三角函数考点
- 格式:doc
- 大小:773.00 KB
- 文档页数:13
突破5.2 三角函数的概念一、考情分析二、考点梳理考点1 三角函数的定义 1.任意角的三角函数定义正弦r y =αsin ,余弦r x =αcos ,正切xy =αtan 2.三角函数的定义域:三角函数 定义域=)(x f sin x R =)(x f cos x R=)(x f tan x⎭⎬⎫⎩⎨⎧∈+≠∈Z k k x R x x ,21|ππ且考点2 三角函数值的符号第一象限角的各三角函数值都为正;第二象限角的正弦值为正,其余均为负;第三象限角的正切值为正,其余均为负;第四象限角的余弦值为正,其余均为负.注:一全正,二正弦,三正切,四余弦.考点3 诱导公式一由三角函数的定义,可以知道:终边相同的角的同一三角函数的值相等,由此得到诱导公式一: απαsin )2sin(=+k απαcos )2cos(=+k απαtan )2(tan =+k 其中Z k ∈ 考点4 单位圆的三角函数线定义如图(1)PM 表示α角的正弦值,叫做正弦线.OM 表示α角的余弦值,叫做余弦线. 如图(2)AT 表示α角的正切值,叫做正切线.注:线段长度表示三角函数值大小,线段方向表示三角函数值正负.三、题型突破重难点题型突破01 判断三角函数符号的正负例1.(1)、(2019·江苏省新海高级中学高一期中)已知()cos305sin305,P ,则点P 在第( )象限 A .一 B .二C .三D .四【答案】D【分析】首先判断305位于第四象限,再根据各象限三角函数的符号特征判断即可. 【详解】解:因为270305360<<,所以305为第四象限角, 所以0cos305>,0sin305<,所以点()cos305sin305,P 位于第四象限; 故选:D(2)、(2021·全国·高一课时练习)给出下列各三角函数值: ①sin 1()00-︒;②cos 2()20-︒;③()tan 10-;④cos π. 其中符号为负的有( ) A .1个 B .2个C .3个D .4个【答案】D 【分析】确定各角所在象限,然后由象限角的三角函数值符号判断. 【详解】因为-100°角是第三象限角,所以sin 10()00-︒<;因为-220°角是第二象限角,所以cos 22()00-︒<;因为710,32⎛⎫-∈-π-π ⎪⎝⎭,所以角-10是第二象限角,所以()tan 100-<;cos 10π=-<.所以符号为负的有4个, 故选:D .【变式训练1-1】、(2021·北京·潞河中学高三月考)若2α=,则( ) A .sin 0α>且cos 0α> B .sin 0α>且cos 0α< C .sin 0α<且cos 0α< D .sin 0α<且cos 0α>【答案】B 【分析】确定α所在象限,再根据各象限内角的三角函数值的符号判断作答. 【详解】 因22ππ<<,则2α=是第二象限象限角,所以sin 0,cos 0αα><. 故选:B【变式训练1-2】、(2022·福建·莆田二中高三阶段练习)设α角属于第二象限,且cos cos22αα=-,则2α角属于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】C【分析】根据α为第二象限角可求得2α为第一或第三象限角,由cos 02α<可得结果.【详解】α为第二象限角,()90360180360k k k α∴+⋅<<+⋅∈Z ,()45180901802k k k α∴+⋅<<+⋅∈Z ;当()2k n n =∈Z 时,2α为第一象限角;当()21k n n =+∈Z 时,2α为第三象限角; 2α∴为第一或第三象限角;coscos22αα=-,cos02α∴<,2α∴为第三象限角.故选:C.重难点题型突破02 三角函数的概念例2.(1)、(2021·辽宁·高三月考)已知角α的终边与单位圆交于63P ⎝⎭,则sin cos αα⋅=( )A .3B .23- C 3D 2【答案】B 【分析】根据角α的终边与单位圆交于63P ⎝⎭,利用三角函数的定义求解. 【详解】因为角α的终边与单位圆交于63P ⎝⎭, 所以1r OP ==, 所以36sin αα==, 所以362sin cos αα⋅==. 故选:B(2)、(2021·全国·高一课时练习)已知角α的终边经过点()3,P m ,且2sin mα=,求cos α,tan α的值.【答案】答案见解析 【分析】根据正弦函数的定义求出m 值,然后再由余弦函数、正切函数的定义计算. 