3-2-原子核衰变及半衰期
- 格式:ppt
- 大小:1.37 MB
- 文档页数:25
核能的衰变与半衰期核能是一种重要的能源来源,但它的稳定性和半衰期是我们需要了解和考虑的重要因素。
在本文中,我们将探讨核能的衰变过程以及半衰期的概念。
一、核能的衰变核能是指原子核内部的能量。
核能的衰变是指原子核释放出能量而转变为另一个核或粒子的过程。
这种衰变过程是随机的,无法预测任何特定核的衰变时间。
但可以根据大量核样品的平均行为来进行研究。
核能的衰变可以发生三种类型的衰变,包括α衰变、β衰变和γ衰变。
α衰变是指放射性核素释放出α粒子(由两个质子和两个中子组成的核片段)。
这种衰变会导致原子核的质量减少,同时也会释放出高速的α粒子和能量。
β衰变是指放射性核素中的一个中子或一个质子转变为一个电子或一个正电子,同时释放出相应的反中微子或中微子。
这种衰变会导致原子核中的中子或质子数量的改变。
γ衰变是指放射性核素的能级之间发生跃迁,释放出高能光子(γ射线)。
这种衰变并不改变原子核的质量或电荷。
二、半衰期的定义半衰期是描述放射性衰变速率的参数,表示衰变物质衰变一半所需的时间。
具体来说,半衰期是指在给定核样品中,一半的原子核会发生衰变所需的时间。
半衰期的记号通常为T½。
当时间t等于T½时,原子核的数量会减少到初始数量的一半。
根据指数衰减的性质,每经过一个半衰期,剩余原子核的数量就会减少一半。
半衰期决定了放射性物质的衰变速率以及其稳定性。
三、半衰期的测量和应用科学家通过实验来确定不同核素的半衰期。
利用放射性示踪技术和核反应技术,可以测量不同放射性核素的衰变速率以及半衰期。
这些数据对于核能发电、医学诊断和治疗、碳14定年等方面都有重要的应用。
在核能发电中,半衰期的知识对于安全管理和废物处理至关重要。
核电厂所使用的核燃料经过一定时间后,会产生大量放射性废物。
了解这些废物的半衰期可以帮助我们制定合理的储存和处理方案,以确保人类和环境的安全。
此外,半衰期还被广泛用于医学诊断和放射治疗。
例如,放射性同位素碘-131常用于甲状腺扫描和治疗。
原子核稳定性核衰变和半衰期原子核稳定性、核衰变和半衰期原子核稳定性、核衰变和半衰期是核物理学中重要的概念。
了解这些概念有助于我们理解放射性物质的特性以及核能的应用。
本文将对原子核稳定性、核衰变以及半衰期进行详细介绍。
一、原子核稳定性原子核由质子和中子组成,稳定的原子核通常具有适当的质子-中子比例。
在原子核中,质子间的电荷排斥力相互作用力大于吸引力,因此质子间的排斥力趋向于不稳定。
中子通过强相互作用力中和了质子间的排斥力,使得原子核保持相对稳定。
原子核稳定性受到质子数和中子数的影响。
通常情况下,质子数和中子数相近的原子核更稳定。
例如,氢-1核只有一个质子和零个中子,属于最稳定的核。
而质子数和中子数相差很大的核则相对不稳定。
当原子核的质子数较大时,需要更多的中子来中和质子间的排斥力,以保持相对稳定。
二、核衰变核衰变是指原子核自发地释放能量或粒子,以达到更稳定的状态。
核衰变可以通过以下三种方式发生:α衰变、β衰变和γ衰变。
1. α衰变:在α衰变中,原子核释放一个α粒子,即两个质子和两个中子的组合。
α粒子相当于一个氦离子,带有两个正电荷。
α衰变会使原子核的质子数和中子数减少,因此原子核的质量数会减少4个单位。
2. β衰变:在β衰变中,中子转变为质子或质子转变为中子。
这一过程会伴随着释放一个带有电荷的β粒子。
电子形式的β粒子表示为β-衰变,而正电子形式的β粒子表示为β+衰变。
β衰变会改变原子核的质子数或中子数,从而改变元素的化学特性。
3. γ衰变:在α或β衰变之后,原子核可能处于激发态。
为了回到基态,原子核释放出一个光子,即γ射线。
γ衰变并不改变原子核的质子数和中子数,只是释放能量。
三、半衰期半衰期是用来描述特定核衰变过程中原子核数量减少一半所需的时间。
半衰期是一个固定的时间间隔,与某种放射性物质的特性相关。
半衰期是放射性物质的重要特征之一,它决定了放射性衰变的速率。
不同的放射性物质具有不同的半衰期,从几微秒到数亿年不等。
2020-2021学年下学期高二年级物理学科校本作业答案内容:选修3-5 3.2 原子核衰变及半衰期班级__________ 姓名__________ 座号__________ 成绩__________ 1.【a】天然放射现象说明( )A.原子不是单一的基本粒子B.原子核不是单一的基本粒子C.原子内部大部分是空的D.原子是由带正电和带负电的基本粒子组成的解析:选B 天然放射现象是自发地从原子核里放出粒子而转变为新元素的现象,说明原子核不是单一的基本粒子,B正确;α粒子散射现象说明原子内大部分是空的,A、C项不是由天然放射现象说明的。
2.【a】放射性元素放出的射线,在电场中分成a、b、c三束,如图所示,其中( )A.c为氦核组成的粒子B.b为比X射线波长更长的光子流C.b为比X射线波长更短的光子流D.a为高速电子组成的电子流解析:选C 根据射线在电场中的偏转情况,可以判断,a射线向电场线方向偏转,应为由带正电的粒子组成的α射线,D错。
b射线在电场中不偏转,所以为γ射线,其波长比X射线短,B错,C正确。
c射线受到与电场方向相反的电场力,应为由带负电的粒子组成的β射线,A错。
3.【a】在天然放射性物质附近放置一带电体,带电体所带的电荷很快消失的根本原因是( )A.γ射线的贯穿作用B.α射线的电离作用C.β射线的贯穿作用D.β射线的中和作用解析:选B 由于α粒子电离作用很强,能使空气分子电离,电离产生的电荷与带电体的电荷中和,故B正确。
