原子核衰变及半衰期.
- 格式:ppt
- 大小:2.97 MB
- 文档页数:63
原子核稳定性核衰变和半衰期原子核稳定性、核衰变和半衰期原子核稳定性、核衰变和半衰期是核物理学中重要的概念。
了解这些概念有助于我们理解放射性物质的特性以及核能的应用。
本文将对原子核稳定性、核衰变以及半衰期进行详细介绍。
一、原子核稳定性原子核由质子和中子组成,稳定的原子核通常具有适当的质子-中子比例。
在原子核中,质子间的电荷排斥力相互作用力大于吸引力,因此质子间的排斥力趋向于不稳定。
中子通过强相互作用力中和了质子间的排斥力,使得原子核保持相对稳定。
原子核稳定性受到质子数和中子数的影响。
通常情况下,质子数和中子数相近的原子核更稳定。
例如,氢-1核只有一个质子和零个中子,属于最稳定的核。
而质子数和中子数相差很大的核则相对不稳定。
当原子核的质子数较大时,需要更多的中子来中和质子间的排斥力,以保持相对稳定。
二、核衰变核衰变是指原子核自发地释放能量或粒子,以达到更稳定的状态。
核衰变可以通过以下三种方式发生:α衰变、β衰变和γ衰变。
1. α衰变:在α衰变中,原子核释放一个α粒子,即两个质子和两个中子的组合。
α粒子相当于一个氦离子,带有两个正电荷。
α衰变会使原子核的质子数和中子数减少,因此原子核的质量数会减少4个单位。
2. β衰变:在β衰变中,中子转变为质子或质子转变为中子。
这一过程会伴随着释放一个带有电荷的β粒子。
电子形式的β粒子表示为β-衰变,而正电子形式的β粒子表示为β+衰变。
β衰变会改变原子核的质子数或中子数,从而改变元素的化学特性。
3. γ衰变:在α或β衰变之后,原子核可能处于激发态。
为了回到基态,原子核释放出一个光子,即γ射线。
γ衰变并不改变原子核的质子数和中子数,只是释放能量。
三、半衰期半衰期是用来描述特定核衰变过程中原子核数量减少一半所需的时间。
半衰期是一个固定的时间间隔,与某种放射性物质的特性相关。
半衰期是放射性物质的重要特征之一,它决定了放射性衰变的速率。
不同的放射性物质具有不同的半衰期,从几微秒到数亿年不等。
----- . -zj资料- 分类号:TQ242.3单位代码:XXXX密级:一般学号:XXXXX本科毕业论文(设计)题目:原子核的三种主要衰变特性及其比较专业:物理学姓名:XX指导教师:XX职称:教授答辩日期:二0一五年六月十四日原子核的三种主要衰变特性及其比较摘要:物理学是研究物质运动最一般规律和物质基本结构的学科。
是一门以实验研究为基础的自然学科。
核物理学又称原子核物理学,是20世纪新建立的一个物理学分支。
它是一门既有深刻理论意义,又有重大实践意义的学科。
核物理与核技术已经成为当今世界上最有生命力、发展最为迅速、影响力最大、成果最多的学科之一。
所以说,对于原子核物理的认识也就必不可少了。
然而对于原子核物理的了解,最重要的手段就是对原子核衰变的研究。
原子核的衰变是极其复杂的,为了更好的认识原子核,加深对原子核衰变的理解,我们对原子核的三种主要衰变特性进行比较。
关键词:原子核三种衰变比较Abstract: Subject matter physics is the study of the most general laws of motion and the basic structure of matter. Is a research-based experimental natural sciences. Nuclear physics, nuclear physics, also known, is a branch of physics newly established 20th century. It is both a profound theoretical significance and great practical significance of the subjects. Nuclear physics and nuclear technology has become the world's most vital, the fastest growing, most influential, one of the largest achievement disciplines. So, for the understanding of nuclear