【详解】由题意,可知3x =-y m =,所以2223r x y m ++ 所以22sin 3y m r mα==+解得0m =或5± 当0m =时,3r =cos 1x r α==-,tan 0yxα==; 当5m =22r =6cos x r α==15tan y x α== 当5m =22r =6cos x r α==15tan y x α== (3)、(2021·重庆市秀山高级中学校高三月考)已知角α的终边经过点()1,1P -,则sin α= ( ) A .12B .12-C 2D .2【答案】C 【分析】首先根据题意求出2r =sin α的值. 【详解】22(1)12r -+=2sin 2α=故选:C【变式训练2-1】、若角终边经过点,则( ) A.B. C. D. 【答案】D【解析】, ,选D. 【变式训练2-2】、(2020·永州市第四中学高一月考)若一个α角的终边上有一点()4,P a -且3sin cos 4αα⋅=,则a 的值为( ) A .3B .43±C .-3433D 3【答案】C 【解析】由已知,得()()()22222243sin 4444aa a a αα-==∴=-+-+-+,解得43a =-433α()()3,40P a a a ≠sin α=354535±45±229165r a a a =+=44sin 55a a α==±故选C .【变式训练2-3】、(2021·天津·大钟庄高中高三月考)已知角α的终边经过点P (-4,m ),且3sin 5α=-,则m =___________. 【答案】3- 【分析】利用任意角的三角函数的定义求解. 【详解】解:∵已知角α的终边经过点P (-4,m ),且3sin 5α=-,∴223sin 5(4)m α=--+,显然0m <,解得3m =-,3m =(舍去), 故答案为:3-例3.(2022·全国·高一课时练习)已知顶点在原点,始边与x 轴非负半轴重合的角α的终边上有一点()3,P m -,且()2sin 0m α=≠,求m 的值,并求cos α与tan α的值. 【答案】5m =±;当5m =时,6cos 4α=-,15tan 3α=-;当5m =-时,6cos 4α=-,15tan 3α= 【分析】根据三角函数定义可由()22sin 043m m m m α==≠+求得m 的值;结合m 的值,由三角函数定义可求得cos ,tan αα. 【详解】()22sin 043m m m m α==≠+,5m ∴=±; 当5m =时,236cos 43m α=-=-+,15tan 33m α=-=-; 当5m =-时,236cos 43m α=-=-+,15tan 33m α=-=. 【变式训练3-1】、(2021·江苏·高一专题练习)已知α角的终边经过点()3,P m -,且满足2sin 4m α=. (1)若α为第二象限角,求sin α值; (2)求cos tan αα+的值.【答案】(1)10sin 4=a ; (2)1-或61543--或61543-+. 【分析】(1)根据三角函数的定义得到2243m m m =+,通过解方程即可求出m 的值,从而可求出sin α值;(2)根据(1)中求出的m 值,通过分类讨论,利用三角函数的定义即可求出答案. (1)由三角函数的定义,可知2243m m m =+,解得0m =或5m =±, ∵α为第二象限角,∴m >0,所以m =5, ∴10sin 4α=; (2)由(1)知0m =或5m =±,当0m =时,cos 1,tan 0αα=-=,所以cos tan 1αα+=-; 当5m =时,6cos 4α=-,15tan 3α=-,所以cos ta 43n 615αα=--+; 当5m =-时,6cos 4α=-,15tan 3α=,所以cos ta 43n 615αα=-++. 综上所述,cos tan αα+的取值为1-或61543--或61543-+.重难点题型突破03 同角三角函数的公式例4、(1)、(2022·湖北·安陆第一高中高一阶段练习)已知角α的终边经过点()1,2P ,sin 2cos sin cos αααα--+的值是____________. 【答案】43-【分析】先利用三角函数的定义求出tan 2α=,再进行弦化切,代入求解. 【详解】因为角α的终边经过点()1,2P ,所以12cos 0,tan 215αα.