4.【a】由原子核的衰变规律可知( )A.放射性元素一次衰变可同时产生α射线和β射线B.放射性元素发生β衰变时,新核的化学性质不变C.放射性元素发生衰变的快慢不可人为控制D.放射性元素发生正电子衰变时,新核质量数不变,核电荷数增加1解析:选C 一次衰变不可能同时产生α射线和β射线,只可能同时产生α射线和γ射线或β射线和γ射线;原子核发生衰变后,核电荷数发生了变化,故新核(新的物质)的化学性质应发生改变;发生正电子衰变,新核质量数不变,核电荷数减小1。
----- . -zj资料- 分类号:TQ242.3单位代码:XXXX密级:一般学号:XXXXX本科毕业论文(设计)题目:原子核的三种主要衰变特性及其比较专业:物理学姓名:XX指导教师:XX职称:教授答辩日期:二0一五年六月十四日原子核的三种主要衰变特性及其比较摘要:物理学是研究物质运动最一般规律和物质基本结构的学科。
是一门以实验研究为基础的自然学科。
核物理学又称原子核物理学,是20世纪新建立的一个物理学分支。
它是一门既有深刻理论意义,又有重大实践意义的学科。
核物理与核技术已经成为当今世界上最有生命力、发展最为迅速、影响力最大、成果最多的学科之一。
所以说,对于原子核物理的认识也就必不可少了。
然而对于原子核物理的了解,最重要的手段就是对原子核衰变的研究。
原子核的衰变是极其复杂的,为了更好的认识原子核,加深对原子核衰变的理解,我们对原子核的三种主要衰变特性进行比较。
关键词:原子核三种衰变比较Abstract: Subject matter physics is the study of the most general laws of motion and the basic structure of matter. Is a research-based experimental natural sciences. Nuclear physics, nuclear physics, also known, is a branch of physics newly established 20th century. It is both a profound theoretical significance and great practical significance of the subjects. Nuclear physics and nuclear technology has become the world's most vital, the fastest growing, most influential, one of the largest achievement disciplines. So, for the understanding of nuclear physics also indispensable. However, for the understanding of nuclear physics, research is the most important means of nucleus decay. Nuclear decay is extremely complex, in order to better understand the nucleus, to deepen understanding of nuclear decay, we have three main nuclei decay characteristics were compared.Key Words: Atomic nucleus; three kinds of decay; Compare衰变亦称"蜕变"。
原子核的衰变过程与半衰期原子核的衰变是一种自然现象,它可以发生在各种原子核中,包括放射性同位素。
衰变是原子核内部粒子的重新排列,导致原子核从一个能量状态转变为另一个能量状态的过程。
这个过程是随机的,无法准确预测每个原子核何时会发生衰变。
为了描述衰变的速率,科学家引入了半衰期的概念。
半衰期是指在给定时间内,一半的原子核会发生衰变的时间。
它是一个统计平均值,用来描述原子核衰变的速率。
半衰期的长短取决于原子核的性质,不同的同位素具有不同的半衰期。
有些同位素的半衰期非常短,只有几秒钟或几分钟,而其他同位素的半衰期可以长达数亿年。
原子核的衰变过程涉及到不同类型的衰变方式,包括α衰变、β衰变和γ衰变。
α衰变是指原子核释放出一个α粒子,即两个质子和两个中子组成的粒子。
α衰变会导致原子核的质量数减少4,而原子序数减少2。
这种衰变方式常见于重核素,例如铀系列的同位素。
β衰变是指原子核释放出一个β粒子,即电子或正电子。
β衰变会导致原子核的质量数不变,但原子序数增加1(负β衰变)或减少1(正β衰变)。
这种衰变方式常见于中等质量的同位素,例如碳-14的衰变过程。
γ衰变是指原子核释放出γ射线,这是一种高能电磁辐射。
γ衰变不会改变原子核的质量数和原子序数,但会导致原子核能量状态的变化。
γ射线是一种非常强大的辐射,可以穿透物质,因此在核能研究和医学诊断中具有重要应用。
半衰期的计算可以通过统计方法得出,但它并不是一个确定的值。
每个原子核的衰变过程都是随机的,无法精确预测。
然而,通过大量实验观测和统计分析,科学家可以确定同位素的平均半衰期,并用于实际应用中。
半衰期的应用非常广泛。
