冲粒子的速度之比为1∶88[解析] 微粒之间相互作用的过程中遵循动量守恒,由于初始总动量为0,则末动量也为0,即α粒子和反冲核的动量大小相等、方向相反.由于释放的α粒子和反冲核均在垂直于磁场的平面内且在洛伦兹力作用下做圆周运动,由Bqv =m v 2R 得:R =mv qB.若原来放射性元素的核电荷数为Q ,则对α粒子:R 1=p 1B ·2e对反冲核:R 2=p 2B (Q -2)e.由于p 1=p 2,R 1∶R 2=44∶1,得Q =90它们的速度大小与质量成反比,故选项D 错误. [答案] D[随堂检测]1.天然放射现象的发现揭示了( )A.原子不可再分B.原子的核式结构C.原子核还可以再分D.原子核由质子和中子组成解析:选C.汤姆孙发现了电子说明原子也可再分;卢瑟福通过α粒子散射实验提出了原子的核式结构;贝可勒尔发现了天然放射现象,说明了原子核也是有着复杂的结构的.天然放射现象的发现揭示了原子核还可再分.卢瑟福用α粒子轰击氮核,发现了质子,查德威克用α粒子轰击铍核打出了中子,使人们认识到原子核是由质子和中子组成的.所以选项C正确.2.(多选)下列关于放射性元素发出的三种射线的说法中正确的是( )A.α粒子就是氢原子核,它的穿透本领和电离本领都很强B.β射线是电子流,其速度接近光速C.γ射线是一种频率很高的电磁波,它可以穿过几厘米厚的铅板D.以上三种说法均正确解析:选BC.α粒子是氦原子核,它的穿透本领很弱而电离本领很强,A项错误;β射线是电子流,其速度接近光速,B项正确;γ射线的穿透能力很强,可以穿透几厘米厚的铅板,C项正确.3.(多选)关于原子核的衰变和半衰期,下列说法正确的是( )A.半衰期是指原子核的质量减少一半所需要的时间B.半衰期是指原子核有半数发生衰变所需要的时间C.发生α衰变时产生的新原子核在周期表中的位置向后移动2位D.发生β衰变时产生的新原子核在周期表中的位置向后移动1位解析:选BD.由半衰期的定义可知,A错,B对.由α衰变和β衰变的实质可知,C 错,D对.4.碘131的半衰期约为8天.若某药物含有质量为m的碘131,经过32天后,该药物中碘131的含量大约还有( )A.m4B.m8C.m16D.m32解析:选C.经过32天即4个半衰期,碘131的含量变为m ′=m 24=m16,C 项正确.[课时作业]一、单项选择题1.在天然放射性物质附近放置一带电体,带电体所带的电荷很快消失的根本原因是( )A .γ射线的贯穿作用B .α射线的电离作用C .β射线的贯穿作用D .β射线的中和作用解析:选B.由于α粒子电离作用较强,能使空气分子电离,电离产生的电荷与带电体的电荷中和,使带电体所带的电荷很快消失.2.关于放射性元素的α衰变和β衰变,下列说法中正确的是( ) A .原子核每放出一个α粒子,原子序数减少4 B .原子核每放出一个α粒子,原子序数增加4 C .原子核每放出一个β粒子,原子序数减少1 D .原子核每放出一个β粒子,原子序数增加1解析:选D.发生一次α衰变,核电荷数减少2,质量数减少4,原子序数减少2;发生一次β衰变,核电荷数增加1,原子序数增加1.3.实验观察到,静止在匀强磁场中A 点的原子核发生β衰变,衰变产生的新核与电子恰在纸面内做匀速圆周运动,运动方向和轨迹示意图如图,则( )A .轨迹1是电子的,磁场方向垂直纸面向外B .轨迹2是电子的,磁场方向垂直纸面向外C .轨迹1是新核的,磁场方向垂直纸面向里D .轨迹2是新核的,磁场方向垂直纸面向里解析:选D.根据动量守恒定律,原子核发生β衰变后产生的新核与电子的动量大小相等,设为p .根据qvB =mv 2r ,得轨道半径r =mv qB =pqB,故电子的轨迹半径较大,即轨迹1是电子的, 轨迹2是新核的.