所以sin 2sin 2cos tan 2224cos sin sin cos tan 12131cos αααααααααα--------====-++++. 故答案为:43-(2)、(2022·贵州·高二开学考试)若tan 2α=,则225sin 3cos 1αα-+的值为( ) A .175B .4C .225D .285【答案】C【分析】根据22sin cos 1αα+=,将原式齐次化后再弦化切即可得答案. 【详解】解:原式222222225sin 3cos sin cos 6tan 222sin cos tan 15αααααααα-++-===++. 故选:C .(3)、(2022·天津市新华中学高三阶段练习)已知tan 3α=,则222sin sin cos 3cos αααα+-的值为( ) A .95B .18C .1710D .15【答案】A【分析】原式可除以22sin cos αα+化简成222tan tan 3tan 1ααα+-+,代入tan 3α=求值即可【详解】222sin sin cos 3cos αααα+- 22222sin sin cos 3cos sin cos αααααα+-+=222tan tan 3tan 1ααα+-=+, 代入tan 3α=可算得原式的值为95.故选:A【变式训练4-1】、(2021·江苏·扬州中学高三月考)若sin 2cos 55cos sin 16αααα+=-,则tan α=( )A .13B .12C .13-D .12-【答案】C 【分析】利用同角三角函数基本关系化弦为切即可求解. 【详解】 由sin 2cos 55cos sin 16αααα+=-可得tan 255tan 16αα+=-,解得:1tan 3α=-,故选:C.【变式训练4-2】.(2022·宁夏·青铜峡市宁朔中学高二期末(文))已知tan 4θ=,则2cos sin cos 2sin θθθθ-=+_____________ 【答案】29-【分析】分子,分母同除以cos θ,再把tan θ的值代入即可求解 【详解】2cos sin 2tan 242cos 2sin 12tan 1249θθθθθθ---===-+++⨯故答案为:29-【变式训练4-3】.已知点(1,2)P -是角α终边上的一点,则tan α=______,sin 2cos 2sin 3cos αααα-+=_______.【答案】2- 4 【解析】根据题意知:2tan 21α-==-,sin 2cos tan 242sin 3cos 2tan 3αααααα--==++. 故答案为:-2;4.例5.(2020·内蒙古·北方重工集团第五中学高一阶段练习(文))(1)已知tan 3α=,计算3sin αcos αsin α2cos α;(2)已知1sin cos (0)2αααπ+=<<,求sin cos αα.【答案】(1)10;(2)38-【分析】(1)利用商数关系化弦为切,即可得解;(2)将1sin cos 2αα+=进行平方即可求得答案 【详解】(1)因为tan 3α=,所以3sin cos 3tan 110sin 2cos tan 2αααααα++==--;(2)由1sin cos (0)2αααπ+=<<,平方可得221sin cos 2sin cos 12sin cos 4αααααα++=+=,所以3sin cos 8αα=-【变式训练5-1】、(2022·全国·高一课时练习)已知23sin 4sin cos 10ααα-+=. (1)求tan α的值; (2)求2sin cos 1cos ααα+的值.【答案】(1)1tan 2α=(2)29 【分析】(1)利用“1”的代换及弦切互化可求1tan 2α=. (2)利用“1”的代换及弦切互化可求三角函数式的值. (1)解法一:∵22sin cos 1αα+=,23sin α-4sin cos 10αα+=, ∴2223sin 4sin cos 10sin cos ααααα-+=+, 分子分母同时除以2cos α,得223tan 4tan 10tan 1ααα-+=+,即()22tan 10α-=,解得1tan 2α=.解法二:∵23sin 4sin cos 10ααα-+=,∴224sin 4sin cos cos 0αααα-+=, 即2(2sin cos )0αα-=,∴2sin cos 0αα-= ∴1tan 2α=. (2) ∵1tan 2α=,∴2222sin cos sin cos tan 21cos sin 2cos tan 29ααααααααα===+++.