在核能研究中,半衰期是评估放射性同位素的稳定性和活性的重要指标。
它可以用来确定放射性同位素的使用寿命和辐射危害程度。
在医学诊断中,半衰期被用来确定放射性示踪剂的有效时间和剂量。
此外,半衰期还在地质学、考古学和环境科学等领域得到广泛应用。
总之,原子核的衰变过程是一种自然现象,涉及到不同类型的衰变方式。
《原子核的衰变和半衰期》知识清单一、原子核的衰变原子核自发地放出某种粒子而转变为新核的变化叫做原子核的衰变。
(一)衰变的类型1、α衰变原子核放出α粒子(氦核)的衰变叫做α衰变。
α衰变的一般方程为:$_{Z}^{A}X\longrightarrow _{Z 2}^{A 4}Y +_{2}^{4}He$例如,铀 238 发生α衰变的方程为:$_{92}^{238}U\longrightarrow _{90}^{234}Th +_{2}^{4}He$在α衰变中,新核的质量数比原来的核减少 4,电荷数减少 2。
2、β衰变原子核放出β粒子(电子)的衰变叫做β衰变。
β衰变的一般方程为:$_{Z}^{A}X\longrightarrow _{Z + 1}^{A}Y +_{ 1}^{0}e$例如,钍 234 发生β衰变的方程为:$_{90}^{234}Th\longrightarrow _{91}^{234}Pa +_{ 1}^{0}e$在β衰变中,新核的质量数不变,电荷数增加 1。
3、γ衰变处于激发态的原子核向低能态跃迁时放出γ光子的过程叫做γ衰变。
γ衰变不会改变原子核的电荷数和质量数。
(二)衰变的规律原子核衰变时,电荷数和质量数都守恒。
二、半衰期(一)半衰期的定义放射性元素的原子核有半数发生衰变所需的时间,叫做这种元素的半衰期。
(二)半衰期的特点1、不同的放射性元素,半衰期不同。
有的半衰期很长,可达数十亿年;有的半衰期很短,只有几毫秒。
2、半衰期是一个统计规律,只对大量原子核适用,对少数原子核不适用。
(三)半衰期的计算假设放射性元素的初始原子核数为$N_0$,经过一个半衰期$T$后,剩余的原子核数为$N$,则有:$N =\frac{1}{2}N_0$经过$n$个半衰期后,剩余的原子核数为:$N = N_0\left(\frac{1}{2}\right)^n$(四)半衰期的应用1、利用半衰期可以估算放射性元素的剩余量,在考古、地质勘探等领域有重要应用。
第2节原子核衰变及半衰期学习目标:1.[物理观念]知道原子核的衰变和衰变规律. 2.[物理观念]知道什么是半衰期. 3.[科学态度与责任]了解放射性在生产和科学领域的应用. 4.[科学态度与责任]知道放射性污染及其对人类和自然产生的严重危害,了解防护放射性的措施,建立防范意识.一、原子核的衰变、半衰期1.衰变:原子核由于放出α射线或β射线而转变为新核的变化.2.衰变形式:常见的衰变有两种,放出α粒子的衰变为α衰变,放出β粒子的衰变为β衰变,而γ射线是伴随α射线或β射线产生的.3.衰变规律Y.(1)α衰变:A Z X→42He+A-4Z-2(2)β衰变:A Z X→0-1e+A Z+1Y.在衰变过程中,电荷数和质量数都守恒.4.衰变的快慢——半衰期(1)放射性元素的原子核有半数发生衰变需要的时间叫作半衰期.(2)元素半衰期的长短由原子核自身因素决定,与原子所处的物理、化学状态以及周围压强、温度无关.二、放射性的应用1.放射性同位素的应用主要分为两类:一是利用射线的电离作用、穿透能力等性质;二是作为示踪原子.2.射线特性的利用(1)辐射育种、食品辐射保存、放射性治疗等.(2)放射性同位素电池:把放射性同位素衰变时释放的能量转换成电能的装置.(3)γ射线探伤:利用了γ射线穿透能力强的特点.3.作为示踪原子:用仪器探测放射性同位素放出的射线,可以查明放射性元素的行踪,好像带有“标记”一样.人们把具有这种用途的放射性同位素叫作示踪原子.三、放射性污染和防护1.放射性污染的主要来源(1)核爆炸.(2)核泄漏.(3)医疗照射.2.为了防止放射线的破坏,人们主要采取以下措施(1)密封防护.(2)距离防护.(3)时间防护.(4)屏蔽防护.1.思考判断(正确的打“√”,错误的打“×”)(1)利用放射性同位素放出的γ射线可以给金属探伤.(√)(2)利用放射性同位素放出的射线消除有害的静电积累.(√)(3)利用放射性同位素放出的射线保存食物.(√)(4)医疗照射是利用放射性,对人和环境没有影响.(×)(5)原子所处的周围环境温度越高,衰变越快.(×)2.(多选)下列关于放射性同位素的一些应用的说法正确的是()A.利用放射性消除静电是利用射线的穿透作用B.利用射线探测机器部件内部的砂眼或裂纹是利用射线的穿透作用C.利用射线改良品种是因为射线可使DNA发生变异D.放射性同位素的半衰期是相同的BC[消除静电是利用射线的电离作用使空气导电,A错误;探测机器部件内部的砂眼或裂纹和改良品种分别是利用它的穿透作用和射线可使DNA发生变异,B、C正确;不同的放射性同位素的半衰期是不同的,D错误.] 3.(多选)关于放射性元素的半衰期,下列说法正确的是()A.是放射源质量减少一半所需的时间B.是原子核半数发生衰变所需的时间C.与外界压强和温度有关D.可以用于测定地质年代、生物年代等BD [原子核的衰变是由原子核的内部因素决定的,与外界环境无关.原子核的衰变有一定的速率,每隔一定的时间即半衰期,原子核就衰变掉总数的一半.不同种类的原子核,其半衰期也不同,若开始时原子核数目为N 0,经时间t 剩下的原子核数目为N ,半衰期为T ,则N =N 0⎝ ⎛⎭⎪⎫12t T .