physics also indispensable. However, for the understanding of nuclear physics, research is the most important means of nucleus decay. Nuclear decay is extremely complex, in order to better understand the nucleus, to deepen understanding of nuclear decay, we have three main nuclei decay characteristics were compared.Key Words: Atomic nucleus; three kinds of decay; Compare衰变亦称"蜕变"。
【高中物理】高考物理复习:原子核的衰变【摘要】为大家整理了高考物理复习,便于大家查阅复习。
希望大家喜欢,也希望大家在学习愉快。
3.自然衰变中原子核的变化规律在核的天然衰变中,核变化的最基本的规律是质量数守恒和电荷数守恒。
① α衰变:随着α衰变,新原子核在周期表中的位置向前移动2位,即②β衰变:随着β衰变,新核在元素周期表中位置向后移1位,即③ γ衰变:对于γ,衰变和变化的不是原子核的类型,而是原子核的能量状态。
但总的来说,γ衰变总是伴随着α衰变或β衰变。
4.放射性元素放射的射线有三种:α射线、γ射线、β射线,这三种射线可以用磁场和电场加以区别,如图1所示。
图15.半衰期:放射性元素的原子核有半数发生衰变所需要的时间称为半衰期。
不同的放射性元素的半衰期是不同的,但对于确定的放射性元素,其半衰期是确定的。
它由原子核的内部因素所决定,跟元素的化学状态、温度、压强等因素无关。
二、实例分析[[例1]]关于天然放射现象,以下叙述正确的是()a、如果放射性物质的温度升高,它的半衰期就会降低b.β衰变所释放的电子是原子核内的中子转变为质子时所产生的c、在α、β、γ三种射线中,γ射线的穿透能力最强,α射线的电离能力最强d.铀核(23892U)衰变为铅芯(20682pb)的过程中,要经过8次α衰变和10次β衰变[[分析]]半衰期由放射性元素原子核的内部因素决定,与元素的化学状态、温度、压力等因素无关;β衰变释放的电子是当原子核中的中子转化为质子时产生的。
1.0n11h+0-1e,b对;根据三种射线的物理性质,c对;23892U有92个质子和146206个中子82pb的质子数为82,中子数为124,因而铅核比铀核少10个质子,22个中子。
一次α衰变质量数减少4,故α衰变的次数为x==8次。
再结合核电荷数的变化情况和衰变规律来判定β衰变的次数y应满足2x-y+82=92,y=2x-10=6次。
故本题正确答案为b、c.[评论](1)检查这个问题α衰变β衰变规律以及质量数、质子数和中子数之间的关系。
《原子核衰变及半衰期》导学案莆田第十五中学李冰雅导入:“点石成金”的故事。
——改变原子核,创造新原子?进入新课:一、天然放射现象的发现1.放射性和放射性元素:2.天然放射性现象:体会:居里夫妇和贝克勒尔对天然放射现象发现的贡献。
二、放射线的本质思考:据此现象推断α、β、γ三种射线分别带何种电荷?1.α射线: 2. β射线: 3. γ射线:请阅读课文,完成下列表格,小结三种射线的其它性质。
小结:三种射线的区别及联系:1.穿透性比较:2.电离能力比较:3.γ射线总是_________α射线和β射线的产生而产生,且是三种射线中唯一的______。
针对训练1:如图,放射性元素镭衰变过程释放出α、β、γ三种射线,并都进入匀强电场,下列说法正确的是()A. ①表示γ射线,③表示α射线B. ②表示β射线,③表示α射线C. ③表示α射线,②表示γ射线D. ①表示β射线,⑥表示α射线三、原子核的衰变1.原子核衰变:若你是贝克勒尔,发现:(1)U238会自发放出α粒子且产生新核。
请尝试用衰变方程表示上述的过程。
(2)若钍234也具有放射性并自发放出β粒子呢?2.衰变种类:(1)α衰变:原子核放出α粒子的衰变α衰变方程:α衰变规律:α衰变实质:(2)β衰变:原子核衰变放出β粒子的衰变β衰变方程:β衰变规律:β衰变实质:(3)γ衰变:在原子核衰变过程中产生的新核,有些处于激发态,这些不稳定的激发态会辐射出光子(γ射线),所以γ射线都伴随α、β衰变过程产生。