根据左手定则,可知磁场方向垂直纸面向里.选项D 正确.4.最近几年,原子核科学家在超重元素的探测方面取得重大进展,1996年科学家们在研究某两个重离子结合成超重元素的反应时,发现生成的超重元素的核AZ X 经过6次α衰变后的产物是253100Fm.由此,可以判定生成的超重元素的原子序数和质量数分别是( )A .124、259B .124、265C .112、265D .112、277解析:选D.由电荷数守恒得Z =100+12=112,由质量数守恒得A =253+24=277,故选D.5.如图中曲线a 、b 、c 、d 为气泡室中某放射物发生衰变放出的部分粒子的径迹,气泡室中磁感应强度方向垂直于纸面向里.以下判断可能正确的是( )A .a 、b 为β粒子的径迹B .a 、b 为γ粒子的径迹C .c 、d 为α粒子的径迹D .c 、d 为β粒子的径迹解析:选D.由于α粒子带正电,β粒子带负电,γ粒子不带电,据左手定则可判断a 、b 可能为α粒子的径迹,c 、d 可能为β粒子的径迹,选项D 正确.6.铀239(239 92U)经过衰变可产生钚239(239 94Pu).关于铀239的衰变,下列说法正确的是( )A.23994Pu 与23992U 的核内具有相同的中子数和不同的核子数 B .放射性物质23992U 发生β衰变时所释放的电子来源于核外电子 C.23992U 经过2次β衰变产生23994Pu D .温度升高,23992U 的半衰期减小解析:选C.23992U 的质量数A ′=239,核电荷数Z ′=92,则中子数n ′=239-92=147,23994Pu 的质量数A =239,核电荷数Z =94,则中子数n =A -Z =239-94=145,故核子数相同,但中子数不同,故A 错误.β衰变是原子核的衰变,与核外电子无关,β衰变时释放的电子是由核内一个中子转化成一个质子同时释放出来的,故B 错误.23992U ―→2 0-1e +23994Pu ,显然反应物的质量数为239,而生成物的质量数为239,故质量数守恒;而反应物的核电荷数为92,故核电荷数守恒,反应能够发生,故C正确.半衰期与物体的温度、状态均无关,而是由核内部自身因素决定的,故D错误.二、多项选择题7.如图所示,铅盒A中装有天然放射性物质,放射线从其右端小孔中水平向右射出,在小孔和荧光屏之间有垂直于纸面向里的匀强磁场,则以下说法中正确的是( )A.打在图中a、b、c三点的依次是α射线、γ射线和β射线B.α射线和β射线的轨迹是抛物线C.α射线和β射线的轨迹是圆弧D.如果在铅盒和荧光屏间再加一个竖直向下的场强适当的匀强电场,可能使屏上的亮斑只剩下b解析:选AC.由左手定则可知粒子向右射出后,在匀强磁场中α粒子受的洛伦兹力向上,β粒子受的洛伦兹力向下,轨迹都是圆弧.由于α粒子速度约是光速的110,而β粒子速度接近光速,所以在同样的混合场中不可能都做直线运动.本题应选A、C.8.关于天然放射性,下列说法正确的是( )A.所有元素都有可能发生衰变B.放射性元素的半衰期与外界的温度无关C.放射性元素与别的元素形成化合物时仍具有放射性D.一个原子核在一次衰变中可同时放出α、β和γ三种射线解析:选BC.自然界中绝大部分元素没有放射现象,选项A错误;放射性元素的半衰期只与原子核结构有关,与其他因素无关,选项B、C正确;原子核发生衰变时,不能同时发生α和β衰变,γ射线伴随这两种衰变产生,故选项D错误.9.14C发生放射性衰变成为14N,半衰期约5 700年.已知植物存活期间,其体内14C与12C的比例不变;生命活动结束后,14C的比例持续减小.现通过测量得知,某古木样品中14C 的比例正好是现代植物所制样品的二分之一.