若能测出N 与N 0的比值,就可求出t ,依此公式可测定地质年代、生物年代等.故正确答案为B 、D .]你知道考古学家靠什么推断古化石的年代吗?提示:只要测出古化石中14C 的含量,就可以根据14C 的半衰期推断古化石α衰变:原子核内两个质子和两个中子结合成一个α粒子,并在一定条件下作为一个整体从较大的原子核中抛射出来,产生α衰变.210n +211H→42He . β衰变:原子核内的一个中子变成一个质子留在原子核内,同时放出一个电子,即β粒子放射出来.10n→11H + 0-1e . 2.衰变方程通式(1)α衰变:A Z X→A -4Z -2Y +42He .(2)β衰变:A Z X→ A Z +1Y + 0-1e . 3.确定原子核衰变次数的方法与技巧(1)方法:设放射性元素A Z X 经过n 次α衰变和m 次β衰变后,变成稳定的新元素A ′Z ′Y ,则衰变方程为:A Z X→A ′Z ′Y +n 42He +m 0-1e . 根据电荷数守恒和质量数守恒可列方程:A =A ′+4n ,Z =Z ′+2n -m .以上两式联立解得:n =A -A ′4,m =A -A ′2+Z ′-Z . 由此可见,确定衰变次数可归结为解一个二元一次方程组.(2)技巧:为了确定衰变次数,一般先由质量数的改变确定α衰变的次数(这是因为β衰变的次数多少对质量数没有影响),然后根据衰变规律确定β衰变的次数.【例1】 238 92U 核经一系列的衰变后变为206 82Pb 核,问:(1)一共经过几次α衰变和几次β衰变?(2)206 82Pb 与238 92U 相比,质子和中子数各少多少?(3)综合写出这一衰变过程的方程.[解析] (1)设238 92U 衰变为206 82Pb 经过x 次α衰变和y 次β衰变.由质量数守恒和电荷数守恒可得238=206+4x,92=82+2x -y ,联立解得x =8,y =6.即一共经过8次α衰变和6次β衰变.(2)由于每发生一次α衰变,质子数和中子数均减少2,每发生一次β衰变,中子数少1,而质子数增1,故206 82Pb 较238 92U 质子数少10,中子数少22.(3)核反应方程为238 92U→206 82Pb +842He +6 0-1e .[答案] (1)8次α衰变,6次β衰变 (2)10 22 (3)见解析分析衰变次数的解题步骤(1)先根据已知条件,表示出初、末原子核的符号.如A Z X 、A ′Z ′Y 等.(2)根据衰变规律,写出核反应方程,衰变次数用未知数表示.如:A Z X→A ′Z ′Y +m 42He +n 0-1e .(3)根据核反应方程遵循的规律列方程求解未知数.根据反应式得:⎩⎨⎧A =A ′+4m Z =Z ′+2m -n[跟进训练]1.某放射性元素的原子核M Z X 连续经过三次α衰变和两次β衰变,若最后变成另外一种元素的原子核Y ,则该新核的正确写法是( )A .M -14 Z -2Y B .M -14 Z -6Y C .M -12 Z -6Y D .M -12 Z -4YD [新核的质量数为M ′=M -12,故A 、B 错误;电荷数Z ′=Z -6+2=Z -4,故C 错误,D 正确.]晋朝初年,南昌人许逊被朝廷任命为旌阳县令,他看到很多老百姓的租税交提示:不能,衰变需要时间.1.常用公式:n =N ⎝ ⎛⎭⎪⎫12t T ,m =M ⎝ ⎛⎭⎪⎫12tT . 式中N 、M 表示衰变前的放射性元素的原子数和质量,n 、m 表示尚未发生衰变的放射性元素的原子数和质量,t 表示衰变时间,T 表示半衰期.2.意义:表示放射性元素衰变的快慢.3.规律的特征:放射性元素的半衰期是稳定的,由元素的原子核内部因素决定,跟原子所处的物理状态(如压强、温度)或化学状态(如单质、化合物)无关.4.适用条件:半衰期是一个统计概念,是对大量的原子核衰变规律的总结.5.规律的用途:利用天然放射性元素的半衰期可以估测岩石、化石和文物的年代.【例2】 恒星向外辐射的能量来自其内部发生的各种热核反应,当温度达到108 K 时,可以发生“氦燃烧”.(1)完成“氦燃烧”的核反应方程:42He +________→84Be +γ.(2)84Be 是一种不稳定的粒子,其半衰期为2.6×10-16 s .一定质量的84Be ,经7.8×10-16s 后所剩84Be 占开始时的________.[解析] (1)根据核反应方程和电荷守恒定律可知,42He +42He→84Be +γ.(2)84Be 的半衰期为2.6×10-16s ,经过7.8×10-16s 后,也就是经过3个半衰期后剩余的质量为m ′=⎝ ⎛⎭⎪⎫12n m =⎝ ⎛⎭⎪⎫123m ,所剩84Be 占开始时的18. [答案] (1)42He (2)18或12.5%应用半衰期公式m =M ⎝ ⎛⎭⎪⎫12t T ,n =N ⎝ ⎛⎭⎪⎫12t T 的三点注意 (1)半衰期公式只对大量原子核才适用,对少数原子核是不适用的.(2)明确半衰期公式中m 、M 的含义及二者的关系;n 、N 的含义及二者的关系.(3)明确发生衰变的原子核与新产生的原子核质量之间的比例关系,每衰变一个原子核,就会产生一个新核,它们之间的质量之比等于各自原子核的质量之比.[跟进训练]2.已知A 和B 两种放射性元素的半衰期分别为T 和2T ,则相同质量的A 和B 经过2T 后,剩有的A 和B 质量之比为( )A .1∶4B .1∶2C .2∶1D .4∶1B [由半衰期含义可知,A 经过两个半衰期剩余的质量为原来的14,B 经过一个半衰期,剩余的质量为原来的12,所以剩余的A 、B 质量之比为1∶2,B 项正确.]