重难点题型突破4 综合应用例6.(2022·全国·高一课时练习)求证:()2cos sin cos sin 1sin 1cos 1sin cos αααααααα--=++++ 【答案】详见解析【证明】方法一左边()()()()cos 1cos sin 1sin 1sin 1cos αααααα+-+=++ 22cos sin cos sin 1sin cos sin cos αααααααα-+-=+++ ()()()2cos sin cos sin 111cos sin sin cos 22αααααααα-++=++++ ()()()22cos sin cos sin 1sin cos 1αααααα-++=++ ()2cos sin 1sin cos αααα-=++ =右边,∴原式成立.方法二∵cos 1sin cos 1sin 1sin cos 1sin cos αααααααα-+-==+++, sin 1cos sin 1cos 1cos sin 1cos sin αααααααα-+-==+++, ∴()2cos sin cos sin 1sin 1cos 1cos sin αααααααα--=++++, ∴原式成立.【分析】方法一:从等式左边推出右边,通分化简,再有()2sin cos 1sin cos 2αααα+-=,整理化简即可得到等式右边,得证.方法二:由恒等式2222cos 1sin ,sin 1cos αααα=-=-,得cos 1sin sin 1cos ,1+sin cos 1cos sin αααααααα--==+ ,然后运用等比定理即可证明. 【详解】证明:方法一左边()()()()cos 1cos sin 1sin 1sin 1cos αααααα+-+=++ 22cos sin cos sin 1sin cos sin cos αααααααα-+-=+++()()()2cos sin cos sin 111cos sin sin cos 22αααααααα-++=++++ ()()()22cos sin cos sin 1sin cos 1αααααα-++=++ ()2cos sin 1sin cos αααα-=++ =右边, ∴原式成立.方法二∵cos 1sin cos 1sin 1sin cos 1sin cos αααααααα-+-==+++, sin 1cos sin 1cos 1cos sin 1cos sin αααααααα-+-==+++, ∴()2cos sin cos sin 1sin 1cos 1cos sin αααααααα--=++++, ∴原式成立.【点睛】本题考查利用同角三角函数的基本关系进行恒等式的证明;其中法一()2sin cos 1sin cos 2αααα+-=是证明的关键,法二恒等式cos 1sin sin 1cos ,1+sin cos 1cos sin αααααααα--==+的合理利用是证明的关键;本题属于难题. 【变式训练6-1】、(2022·天津市滨海新区塘沽第一中学高三阶段练习)已知sin cos sin cos θθθθ+=,则角θ所在的区间可能是A .(,)42ππ B .3(,)24ππ C .(,)24ππ-- D .5(,)4ππ 【答案】C 【详解】令sin cos sin cos a θθθθ+==,则111sin 2,222a θ⎡⎤=∈-⎢⎥⎣⎦,又由()2sin cos 2sin cos 10θθθθ+--=,得2210a a --=,解得12a =-,舍去()12+,则sin cos 120θθ=-<,θ在第二或第四象限,排除A 和D ,又sin cos 120θθ+=-<而sin cos 2sin 4πθθθ⎛⎫+=+ ⎪⎝⎭,当3,24ππθ⎛⎫∈ ⎪⎝⎭时,sin cos 2sin 04πθθθ⎛⎫+=+> ⎪⎝⎭排除B ,只有C 答案满足,故选C. 点睛:本题主要考查了三角恒等式的应用,三角函数在各象限内的符号,以及排除法在选择题中的应用,具有一定难度;令sin cos sin cos a θθθθ+==,可将已知等式转化为关于a 的一元二次方程,结合三角函数的有界性可得12a =-,即sin θ和cos θ的符号相反,可排除A 和D ,当3,24x ππ⎛⎫∈ ⎪⎝⎭时,可求出sin cos 2sin 04πθθθ⎛⎫+=+> ⎪⎝⎭与所求矛盾,排除B.