下列说法正确的是( )A.该古木的年代距今约5 700年B.12C、13C、14C具有相同的中子数C.14C衰变为14N的过程中放出β射线D.增加样品测量环境的压强将加速14C的衰变解析:选AC.古木样品中14C 的比例是现代植物所制样品的二分之一,根据半衰期的定义知该古木的年代距今约5 700年,选项A 正确;同位素具有相同的质子数,不同的中子数,选项B 错误;14C 的衰变方程为146C →147N +0-1e ,所以此衰变过程放出β射线,选项C 正确;放射性元素的半衰期与核内部自身因素有关,与原子所处的化学状态和外部条件无关,选项D 错误.10.在匀强磁场中,一个原来静止的原子核发生了衰变,得到两条如图所示的径迹,图中箭头表示衰变后粒子的运动方向.不计放出光子的能量,则下列说法正确的是( )A .发生的是β衰变,b 为β粒子的径迹B .发生的是α衰变,b 为α粒子的径迹C .磁场方向垂直于纸面向外D .磁场方向垂直于纸面向里解析:选AD.放射性元素放出β粒子时,β粒子与反冲核的速度相反,而电性相反,则两个粒子受到的洛伦兹力方向相同,两个粒子的轨迹应为内切圆,故放出的是β粒子,放射性元素放出粒子时,两带电粒子的动量守恒,由半径公式可得轨迹半径与动量成正比,与电荷量成反比,而β粒子的电荷量比反冲核的电荷量小,则β粒子的半径比反冲核的半径大,故b 为β粒子的运动轨迹,故选项A 正确,由左手定则知磁场方向垂直纸面向里,选项D 正确.三、非选择题11.恒星向外辐射的能量来自于其内部发生的各种热核反应,当温度达到108 K 时,可以发生“氦燃烧”.(1)完成“氦燃烧”的核反应方程:42He +________→84Be +γ. (2)84Be 是一种不稳定的粒子,其半衰期为2.6×10-16s .一定质量的84Be ,经7.8×10-16s 后所剩84Be 占开始时的多少?解析:(1)根据核反应方程的电荷数守恒,质量数守恒可知核反应方程应为42He +42He ―→84Be +γ.(2)m m 0=⎝ ⎛⎭⎪⎫12t τ=⎝ ⎛⎭⎪⎫123=18.答案:(1)42He (2)18(或12.5%)12.(1)原子核232 90Th 具有天然放射性,它经过若干次α衰变和β衰变后会变成新的原子核.下列原子核中,有三种是23290Th 衰变过程中可以产生的,它们是________.A.20882Pb B .21182Pb C.21684PoD.228 88RaE.22688Ra(2)一静止的23892U 核经α衰变成为23490Th 核,释放出的总动能为4.27 MeV.问此衰变后23490Th 核的动能为多少MeV(保留1位有效数字)?解析:(1)选ACD.发生1次α衰变时核子的质量数减4,电荷数减2;发生1次β衰变时,质量数不变,电荷数加1.先从质量数的变化分析,易得A 、C 、D 正确.(2)据题意知,此α衰变的衰变方程为:238 92U ―→234 90Th +42He ,根据动量守恒定律得m αv α=m Th v Th ①式中,m α和m Th 分别为α粒子和Th 核的质量,v α和v Th 分别为α粒子和Th 核的速度,由题设条件知:12m αv 2α+12m Th v 2Th =E k ② m αm Th =4234③式中E k =4.27 MeV ,是α粒子与Th 核的总动能. 由①②③式得12m Th v 2Th =m αm α+m Th E k代入数据得,衰变后23490Th 核的动能 12m Th v 2Th ≈0.07 MeV. 答案:(1)ACD (2)0.07 MeV。