放射性同位素的放射强度易于控制,它的半衰期比天然放射性物质短得多,(1)能用α射线来测量金属板的厚度吗?(1)放射强度容易控制.(2)可以制成各种所需的形状.(3)半衰期比天然放射性物质短得多,放射性废料容易处理.因此,凡是用到射线时,用的都是人工放射性同位素.2.放射性同位素的主要应用(1)利用它的射线①工业部门使用射线测厚度——利用γ射线的穿透特性.②农业应用——γ射线使种子的遗传基因发生变异,杀死使食物腐败的细菌,抑制蔬菜发芽,延长保存期等.③医疗上——利用γ射线的高能量治疗癌症.(2)作为示踪原子:放射性同位素与非放射性同位素有相同的化学性质,通过探测放射性同位素的射线确定其位置.【例3】(多选)下列说法正确的是()A.给农作物施肥时,在肥料里放一些放射性同位素,是因为农作物吸收放射性同位素后生长更好B.输油管道漏油时,可以在输的油中放一些放射性同位素探测其射线,确定漏油位置C.天然放射元素也可以作为示踪原子加以利用,只是含量较少,经济上不划算D.放射性元素被植物吸收,其放射性不会发生改变BD[放射性元素与它的同位素的化学性质相同,但是利用放射性元素可以确定农作物在各季节吸收含有哪种元素的肥料.无论植物吸收含放射性元素的肥料,还是无放射性肥料,植物生长是相同的,A错误;人工放射性同位素,含量易控制,衰变周期短,不会对环境造成永久污染,而天然放射性元素,剂量不易控制、衰变周期长、会污染环境,所以不用天然放射元素,C错误;放射性是原子核的本身性质,与元素的状态、组成等无关,D正确;放射性同位素可作为示踪原子,是因为它不改变元素的化学性质,B正确.]放射性同位素的应用技巧(1)用射线来测量厚度,一般不选取α射线是因为其穿透能力太差,更多的是选取γ射线,也有部分选取β射线的.(2)给病人治疗癌症、培育优良品种、延长食物保质期一般选取γ射线.(3)使用放射线时安全是第一位的.[跟进训练]3.关于放射性同位素的应用,下列说法正确的是()A.利用射线可以改变布料的性质,使其不再因摩擦而生电,从而达到消除有害静电的目的B.利用γ射线的贯穿能力可以为金属探伤,也可以进行人体的透视C.利用射线照射作物种子可使其DNA发生变异,其结果一定是更优秀的品种D.利用γ射线治疗肿瘤时一定要严格控制剂量,以免对人体正常组织造成太大的伤害D[利用射线消除有害静电是利用射线的电离性,使空气分子电离,将静电中和,选项A错误;γ射线对人体细胞伤害太大,不能用来进行人体透视,选项B错误;作物种子发生的DNA突变不一定都是有益的,还要经过筛选才能培育出优良品种,选项C错误;利用γ射线治疗肿瘤对人体肯定有副作用,因此要科学地控制剂量,选项D正确.]射线在人们心里是一个恶魔,许多人谈“核”色变,怎样对射线进行有效的放射性物质危险警告标志后的废料,其主要成分为铀238.贫铀炸弹有很强的穿甲能力,而且铀238具有放射性,残留物可长期对环境起破坏作用而造成污染.人长期生活在该环境中会受到核辐射而易患上皮肤癌和白血病.下列结论正确的是()A.铀238的衰变方程式为23892U→42He+23490ThB.23892U和23592U互为同位素C.人患皮肤癌和白血病可能是因为核辐射导致了基因突变D.贫铀炸弹的穿甲能力很强,也是因为它的放射性ABC[铀238具有放射性,放出一个α粒子,变成钍234,选项A正确;铀238和铀235质子数相同,故互为同位素,选项B正确;核辐射能导致基因突变,是皮肤癌和白血病的诱因之一,选项C正确;贫铀炸弹的穿甲能力很强,是因为它的弹芯是由高密度、高强度、高韧性的铀合金组成,袭击目标时产生高温化学反应,所以其爆炸力、穿透力远远超过一般炸弹,选项D错.] [跟进训练]4.(1)一病人突然昏厥,医生用碘123进行诊断,通过体外跟踪,迅速查出病因这是利用碘123所放出的()A.热量B.α射线C.β射线D.γ射线(2)医生用碘123对病人进行诊断,使其很快恢复健康,碘123的特性是()A.半衰期长,并能迅速从体内清除B.半衰期长,并能缓慢从体内清除C.半衰期短,并能迅速从体内清除D.半衰期短,并能缓慢从体内清除[解析](1)原子核衰变可同时放出α、β、γ射线,α射线是氦核流,β射线是电子流,γ射线是电磁波,α射线与β射线的穿透本领都较弱,这是利用碘123所放出的γ射线.故A、B、C错误,D正确.(2)半衰期由原子核自身因素决定,与所处的状态无关,而医生用碘123进行诊断,原因是其半衰期较短,在较短的时间内可以测量到一定量的放射性,并可迅速从体内消除,避免过度放射对人体造成危害.故C符合题意.[答案](1)D(2)C1.(多选)以下说法正确的是()A.通过原子核的人工转变可以发现和制造新元素B.在人工核反应过程中,质量守恒C.利用示踪原子可以研究生物大分子的结构D.人类一直生活在放射性的环境中ACD[通过原子核的人工转变可以发现和制造新元素,A项正确;在人工核反应过程中,质量数守恒,B项错误;利用示踪原子可以研究生物大分子的结构,C项正确;人类一直生活在放射性的环境中,地球上的每个角落都有射线,D项正确.]2.由原子核的衰变规律可知()A.放射性元素一次衰变可同时产生α射线和β射线B.放射性元素发生β衰变时,新核的化学性质不变C.放射性元素发生衰变的快慢不可人为控制D.