针对训练2原子核X经β衰变(一次)变成原子核Y,原子核Y再经一次α衰变变成原子核Z,则下列说法中正确的是().A.核X的中子数减核Z的中子数等于2B.核X的质子数减核Z的质子数等于5C.核Z的质子数比核X的质子数少1D.原子核X的中性原子的电子数比原子核Y的中性原子的电子数少2四、衰变快慢----半衰期1.半衰期:思考:放射性元素的剩余质量与原有质量之间具体有什么关系?2.半衰期公式:(1)从质量角度:(2)从个数角度:针对训练3关于半衰期,以下说法正确的是().A.同种放射性元素在化合物中的半衰期比在单质中长B.升高温度可以使半衰期缩短C.氡的半衰期为3.8天,若有四个氡原子核,经过7.6天就只剩下一个了D.氡的半衰期为3.8天,4g氡原子核,经过7.6天就只剩下1g了。
原子核的衰变与半衰期计算在物理学中,原子核衰变是指原子核内的粒子发生变化的过程。
原子核衰变是放射性衰变的一种形式,常见的衰变方式有α衰变、β衰变和γ衰变。
衰变过程中,原子核会释放出放射性粒子或能量,从而转变成另一种原子核。
首先,来看α衰变。
α衰变是指原子核中释放出α粒子(即氦离子),转变成质量数为4、电荷数为2的另一个原子核的过程。
在α衰变中,原子核的质量数减少4,电荷数减少2。
α衰变的过程可以用以下方程式表示:A → A-4 + 4He其中A表示质量数,4He表示氦离子。
例如,铀-238的α衰变过程如下:238U → 234Th + 4He接下来,我们来看β衰变。
β衰变有两种形式,β-衰变和β+衰变。
β-衰变是指原子核中的一个中子转变成质子,同时释放出一个电子和一个反中微子。
β+衰变则是指原子核中的一个质子转变成中子,同时释放出一个正电子和一个中微子。
β衰变的过程可以用以下方程式表示(以β-衰变为例):n → p + e- + v其中n表示中子,p表示质子,e-表示电子,v表示反中微子。
例如,碳-14的β-衰变过程如下:14C → 14N + e- + v最后,我们来看γ衰变。
γ衰变是指原子核处于激发态时,通过释放出高能光子(即γ射线)来回到基态的过程。
γ衰变不会导致原子核的质量和电荷数发生改变。
γ衰变的过程可以用以下方程式表示:A* → A + γ其中A*表示激发态的原子核,A表示基态的原子核。
例如,铯-137的γ衰变过程如下:137Cs* → 137Cs + γ在研究和应用中,半衰期是一个重要的概念。
半衰期是指在某种衰变方式下,一组核素中一半的原子核衰变所需的时间。
半衰期可以通过衰变速率常数来计算。
对于α衰变、β衰变和γ衰变,其衰变速率常数分别用λα、λβ和λγ表示。
半衰期T可以通过以下公式计算:T = ln(2) / λ其中ln(2)约等于0.693。
需要注意的是,不同的核素在不同的衰变方式下拥有不同的半衰期。
放射性衰变放射性核素的衰变过程与半衰期的计算放射性核素是指具有不稳定原子核的元素,它们会以自发性的方式发出射线或者颗粒,从而转变成其他元素或同位素。
这种自发性的变化过程称为放射性衰变,是一种统计性过程,其速率在个体粒子层面上是完全随机的,但在大量放射性核素中则展现出一种规律性。
一、放射性衰变过程放射性衰变过程涉及到原子核内部的质子和中子的变化。
在放射性衰变过程中,原子核会通过放出α粒子、β粒子或伽马射线来稳定自身,从而转变成其他的同位素。
以下是三种常见的放射性衰变类型:1. α衰变:在α衰变中,原子核会释放出两个质子和两个中子组成的α粒子。
这样一来,原子核的质量数会减少4,原子序数减少2。
α衰变可以看作是核内部中子和质子的重新组合过程。
2. β衰变:β衰变分为β-衰变和β+衰变两种形式。
在β-衰变中,一个中子转变为质子,同时释放出一个电子和一个反中微子。
而在β+衰变中,一个质子转变为中子,同时放出一个正电子和一个中微子。
β衰变过程是由于原子核中中子和质子数量的不平衡而产生的。
3. γ衰变:γ衰变是原子核的激发态向基态跃迁时释放出伽马射线的过程。
这种衰变形式不涉及质子和中子的增减,只有能量发生了变化。
二、半衰期的计算半衰期是描述放射性衰变速率的重要参数,它指的是在给定时间内约有一半的原子核会发生衰变。
半衰期与衰变速率呈反比关系,数值越小,衰变速率越大。
半衰期的计算可以通过放射性核素的衰变定律来实现。
放射性核素的衰变定律表明,在足够多的原子核中,衰变速率的变化满足指数函数的形式。