【变式训练6-2】、(2021·上海·高一期末)若对任意实数x ,不等式2sin 2cos 3x a x a -≤+恒成立,则实数a 的取值范围是______. 【答案】[]1,3-【分析】原不等式可化为2cos 2cos 20x a x a +++≥,令cos ,[1,1]t x t =∈-,转化为二次不等式 2220t at a +++≥当[1,1]t ∈-时恒成立,利用二次函数求最小值即可解决.【详解】由原不等式可化简为2cos 2cos 20x a x a +++≥对任意x R ∈恒成立,令cos ,[1,1]t x t =∈-得:2220t at a +++≥当[1,1]t ∈-时恒成立,令2()22h t t at a =+++,[1,1]t ∈-,函数对称轴方程为t a =-,当1t a =-<-,即1a >时,min ()(1)30h t h a =-=-≥,解得13a ,当11t a -≤=-≤,即11a -≤≤时,2min ()()20h t h a a a =-=-++≥,解得12a -≤≤, 所以11a -≤≤,当1t a =->,即1a <-时,min ()(1)330h t h a ==+≥,解得1a ≥-,所以a ∈∅,综上实数a 的取值范围是13a -≤≤,故答案为[]1,3-【点睛】本题主要考查了二次函数的最值,分类讨论的思想,换元法,属于难题.四、课堂训练1.(2022·北京市西城外国语学校高三阶段练习)角α的终边上有一点(2,2)P -,则sin α=( )A 2B .2C .2D .1 【答案】A【分析】根据给定条件,利用三角函数定义直接计算作答.【详解】角α的终边上点(2,2)P -,则||22r OP ==,所以22sin 2r α==. 故选:A2.(2022·山东·青岛中学高二阶段练习)已知tan 2θ=,则cos sin sin cos θθθθ-+的值为( ) A .13- B .13 C .3- D .3 【答案】A 【分析】利用同角三角函数基本关系,分子分母同时除以cos θ,将弦化切,代入求解即可.【详解】tan 2θ=, ∴cos sin 1tan 121sin cos tan 1123θθθθθθ---===-+++. 故选:A.3.(2021·山东·德州市陵城区翔龙高级中学高一阶段练习)下列说法正确的有( )A .经过30分钟,钟表的分针转过2π-弧度B .若sin 0,cos 0θθ><,则θ为第二象限角C .若sin cos 1θθ+>,则θ为第一象限角D .第一象限角都是锐角,钝角都在第二象限 【答案】BC【分析】根据任意角的概念可判断A ;由正弦值余弦值的正负可判断角的范围,判断B;将sin cos 1θθ+>平方推出sin 0,cos 0θθ,判断θ为第一象限角,判断C;举反例可判断D.【详解】对于A, 经过30分钟,钟表的分针转过π-弧度,A 错误;对于B ,若sin 0,cos 0θθ><,则θ为第二象限角,正确;对于C ,因为sin cos 1θθ+>,故2(sin cos )1,12sin cos 1θθθθ+>∴+>,即sin cos 0>θθ,结合sin cos 1θθ+>可知sin 0,cos 0θθ,故θ为第一象限角,C 正确;对于D ,第一象限角不都是锐角,比如390是第一象限角,但不是锐角, 故D 错误;故选:BC4.(2021·江苏·高一专题练习)已知角α的终边经过点()()4,30P a a a -≠,求2sin cos αα+的值. 【答案】25或25-. 【分析】先求点P 到原点的距离,再利用定义求sin α,cos α,应注意分类讨论.【详解】225r x y a =+=,∴当0a >时,5r a =,33sin 55a a α-∴==-,4cos 5α=,22sin cos 5αα∴+=-; 当0a <时,5r a =-,33sin 55a a α-∴==-,4cos 5=-α,22sin cos 5αα∴+=. 综上可知,2sin cos αα+的值为25或25-.16。