放射性元素发生正电子衰变时,新核质量数不变,核电荷数增加1C[一次衰变不可能同时产生α射线和β射线,只可能同时产生α射线和γ射线或β射线和γ射线;原子核发生衰变后,核电荷数发生了变化,故新核(新的物质)的化学性质也发生改变;发生正电子衰变,新核质量数不变,核电荷数减小1.]3.某放射性原子核A,经一次α衰变成为B,再经一次β衰变成为C,则() A.原子核C的中子数比A少2B .原子核C 的质子数比A 少1C .原子核C 的中子数比B 少2D .原子核C 的质子数比B 少1B [写出核反应方程如下:X Y A→42He +X -4Y -2B ,X -4Y -2B→ 0-1e +X -4Y -1C .A 的中子数为X -Y ,B 的中子数为(X -4)-(Y -2)=X -Y -2,C 的中子数为(X -4)-(Y -1)=X -Y -3.故C 比A 中子数少3,C 比B 中子数少1,A 、C 均错.A 、B 、C 的质子数分别为Y 、Y -2、Y -1,故C 比A 质子数少1,C 比B 质子数多1,B 对,D 错.]4.(多选)14C 发生放射性衰变成为14N ,半衰期约5 700年.已知植物存活期间,其体内14C 与12C 的比例不变;生命活动结束后,14C 的比例持续减少.现通过测量得知,某古木样品中14C 的比例正好是现代植物所制样品的二分之一.下列说法正确的是( ) A .该古木的年代距今约5 700年B .12C 、13C 、14C 具有相同的中子数C .14C 衰变为14N 的过程中放出β射线D .增加样品测量环境的压强将加速14C 的衰变AC [剩余的碳14占12,表明经过了一个半衰期,A 正确;碳14、13、12的质子数相同,质量数不同,中子数不同,碳14比碳12多两个中子,故B 错误;碳14变为氮14,质量数未变,放出的是电子流,即β射线,C 正确;半衰期不受外界环境影响,D 错误.]5.约里奥—居里夫妇因发现人工放射性同位素而获得了1935年的诺贝尔化学奖,他们发现的放射性元素3015P 衰变成3014Si 的同时放出另一种粒子,这种粒子是________.3215P 是3015P 的同位素,被广泛应用于生物示踪技术.1 mg 3215P 随时间衰变的关系如图所示,请估算4 mg 的3215P 经多少天的衰变后还剩0.25 mg .[解析]由核反应过程中电荷数和质量数守恒可写出核反应方程:3015P→3014Si +01e,可知这种粒子是正电子.由图像可知3215P的半衰期为14天,4 mg的3215P衰变后还剩0.25 mg,经历了4个半衰期,所以为56天.[答案]正电子56天。
23.2 原子核衰变及半衰期课标要求(1)了解天然放射现象及其规律;(2)知道三种射线的本质,以及如何利用磁场区分它们;(3)知道放射现象的实质是原子核的衰变;(4)知道两种衰变的基本性质,并掌握原子核的衰变规律;(5)理解半衰期的概念。
引入新课本节课我们来学习新的一章:原子核。
本章主要介绍了核物理的一些初步知识,核物理研究的是原子核的组成及其变化规律,是微观世界的现象。
让我们走进微观世界,一起探索其中的奥秘!我们已经知道原子由原子核与核外电子组成。
那原子核内部又是什么结构呢?原子核是否可以再分呢?它是由什么微粒组成?用什么方法来研究原子核呢?人类认识原子核的复杂结构和它的变化规律,是从发现天然放射现象开始的,1896年,法国物理学家贝克勒尔发现,铀和含铀的矿物能够发出看不见的射线,这种射线可以穿透黑纸使照相底片感光。
居里和居里夫人在贝克勒尔的建议下,对铀和铀的各种矿石进行了深入研究,又发现了发射性更强的新元素。
其中一种,为了纪念她的祖国波兰而命名为钋(Po),另一种命名为镭(Ra)。
一、天然放射现象1、天然放射现象物质放射出α射线、β射线、γ射线的性质,叫做放射性,具有放射性的元素叫放射性元素。
1896年法贝克勒耳首先发现天然放射现象,后居里·夫妇发现钋PO 和镭Ra。
物质发射射线的性质称为放射性(radioactivity)。
元素这种自发的放出射线的现象叫做天然放射现象,具有放射性的元素称为放射性元素。
2、放射性不是少数几种元素才有的,研究发现,原子序数大于82的所有元素,都能自发的放出射线,原子序数小于83的元素,有的也具有放射性。
3、射线种类与性质那这些射线到底是什么呢?把放射源放入由铅做成的容器中,射线只能从容器的小孔射出,成为细细的一束。
在射线经过的空间施加磁场,发现射线①射线分成三束,射线在磁场中发生偏转,是受到力的作用。
这个力是洛伦兹力,说明其中的两束射线是带电粒子。
②根据左手定则,可以判断α射线都是正电荷,β射线是负电荷。
第2节 原子核衰变及半衰期思维激活考古学中是怎样测定出土文物的年代?提示:放射性元素具有一定的衰变速率,不同元素的衰变速率不同,即半衰期是不一样的.根据衰变前后元素的剩余质量的关系:m 余=m 原(21)t/T ,可测出衰变时间t,从而确定出不同的年代.Rn 22286的衰变曲线自主整理一、天然放射现象的发现_______发现天然放射现象,揭开了人类研究原子核结构的序幕.通过对天然放射现象的研究,人们发现原子序数大于83的所有天然存在的元素都有放射性,原子序数小于83的天然存在的元素有些也具有放射性,它们放射出来的射线共有三种. 1.α射线:速度约为光速的_______,贯穿作用_______,电离作用_______ 2.β射线:速度接近光速的_______,贯穿作用_______,电离作用_______. 3.γ射线:波长极短的电磁波,γ粒子就是光子,贯穿作用_______,电离作用_______.二、原子核的衰变1.