其数学表达式为:N(t) = N(0) * (1/2)^(t/T)其中,N(t)表示时间t内剩余的放射性核素数目,N(0)为初始时刻的放射性核素数目,T为半衰期。
根据这个公式,我们可以通过已知的数据来计算半衰期。
举个例子,假设某个放射性核素在初始时刻的数量为100个,经过一段时间后剩余的数量为50个,我们就可以使用衰变定律的公式来计算它的半衰期。
核物理中的放射性衰变与半衰期讲解放射性衰变和半衰期是核物理中的重要概念,它们在理解原子核的稳定性和放射性衰变过程中起着关键作用。
本文将对放射性衰变和半衰期进行详细的讲解和阐述。
一、放射性衰变的定义和特征放射性衰变是指不稳定原子核自发地发射粒子或电磁辐射的过程。
这种发射过程是原子核为了达到更稳定状态而进行的变化,从而减少核内外部粒子之间的相互作用能,以获得更低的能量。
放射性衰变具有以下几个特征:1. 自发性:放射性衰变是原子核自发进行的,不受外界条件的影响。
2. 随机性:放射性衰变是一个随机的过程,无法预测某个特定原子核的衰变时间。
3. 不可逆性:放射性衰变是一个不可逆的过程,一旦发生衰变,则不能逆转或阻止。
二、放射性衰变的类型和过程放射性衰变按照发射的粒子或辐射的性质可分为α衰变、β衰变和γ衰变三种类型。
1. α衰变:α衰变是指原子核放射出一个α粒子的衰变过程。
α粒子由两个质子和两个中子组成,等于一个氦核。
在α衰变过程中,原子核的质量数减少4,原子序数减少2。
例如,镭-226衰变成钋-222的过程可以表示为:226/88 Ra → 222/86 Rn + 4/2 He2. β衰变:β衰变包括β-衰变和β+衰变两种形式。
- β-衰变是指原子核中一个中子转变为一个质子,释放出一个电子和一个反中微子的过程。
在β-衰变中,原子核的质量数不变,而原子序数增加1。
一个例子是铯-137衰变成钡-137:137/55 Cs → 137/56 Ba + 0/-1 e + v e- β+衰变是指原子核中一个质子转变为一个中子,释放出一个正电子和一个中微子的过程。
在β+衰变中,原子核的质量数不变,而原子序数减少1。
一个例子是锗-68衰变成锌-68:68/32 Ge → 68/31 Ga + 0/+1 e + ve3. γ衰变:γ衰变是指原子核通过发射γ射线(高能光子)而进行的衰变。
γ射线是电磁辐射的一种,不带电荷和质量,不改变原子核的质量数和原子序数。
23.2 原子核衰变及半衰期课标要求(1)了解天然放射现象及其规律;(2)知道三种射线的本质,以及如何利用磁场区分它们;(3)知道放射现象的实质是原子核的衰变;(4)知道两种衰变的基本性质,并掌握原子核的衰变规律;(5)理解半衰期的概念。
引入新课本节课我们来学习新的一章:原子核。
本章主要介绍了核物理的一些初步知识,核物理研究的是原子核的组成及其变化规律,是微观世界的现象。
让我们走进微观世界,一起探索其中的奥秘!我们已经知道原子由原子核与核外电子组成。
那原子核内部又是什么结构呢?原子核是否可以再分呢?它是由什么微粒组成?用什么方法来研究原子核呢?人类认识原子核的复杂结构和它的变化规律,是从发现天然放射现象开始的,1896年,法国物理学家贝克勒尔发现,铀和含铀的矿物能够发出看不见的射线,这种射线可以穿透黑纸使照相底片感光。
居里和居里夫人在贝克勒尔的建议下,对铀和铀的各种矿石进行了深入研究,又发现了发射性更强的新元素。
其中一种,为了纪念她的祖国波兰而命名为钋(Po),另一种命名为镭(Ra)。
一、天然放射现象1、天然放射现象物质放射出α射线、β射线、γ射线的性质,叫做放射性,具有放射性的元素叫放射性元素。
1896年法贝克勒耳首先发现天然放射现象,后居里·夫妇发现钋PO 和镭Ra。
物质发射射线的性质称为放射性(radioactivity)。
元素这种自发的放出射线的现象叫做天然放射现象,具有放射性的元素称为放射性元素。
2、放射性不是少数几种元素才有的,研究发现,原子序数大于82的所有元素,都能自发的放出射线,原子序数小于83的元素,有的也具有放射性。
3、射线种类与性质那这些射线到底是什么呢?把放射源放入由铅做成的容器中,射线只能从容器的小孔射出,成为细细的一束。
在射线经过的空间施加磁场,发现射线①射线分成三束,射线在磁场中发生偏转,是受到力的作用。
这个力是洛伦兹力,说明其中的两束射线是带电粒子。