高中三角函数考点总结考点一:利用任意角的三角函数定义求三角函数值1.已知角α的终边经过点p(-1,m)(m≠0),并且sinα=35m,求cosα+tanα考点二:运用诱导公式化简求值2.(1)sin(−114π)(2)cos(-1830°)考点三:求函数的定义域3.(1)y=sinx+−tanx(2)y=lg(3-4si n2x)考点四:利用同角三角函数判断三角形形状4.若α是三角形内角,并且sinα+cosα=23,试判断三角形的形状考点五:同角三角函数的化简5.(1)1−2sin4cos4(2)1+sinα1−sinα−1−sinα1+sinα(α是第二象限角)考点六:关于1的代换6.已知f(x)=1−x1+x ,α∈(π2,π),求f(cosα)+f(-cosα)的结果考点七:利用诱导公式化简7.sin2π−αsin−2π−αcos(6π−α)cos2π−αcosα−πsin(5π−α)(2)sin kπ−αcos(kπ+α)sin k+1π+αcos[k+1π−α]考点八:诱导公式的应用8.已知∠A,∠B,∠C是∆ABC的三个内角,求证:(1)cos(2A+B+C)=-cosA(2)tan A+B4=-tan3π+C4考点九:求三角函数定义域9.(1)y= sinx + 1−2sin 2x (2)y=lg (2sinx-1)+ 1−2cosx(3)y= 36−x 2+lgsinx (4)log 4−x 2 + 2sinx +12(5)y= cos (sinx ) (6)y= sin (cosx )(7)y=lg (sinx −12)2sinx − 3(8)y=log(cosx +12sinx)考点十:求三角函数的最值和值域 10.(1)若y=3−sinx 2+sinx,求函数的值域(2)y=3-2sin2x (3)y= cos (sinx )(4)y=cosx+ 3sinx ,x ∈[π6,23π]11.求出函数f (x )=2sinx-cosx+3tanx 在[π6,π3]内的值域12.求值域(1)y=4sinx −2sinx +1+3 (2)y=log (3−cos 22x )(3)y=2sinx −1sinx +2(4)y=2−sinx3+cosx13.求最值(1)y=sinxcosx+cosx+sinx (2)y=cos 2xcosx +sinx +sin2x14.求f(x)=1−4cos2x3+sin x的最值考点十一:求函数参变量的问题15.已知函数y=2acosθ+b+1的最大值是4,最小值是-1,求a、b的值考点十二:求函数周期16.(1)y=3sin(14x−π2)+2 (2)y=sin2x+cos2x(3)y=cos2x-23sinxcosx (4)y=-2si n2x+2sinxcosx+1考点十三:判断函数奇偶性17.(1)y=sin(34x+32π)(2)y=co s2x1−sinx(3)y=1−cosx+cosx−1(4)y=cos(π2+2x)cos(π+x)考点十四:求函数单调性18.已知ω>0,函数f(x)=sin(ωx+π4)在(π2,π)单调递减,则ω的取值范围是多少考点十五:解三角不等式19.16sin2x+sinx−14>4考点十六:对称问题20.已知函数f(x)=12sin2xsinφ+co s2xcosφ−12sinπ2+φ (0<φ<π),其图像过(π6,12)(1)求φ的值(2)将函数y=f(x)的图像上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y=g(x)的图像,求函数g(x)在[0,π4]上的最大值和最小值。
第1讲 三角函数的图象与性质[考情分析] 1.高考对此部分的命题主要集中于三角函数的定义、图象与性质,主要考查图象的变换、函数的单调性、奇偶性、周期性、对称性,常与三角恒等变换交汇命题.2.主要以选择题、填空题的形式考查,难度为中等或偏下.考点一 三角函数的运算核心提炼1.同角关系:sin 2α+cos 2α=1,sin αcos α=tan α⎝⎛⎭⎫α≠k π+π2,k ∈Z . 2.诱导公式:在k π2+α,k ∈Z 的诱导公式中“奇变偶不变,符号看象限”.例1 (1)(2022·菏泽检测)已知角α的终边经过点(-1,2),则cos 2α等于( ) A .-45B .-35C .-15D.35答案 B解析 因为角α的终边经过点(-1,2), 所以sin α=2(-1)2+22=25,cos α=-1(-1)2+22=-15, 所以cos 2α=cos 2α-sin 2α=15-45=-35.(2)已知sin ⎝⎛⎭⎫-π2-αcos ⎝⎛⎭⎫-7π2+α=1225,且0<α<π4,则sin α=________,cos α=______. 