定义:原子核自发地放出某种粒子而转变为_______的变化叫做原子核的_______.2.分类(1)α衰变:α衰变的实质是其元素的原子核同时放出由_______质子和_______中子组成的粒子(即氦核),每发生一次α衰变,新元素与原元素比较,核电荷数减少,质量数减少_______,即_______.(2)β衰变:β衰变的实质是其元素的原子核内的一个_______变成_______时放射出一个电子.每发生一次β衰变,新元素与原元素比较,核电荷数增加_______,质量数_______.即_______.(3)γ衰变:γ衰变是伴随着_______和_______同时发生的,γ衰变不改变原子核的电荷数和质量数.其实质是放射性原子核在发生α衰变或β衰变时,产生的某些新核由于具有过多的能量(核处于激发态)而辐射出光子.三、半衰期1.定义:放射性元素的_______发生衰变需要的时间.2.半衰期的大小由放射性元素的原子核_______决定,跟原子所处的_______ (如压强、温度等)或_________ (如单质或化合物)无关.高手笔记1.原子核既然是由质子和中子组成的,那么为什么还会从原子核里发射出α粒子、β粒子?实际上,发射出来的α粒子和β粒子仍是原子核内的质子和中子结合或转化而成的.α粒子是原子核内的2个质子和2个中子结合在一起发射出来的,β粒子是原子核内的中子转化为质子时产生并发射出来的.所以不能因为从原子核中发射出α粒子和β粒子就认为原子核也是由它们组成的.2.三种射线的比较板铅板对空气的电离作很强较弱很弱用在空气中的径迹粗、短、直细、较长、曲折最长通过胶片感光感光感光名师解惑1.对半衰期概念的理解剖析:半衰期是反映大量原子核衰变快慢的统计规律.当样品中的原子数目减小到统计规律不再起作用的时候,我们就不能按半衰期的公式去计算了.例如:2 g的Bi所含的原子核数目大,可按半衰期公式进行计算.而20个Bi核,就不再满足统计规律,也就无法判断有多少个Bi核发生了衰变.而且对单个Bi核,其何时衰变完全是偶然的,无法确定它将何时发生衰变.2.书写衰变方程的依据剖析:质量数守恒和电荷数守恒是书写衰变方程的重要依据,但要以衰变的事实为基础,不能仅仅根据两条守恒定律随意书写事实上不存在的衰变方程.另外,衰变方程是不可逆的,方程中只能用箭头“→”连接并指示衰变方向,而不能用等号“”连接.讲练互动【例题1】如图3-2-1,放射源放在铅块上的细孔中,铅块上方有匀强磁场,磁场方向垂直于纸面向外.已知放射源放出的射线有α、β、γ三种.下列判断正确的是( )图3-2-1A.甲是α射线、乙是γ射线、丙是β射线B.甲是β射线、乙是γ射线、丙是α射线C.甲是γ射线、乙是α射线、丙是β射线D.甲是α射线、乙是β射线、丙是γ射线解析:粒子垂直进入磁场,若带电则必受洛伦兹力的作用而做圆周运动,轨迹为圆弧,而乙为直线,可判定其为不带电粒子,即乙是γ射线;再根据左手定则,即可判定甲为β射线,丙为α射线,故B 正确. 答案:B 绿色通道对衰变中放出的三种粒子不同性质及其在磁场或电场中的偏转问题进行定性分析. 变式训练1.放射性元素放出的射线,在电场中分成a 、b 、c 三束,如图3-2-2所示,其中( )图3-2-2A.c 为氦核组成的粒子B.b 为比X 射线波长更长的光子流C.b 为比X 射线波长更短的光子流D.a 为高速电子组成的电子流解析:根据射线在电场中的偏转情况,可以判断,a 射线向电场线方向偏转应为带正电的粒子组成的α射线,b 射线在电场中不偏转,所以为γ射线;c 射线受到与电场方向相反的电场力,应为带负电的粒子组成的β射线. 答案:C【例题2】铀(U 23892)经过α、β衰变形成稳定的铅(Pb 20682),问在这一变化过程中,共有多少中子转变为质子( )A.6B.14C.22D.32解析:U 23892衰变为Pb 20682,需经过8次α衰变和6次β衰变,每经过一次β衰变就会有一个中子转变为质子同时放出一个电子,所以共有6个中子转化为质子. 答案:A 绿色通道在分析有关α、β衰变的问题时,应抓住每次α衰变质量数减4、电荷数减2和每次β衰变时质量数不变、电荷数加1这一衰变规律进行分析. 变式训练2.U 23892衰变成Rn 22286共发生了__________次α衰变和__________次β衰变. 解析:根据衰变规律,Rn 的质量数比U 的质量数减少了238-222=16,而天然放射只有α衰变才能使质量数减少,且每次α衰变减少质量数为4,故发生了16÷4=4次α衰变.因每次α衰变核的电荷数减少2,故由于α衰变核的电荷数应减少4×2=8.而Rn 核的电荷数仅比U 核少了92-86=6,故说明发生了2次β衰变(即92-8+2=86). 答案:4 2【例题3】古墓中发现一古代植物,测得里面含碳14与碳12的比例是现代植物中比例的三分之一,已知碳14的半衰期为 5 730年,求这种植物生长期距今有多少年?(lg2=0.3,lg3=0.48)解析:设植物活着时碳14与碳12比值为k=1214N N ,植物死后t 年时,碳14与碳12的比值为k′=1214'N N .则:1414''N N k k =.由半衰期公式得:Tt N N k k 21''1414===31,解得: t=(lg3/lg2)T=(0.48/0.3)×5 730年=9 168年.可见该植物体的生长期距今约为9 168年. 答案:9 168年 绿色通道14C 衰变,在植物死后不能得到补充,因此它与植物体内的12C 的比例会减少.变式训练3.