第2节原子核衰变及半衰期学习目标知识脉络1.知道什么是放射性及放射性元素.(重点)2.知道三种射线的本质和特性.(重点、难点)3.知道原子核的衰变和衰变规律.(重点)4.知道什么是半衰期.(重点)天然放射现象的发现及放射线的本质[先填空]1.天然放射现象的发现(1)天然放射现象:物质能自发地放出射线的现象.(2)放射性:物质放出射线的性质,叫做放射性.(3)放射性元素:具有放射性的元素,叫做放射性元素.(4)天然放射现象的发现:1896年,法国物理学家贝可勒尔发现了天然放射现象.2.放射线的本质(1)如图321所示,让放射线通过强磁场,在磁场的作用下,放射线能分成3束,这表明有3种射线,且它们电性不同.带正电的射线向左偏转,为α射线;带负电的射线向右偏转,为β射线;不发生偏转的射线不带电,为γ射线.图321(2)α射线是高速运动的氦原子核粒子流,有很强的电离作用,但是穿透能力很弱.一张铝箔或一张薄纸就能将它挡住.(3)β射线是高速运动的电子,穿透能力较强,但电离作用较弱.能穿透几毫米厚的铝板.(4)γ射线是波长很短的电磁波,穿透能力很强,但电离作用很弱.能穿透几厘米的铅板.[再判断]1.放射性元素发出的射线可以直接观察到.(×)2.放射性元素发出的射线的强度可以人工控制.(×)3.α射线的穿透本领最强,电离作用很弱.(×)[后思考]天然放射现象说明了什么?【提示】天然放射现象说明了原子核具有复杂的内部结构.[核心点击]1.三种射线的比较如下表种类α射线β射线γ射线组成高速氦核流高速电子流光子流(高频电磁波)带电荷量2e-e0质量4m pm p=1.67×10-27 kgm p1 836静止质量为零速度0.1c0.9c c在电场或偏转与α射线不偏转磁场中反向偏转 贯穿本领最弱用纸能 挡住较强 穿透几毫 米的铝板最强 穿透几厘 米的铅板对空气的 电离作用 很强 较弱 很弱在空气中 的径迹 粗、短、直 细、较长、曲折 最长通过胶片感光 感光 感光2.(1)在匀强电场中,γ射线不发生偏转,做匀速直线运动,α粒子和β粒子沿相反方向做类平抛运动,在同样的条件下,β粒子的偏移大,如图322所示.图322位移x 可表示为x =12at 2=12·qE m ⎝ ⎛⎭⎪⎫y 0v 2∝q mv2 所以,在同样条件下β粒子与α粒子偏移之比为x βx α=e 2e ×411 836×⎝ ⎛⎭⎪⎫110c 2⎝⎛⎭⎪⎫99100c 2=37.(2)在匀强磁场中:γ射线不发生偏转,仍做匀速直线运动,α粒子和β粒子沿相反方向做匀速圆周运动,且在同样条件下,β粒子的轨道半径小,如图323所示.图323根据qvB =mv 2R得 R =mvqB∝mv q所以,在同样条件下β粒子与α粒子的轨道半径之比为R βR α=11 8364×99100cc10×2ee=1371.1.关于天然放射现象,下列说法正确的是( ) A .α射线是由氦原子核组成的 B .β射线的穿透能力最强 C .γ射线是波长很短的电磁波 D .γ射线的电离作用最强 E .β射线本质是高速电子流【解析】 α射线本质是氦核,A 正确;β射线本质是高速电子流,E 正确;γ射线是波长很短的电磁波,C 正确;α射线的电离作用最强,γ射线的穿透能力最强,B 、D 错误.【答案】 ACE2.一置于铅盒中的放射源发射出的α、β和γ射线,由铅盒的小孔射出,在小孔外放一铝箔,铝箔后的空间有一匀强电场.进入电场后,射线变为a 、b 两束,射线a 沿原来方向行进,射线b 发生了偏转,如图324所示,则图中的射线a 为________射线,射线b 为________射线.图324【解析】 在三种射线中,α射线带正电,穿透能力最弱,γ射线不带电,穿透能力最强,β射线带负电,穿透能力一般,综上所述,结合题意可知,a 射线应为γ射线,b 射线应为β射线.