②根据左手定则,可以判断α射线都是正电荷,β射线是负电荷。
1、天然放射现象物质能自发地放出射线的现象叫做______________,正是天然放射现象的发现,使人们认识到原子核有着复杂的内部结构,通过研究,人们发现原子序数大于83的所有天然存在的元素都有放射性,原子序数小于83的天然存在的元素有些也具有放射性。
2、放射线的性质①射线:速度约为光速十分之一的______________原子核粒子流(),贯穿能力______________(可穿透空气几厘米或一张薄纸),电离作用______________。
②射线:速度接近光束的______________(),贯穿作用______________(可穿透几毫米厚铅板),电离作用______________。
③射线:波长极短的电磁波,粒子就是光子,贯穿本领______________(可穿透几厘米厚的铅板),电离作用______________。
3、原子核的衰变①定义:原子核自发地放出某种粒子而转变为新的原子核的变化叫做原子核的______________。
②衰变的种类衰变:放出粒子(即氦核)的衰变。
每发生一次衰变,新、旧原子核比较,核电荷数将减少______________,质量数减少______________,即衰变:放出粒子(即电子)的衰变每发生一次衰变,新、旧核比较,新核电荷数增加______________,质量数______________,即。
射线是放射性原子核在发生衰变或衰变时,产生的某些新核由于具有过多的能量(核处于激发态)而辐射出的光子流。
4、半衰期放射性元素的原子核有______________发生衰变需要的时间叫做半衰期,是表示放射性元素衰变______________的物理量,不同的元素,其半衰期不同,有的差别很大。
半衰期的大小由放射性元素的原子核内部本身的因素决定,跟原子所处的____________(如压强、温度等)或种类组成粒子衰变方程出射速度贯穿本领电离能力射线氦核约弱,不能穿透薄纸或薄铝箔很强射线电子接近c 较强,能穿透几毫米的铝板较弱射线光子伴随和射线产生c 最强,能穿透几厘米的铅板很小例、在如图所示的匀强磁场中的A点,有一个静止的原子核,当它发生______________衰变时,射出的粒子以及生成的新核才做如图的圆周运动,可以确定,发生衰变时新核的运动方向是______________。
原子核衰变与半衰期:原子核衰变过程与半衰期的计算与应用原子核衰变是指原子核自发地释放粒子或能量,以达到更稳定的状态。
它是一种自然现象,在很多放射性元素中都存在。
原子核衰变的过程中,会发生不同类型的衰变,包括α衰变、β衰变和γ衰变。
这些衰变过程与半衰期密切相关。
首先,让我们来了解一下原子核中的粒子构成。
原子核由质子和中子组成,它们分别带有正电荷和中性电荷。
质子数目决定了元素的原子序数,而中子数目则决定了同位素的性质。
有些核素对于保持稳定状态来说,质子数和中子数要相等,这样的核素就是稳定核素。
然而,有些核素的质子数或中子数不平衡,它们会通过衰变来恢复平衡。
δ衰变是一种常见的原子核衰变形式。
在α衰变中,原子核会释放出一个α粒子,这是由两个质子和两个中子组成的带2个正电荷的粒子。
α粒子释放出来后,原子核的质子数和中子数都会减少2个,从而使原子核更为稳定。
β衰变则有两种形式:β-衰变和β+衰变。
在β-衰变中,一个中子会转化为一个质子,同时释放出一个电子和一个反中微子。
而在β+衰变中,一个质子会转化为一个中子,同时释放出一个正电子和一个中微子。
半衰期是描述原子核衰变速度的一个重要概念。
它是指衰变物质的原子核数量减少到初始数量的一半所需的时间。
半衰期可以用数学公式来计算。
假设初始时刻有N0个原子核,经过时间 t 后,有 N 个原子核剩余,则半衰期T为:N = N0 * (1/2)^(t/T)通过这个公式,我们可以计算得到半衰期。
半衰期的应用非常广泛。
在医学上,半衰期可以用于放射性同位素的治疗和诊断。
例如,碘-131是一种常用的放射性同位素,它的半衰期为8.02天。
碘-131广泛应用于甲状腺癌的治疗,通过发射β粒子来杀死癌细胞。
对于甲状腺扫描,医生可以注射一定剂量的碘-131,然后通过检测衰变过程来观察甲状腺的功能和结构。
在考古学和地质学中,半衰期可以用来确定物质的年龄。
例如,放射性碳-14(C-14)的半衰期约为5730年。