放射性元素的半衰期是( )A.质量减少一半需要的时间B.原子量减少一半需要的时间C.原子核全部衰变需要时间的一半D.原子核有半数发生衰变需要的时间 解析:放射性元素的半衰期是对大量的原子核而言,原子核的个数有一半发生衰变的时间叫半衰期,故D 项正确. 答案:D【例题4】如图3-2-3所示,在匀强磁场中的A 点,有一个静止的原子核,当它发生哪一种衰变时,射出的粒子以及新核的轨道才做如图所示的圆周运动,并确定它们环绕的方向.若两圆的半径之比是44∶1,这个放射性元素原子核的原子序数是多少?图3-2-3解析:原子核衰变时,遵守动量守恒定律.由原子核的初态是静止的,可以判定出衰变时射出的粒子与新核的动量大小相等、方向相反.现由图可知新核与该粒子尽管速度方向相反,但受的磁场力方向却相同,新核带正电,则该粒子带负电,这说明发生的是β衰变.设其质量为m,在磁感应强度为B 的匀强磁场中,以速度v 做匀速圆周运动,其运动半径为R=qBmv,由衰变时动量守恒知射出粒子的动量m 1v 1等于新核动量m 2v 2,而B 相同,所以R 与q 成反比,新核的q 值都比较大,可判定出衰变射出粒子的运动轨道半径大,新核半径小,知大圆是放射出的粒子的轨迹,小圆则是新核的轨迹.根据左手定则判断:在A 点发射出的粒子是负电子,它的初速度水平向左,沿圆轨道顺时针方向旋转.新核初速度水平向左,沿圆轨道逆时针旋转且有1441221==q q R R .可从发射粒子的电荷数确定新核的电荷数,由于衰变过程中电荷数守恒,可求出原来放射性元素原子核的电荷数即它的原子序数.q1=e,电荷数是1,所以q2=44e,电荷数是44.根据电荷守恒定律,原来的放射性元素原子核的原子序数是45,它发生的是β衰变,电子顺时针方向做匀速圆周运动,新核逆时针做匀速圆周运动.答案:45绿色通道原子核在衰变过程中,不仅质量数、电荷数守恒.其动量、能量也同时守恒,并兼顾带电粒子在匀强磁场中的运动规律.变式训练4.在匀强磁场中,一静止的放射性原子核发生衰变,放出一个粒子后变为另一新原子核,为此拍得如图3-2-4所示两个相切的圆形径迹的照片,则( )图3-2-4A.图甲为发生α衰变的照片,其中大圆为α粒子的径迹B.图甲为发生β衰变的照片,其中大圆为电子的径迹C.图乙为发生α衰变的照片,其中大圆为α粒子的径迹D.图乙为发生β衰变的照片,其中大圆为电子的径迹解析:图为内切圆时,原子核发生β衰变,大圆为β粒子的轨迹;图为外切圆时,原子核发生α衰变,大圆为α粒子的轨迹.答案:AD体验探究【问题】考古学家如何把放射性同位素作为“时钟”,测定土层、化石、古木年代的? 导思:不同的放射性同位素具有不同的半衰期,且不随状态、温度的改变而改变.在自然界中同位素的含量是稳定的.探究:在土层、化石、古木枯死后,其内部不再与外界进行物质交换,而内部的放射性同位素仍在进行衰变,不断减小,因此,可以根据放射性强度的大小情况算出它们的时间. 教材链接教材P 52《讨论与交流》参照α衰变规律的分析过程,通过分析Th 23490的衰变方程寻找β衰变的规律,找出新生成的核与原来的核的电荷数、质量数有什么关系,在元素周期表中的位置怎样变化,并试着用一个通式来表示.与同学交流自己的见解.答:Th 23490发生β衰变方程为Th 23490→e 01-+Pa 23491,新生核比原来的核质量数没有改变,电荷数增加1,新生核在元素周期表中的位置后移一位.其规律可表示为X A Z→e 01-+Y AZ 1+.X 为原来的原子核,Y 为新生成的原子核.。
原子核衰变与半衰期:原子核衰变过程与半衰期的计算与应用原子核衰变是指原子核自发地释放粒子或能量,以达到更稳定的状态。
它是一种自然现象,在很多放射性元素中都存在。
原子核衰变的过程中,会发生不同类型的衰变,包括α衰变、β衰变和γ衰变。
这些衰变过程与半衰期密切相关。
首先,让我们来了解一下原子核中的粒子构成。
原子核由质子和中子组成,它们分别带有正电荷和中性电荷。
质子数目决定了元素的原子序数,而中子数目则决定了同位素的性质。
有些核素对于保持稳定状态来说,质子数和中子数要相等,这样的核素就是稳定核素。
然而,有些核素的质子数或中子数不平衡,它们会通过衰变来恢复平衡。
δ衰变是一种常见的原子核衰变形式。
在α衰变中,原子核会释放出一个α粒子,这是由两个质子和两个中子组成的带2个正电荷的粒子。
α粒子释放出来后,原子核的质子数和中子数都会减少2个,从而使原子核更为稳定。
β衰变则有两种形式:β-衰变和β+衰变。
在β-衰变中,一个中子会转化为一个质子,同时释放出一个电子和一个反中微子。
而在β+衰变中,一个质子会转化为一个中子,同时释放出一个正电子和一个中微子。
半衰期是描述原子核衰变速度的一个重要概念。
它是指衰变物质的原子核数量减少到初始数量的一半所需的时间。
半衰期可以用数学公式来计算。
假设初始时刻有N0个原子核,经过时间 t 后,有 N 个原子核剩余,则半衰期T为:N = N0 * (1/2)^(t/T)通过这个公式,我们可以计算得到半衰期。
半衰期的应用非常广泛。
在医学上,半衰期可以用于放射性同位素的治疗和诊断。
例如,碘-131是一种常用的放射性同位素,它的半衰期为8.02天。
碘-131广泛应用于甲状腺癌的治疗,通过发射β粒子来杀死癌细胞。
对于甲状腺扫描,医生可以注射一定剂量的碘-131,然后通过检测衰变过程来观察甲状腺的功能和结构。
在考古学和地质学中,半衰期可以用来确定物质的年龄。
例如,放射性碳-14(C-14)的半衰期约为5730年。