【答案】 γ β3.将α、β、γ三种射线分别射入匀强磁场和匀强电场,图中表示射线偏转情况正确的是( )【解析】 已知α粒子带正电,β粒子带负电,γ射线不带电,根据正、负电荷在磁场中运动受洛伦兹力方向和正、负电荷在电场中受电场力方向可知,A 、B 、C 、D 四幅图中α、β粒子的偏转方向都是正确的,但偏转的程度需进一步判断.带电粒子在磁场中做匀速圆周运动,其半径r =mv Bq,将数据代入,则α粒子与β粒子的半径之比r αr β=m αm β·v αv β·q βq α=411 836×0.1c0.99c ×12=371,A 对,B 错;带电粒子垂直进入匀强电场,设初速度为v 0,垂直电场线方向位移为x ,沿电场线方向位移为y ,则有x =v 0t ,y =12qEm t 2,消去t 可得y =qEx 22mv 20对某一确定的x 值,α、β粒子沿电场线偏转距离之比yαyβ=qαqβ·mβmα·v2βv2α=21×11 8364×0.99c20.1c2=137.5,C错,D对.选项E中,若α粒子不发生偏转,则有Bvαq=Eq,此时因β粒子的速度大些,有Bvβq>Eq,电子将向右偏转,故E 正确.【答案】ADE判断三种射线性质的方法(1)射线的电性:α射线带正电、β射线带负电、γ射线不带电.α、β是实物粒子,而γ射线是光子流,它是波长很短的电磁波.(2)射线的偏转:在电场或磁场中,通过其受力及运动轨迹半径的大小来判断α和β射线偏转方向,由于γ射线不带电,故运动轨迹仍为直线.(3)射线的穿透能力:α粒子穿透能力较弱,β粒子穿透能力较强,γ射线穿透能力最强,而电离作用相反.原子核的衰变[先填空]1.衰变:原子核由于放出α射线或β射线而转变为新核的变化.2.衰变形式:常见的衰变有两种,放出α粒子的衰变为α衰变,放出β粒子的衰变为β衰变,而γ射线是伴随α射线或β射线产生的.3.衰变规律(1)α衰变:A Z X→42He+A-4Z-2Y.(2)β衰变:A Z X→0-1e+A Z+1Y.在衰变过程中,电荷数和质量数都守恒.4.衰变的快慢——半衰期(1)放射性元素的原子核有半数发生衰变需要的时间叫做半衰期.(2)元素半衰期的长短由原子核自身因素决定,与原子所处的物理、化学状态以及周围环境、温度无关.[再判断]1.原子核的衰变有α衰变、β衰变和γ衰变三种形式.(×)2.在衰变过程中,电荷数、质量数守恒.(√)3.原子所处的周围环境温度越高,衰变越快.(×)[后思考]有10个镭226原子核,经过一个半衰期有5个发生衰变,这样理解对吗?【提示】不对.10个原子核数目太少,它们何时衰变是不可预测的,因为衰变规律是大量原子核的统计规律.[核心点击]1.衰变实质α衰变:原子核内两个质子和两个中子结合成一个α粒子,并在一定条件下作为一个整体从较大的原子核中抛射出来,产生α衰变.210n+211H―→42He.β衰变:原子核内的一个中子变成一个质子留在原子核内,同时放出一个电子,即β粒子放射出来.10n―→11H+0-1e.2.确定原子核衰变次数的方法与技巧(1)方法:设放射性元素A Z X经过n次α衰变和m次β衰变后,变成稳定的新元素A′Z′Y,则衰变方程为:A Z X―→A′Z′Y+n42He+m0-1e根据电荷数守恒和质量数守恒可列方程:A=A′+4n,Z=Z′+2n-m.以上两式联立解得:n =A -A ′4,m =A -A ′2+Z ′-Z .由此可见,确定衰变次数可归结为解一个二元一次方程组.(2)技巧:为了确定衰变次数,一般先由质量数的改变确定α衰变的次数(这是因为β衰变的次数多少对质量数没有影响),然后根据衰变规律确定β衰变的次数.3.