答案 35 45解析 sin ⎝⎛⎭⎫-π2-αcos ⎝⎛⎭⎫-7π2+α =-cos α·(-sin α)=sin αcos α=1225.∵0<α<π4,∴0<sin α<cos α.又∵sin 2α+cos 2α=1,∴sin α=35,cos α=45.二级结论 (1)若α∈⎝⎛⎭⎫0,π2,则sin α<α<tan α. (2)由(sin α±cos α)2=1±2sin αcos α知,sin α+cos α,sin α-cos α,sin αcos α知一可求二.跟踪演练1 (1)(2022·山西联考)若sin 10°=a sin 100°,则sin 20°等于( ) A.aa 2+1 B .-aa 2+1C.2a a 2+1 D .-2aa 2+1 答案 C解析 由题可知a >0,sin 10°=a sin 100°=a sin(90°+10°)=a cos 10°, 又因为sin 210°+cos 210°=1, 解得sin 10°=a a 2+1,cos 10°=1a 2+1, 所以sin 20°=2sin 10°cos 10° =2·a a 2+1·1a 2+1=2aa 2+1. (2)已知2cos ⎝⎛⎭⎫α+3π2=cos(α-π),则sin 2α+cos 2α=________. 答案 -15解析 ∵2cos ⎝⎛⎭⎫α+3π2=cos(α-π), ∴2sin α=-cos α, ∴tan α=-12,∴sin 2α+cos 2α=2sin αcos α+cos 2α-sin 2αcos 2α+sin 2α=2tan α+1-tan 2α1+tan 2α=-15.考点二 三角函数的图象与解析式核心提炼由函数y =sin x 的图象变换得到y =A sin(ωx +φ)(A >0,ω>0)图象的步骤例2 (1)(2021·全国乙卷)把函数y =f (x )图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移π3个单位长度,得到函数y =sin ⎝⎛⎭⎫x -π4的图象,则f (x )等于( ) A .sin ⎝⎛⎭⎫x 2-7π12 B .sin ⎝⎛⎭⎫x 2+π12 C .sin ⎝⎛⎭⎫2x -7π12 D .sin ⎝⎛⎭⎫2x +π12 答案 B解析 依题意,将y =sin ⎝⎛⎭⎫x -π4的图象向左平移π3个单位长度,再将所得曲线上所有点的横坐标扩大到原来的2倍,得到f (x )的图象,所以y =sin ⎝⎛⎭⎫x -π4――――――――――――――→将其图象向左平移π3个单位长度y =sin ⎝⎛⎭⎫x +π12的图象―――――――――――――→所有点的横坐标扩大到原来的2倍 y =sin ⎝⎛⎭⎫x 2+π12的图象.(2)(多选)函数f (x )=A sin(ωx +φ)(A >0)的部分图象如图所示,则f (x )等于( )A .2sin ⎝⎛⎭⎫2x +2π3 B .2sin ⎝⎛⎭⎫2x -5π3C .2cos ⎝⎛⎭⎫2x -π6D .2cos ⎝⎛⎭⎫x -7π6 答案 BC解析 根据图象,可得A =2,设f (x )的最小正周期为T , 则34T =7π12-⎝⎛⎭⎫-π6=3π4, 解得T =π,所以ω=2πT =2.将最低点的坐标⎝⎛⎭⎫7π12,-2代入 f (x )=2sin(2x +φ)中, 得2sin ⎝⎛⎭⎫2×7π12+φ=-2, 则7π6+φ=2k π-π2(k ∈Z ), 解得φ=2k π-5π3(k ∈Z ),所以f (x )=2sin ⎝⎛⎭⎫2x +2k π-5π3(k ∈Z ). 令k =0,则f (x )=2sin ⎝⎛⎭⎫2x -5π3 =2sin ⎝⎛⎭⎫2x -7π6-π2=-2cos ⎝⎛⎭⎫2x -7π6 =2cos ⎝⎛⎭⎫2x -π6. 规律方法 由三角函数的图象求解析式y =A sin(ωx +φ)+B (A >0,ω>0)中参数的值(1)最值定A ,B :根据给定的函数图象确定最值,设最大值为M ,最小值为m ,则M =A +B ,m =-A +B ,解得B =M +m 2,A =M -m2.(2)T 定ω:由周期的求解公式T =2πω,可得ω=2πT.(3)特殊点定φ:代入特殊点求φ,一般代最高点或最低点,代入中心点时应注意是上升趋势还是下降趋势.