对半衰期的理解(1)意义:表示放射性元素衰变的快慢.(2)半衰期公式:n =N ⎝ ⎛⎭⎪⎫12t T 1/2,m =M ⎝ ⎛⎭⎪⎫12tT 1/2式中N 、M 表示衰变前的原子数和质量,n 、m 表示衰变后的尚未发生衰变的原子数和质量,T 1/2表示衰变时间,τ表示半衰期.4.适用条件:半衰期是一个统计概念,是对大量的原子核衰变规律的总结,对于一个特定的原子核,无法确定其何时发生衰变,半衰期只适用于大量的原子核.5.应用:利用半衰期非常稳定的特点,可以测算其衰变过程,推算时间等.4.某原子核的衰变过程A ――→βB ――→αC ,下列说法正确的是( )【导学号:18850042】A .核C 比核A 的质子数少1B .核C 比核A 的质量数少5C .原子核为A 的中性原子的电子数比原子核为B 的中性原子的电子数多2D .核C 比核B 的中子数少2E .核C 比核A 的中子数少3【解析】 原子核A 经过一次β衰变和一次α衰变变为原子核C 的衰变方程为:A Z A ――→β A Z +1B ――→αA -4Z -1C ,由此可知核C 比核A 的质子数少1,质量数少4,A 正确,B 错误;原子核为A 的中性原子的电子数比原子核为B 的中性原子的电子数少1,C 错误;核C 比核B 的中子数少2,核C 比核A 的中子数少3,D 、E 均正确.【答案】 ADE5.由于放射性元素237 93Np 的半衰期很短,所以在自然界一直未被发现,只是在使用人工的方法制造后才被发现.已知237 93Np 经过一系列α衰变和β衰变后变成209 83Bi ,下列论断中正确的是( )A.209 83Bi 的原子核比237 93Np 的原子核少28个中子B.209 83Bi 的原子核比237 93Np 的原子核少18个中子C .衰变过程中共发生了7次α衰变和4次β衰变D .衰变过程中共发生了4次α衰变和7次β衰变E .衰变过程中共有4个中子转变为质子 【解析】209 83Bi 的中子数为209-83=126,237 93Np 的中子数为237-93=144,209 83Bi 的原子核比237 93Np 的原子核少18个中子,A 错、B 对;衰变过程中共发生了α衰变的次数为237-2094=7次,β衰变的次数是2×7-(93-83)=4次,C 对、D 错,此过程中共发生了4次β衰变,因此共有4个中子转变为质子,E 正确.【答案】 BCE6.放射性同位素14C 被考古学家称为“碳钟”,它可以用来判定古生物体的年代,此项研究获得1960年诺贝尔化学奖.(1)宇宙射线中高能量的中子碰到空气中的氮原子后,会形成不稳定的14 6C ,它很容易发生衰变,放出β射线变成一个新核,其半衰期为5 730年,试写出14C 的衰变方程;(2)若测得一古生物遗骸中的14 6C 含量只有活体中的25%,则此遗骸距今约有多少年? 【解析】 (1)14 6C 的β衰变方程为: 14 6C ―→ 0-1e +14 7N. (2)14 6C 的半衰期τ=5 730年.生物死亡后,遗骸中的14 6C 按其半衰期变化,设活体中14 6C 的含量为N 0,遗骸中的14 6C含量为N ,则N =⎝ ⎛⎭⎪⎫12N 0,即0.25N 0=⎝ ⎛⎭⎪⎫12N 0,故t5 730=2,t =11 460年. 【答案】 (1)14 6C ―→ 0-1e +14 7N (2)11 460年1.衰变过程遵循质量数守恒和电荷数守恒.(1)每发生一次α衰变质子数、中子数均减少2,质量数减少4. (2)每发生一次β衰变中子数减少1,质子数增加1,质量数不变.2.利用半衰期公式解决实际问题,首先要理解半衰期的统计意义,其次要知道公式建立的是剩余核的质量与总质量间的关系.。