跟踪演练2 (1)(2022·安康模拟)已知函数f (x )=A tan ⎝⎛⎭⎫ωx +π3(A >0,ω>0)的图象向左平移3π4个单位长度后与原图象重合,则实数ω的最小值是( ) A.43 B.83 C.163 D .8 答案 A解析 由题可知,3π4是该函数周期的整数倍,即3π4=πω×k ,k ∈Z ,解得ω=4k3,k ∈Z , 又ω>0,故其最小值为43.(2)(2022·黄山模拟)函数f (x )=A sin(ωx +φ)(A >0,ω>0,-π<φ<0)的部分图象如图所示,为了得到y =f (x )的图象,需将函数g (x )=A cos ωx 的图象至少向右平移( )A.π3个单位长度 B.π4个单位长度 C.π6个单位长度 D.2π3个单位长度 答案 A解析 由图象可知A =2,f (x )的最小正周期 T =2×⎝⎛⎭⎫π3+π6=2πω,解得ω=2, ∴f ⎝⎛⎭⎫π3=2sin ⎝⎛⎭⎫2π3+φ=2, ∴2π3+φ=π2+2k π(k ∈Z ), 解得φ=-π6+2k π(k ∈Z ),又-π<φ<0,∴φ=-π6,∴f (x )=2sin ⎝⎛⎭⎫2x -π6=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12. ∵g (x )=2cos 2x =2sin ⎝⎛⎭⎫2x +π2 =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π4, ∴将g (x )的图象至少向右平移π4+π12=π3个单位长度可得f (x )的图象.考点三 三角函数的性质核心提炼函数y =A sin(ωx +φ)(A >0,ω>0)的性质(1)单调性:由-π2+2k π≤ωx +φ≤π2+2k π(k ∈Z )可得单调递增区间,由π2+2k π≤ωx +φ≤3π2+2k π(k ∈Z )可得单调递减区间.(2)对称性:由ωx +φ=k π(k ∈Z )可得对称中心;由ωx +φ=k π+π2(k ∈Z )可得对称轴.(3)奇偶性:φ=k π(k ∈Z )时,函数y =A sin(ωx +φ)为奇函数;φ=k π+π2(k ∈Z )时,函数y =A sin(ωx+φ)为偶函数.例3 (1)(2022·赣州模拟)已知函数f (x )=sin ⎝⎛⎭⎫ωx +π4(ω>0)相邻两条对称轴之间的距离为2π,若f (x )在(-m ,m )上单调递增,则m 的取值范围是( ) A.⎝⎛⎦⎤0,π4 B.⎝⎛⎦⎤0,π2 C.⎝⎛⎦⎤0,3π4 D.⎝⎛⎦⎤0,3π2 答案 B解析 因为f (x )=sin ⎝⎛⎭⎫ωx +π4(ω>0)相邻两条对称轴之间的距离2π, 则12T =2π,即T =4π,则ω=2π4π=12, 则f (x )=sin ⎝⎛⎭⎫12x +π4, 由2k π-π2≤12x +π4≤2k π+π2,得4k π-3π2≤x ≤4k π+π2(k ∈Z ),所以f (x )在⎣⎡⎦⎤-3π2,π2上单调递增, 由(-m ,m )⊆⎣⎡⎦⎤-3π2,π2得0<m ≤π2, 所以m 的取值范围是⎝⎛⎦⎤0,π2. (2)(2022·新高考全国Ⅰ)记函数f (x )=sin ⎝⎛⎭⎫ωx +π4+b (ω>0)的最小正周期为T .若2π3<T <π,且y =f (x )的图象关于点⎝⎛⎭⎫3π2,2中心对称,则f ⎝⎛⎭⎫π2等于( )A .1 B.32 C.52 D .3答案 A解析 因为2π3<T <π,所以2π3<2πω<π,解得2<ω<3.因为y =f (x )的图象关于点⎝⎛⎭⎫3π2,2中心对称, 所以b =2,且sin ⎝⎛⎭⎫3π2ω+π4+b =2, 即sin ⎝⎛⎭⎫3π2ω+π4=0,所以3π2ω+π4=k π(k ∈Z ), 又2<ω<3,所以13π4<3π2ω+π4<19π4,所以3π2ω+π4=4π,解得ω=52,所以f (x )=sin ⎝⎛⎭⎫52x +π4+2,所以f ⎝⎛⎭⎫π2=sin ⎝⎛⎭⎫52×π2+π4+2=sin 3π2+2=1.故选A. 规律方法 研究三角函数的性质,首先化函数为f (x )=A sin(ωx +φ)+h 的形式,然后结合正弦函数y =sin x 的性质求f (x )的性质,此时有两种思路:一种是根据y =sin x 的性质求出f (x )的性质,然后判断各选项;另一种是由x 的值或范围求得t =ωx +φ的范围,然后由y =sin t 的性质判断各选项.跟踪演练3 (1)(多选)(2022·新高考全国Ⅱ)已知函数f (x )=sin(2x +φ)(0<φ<π)的图象关于点⎝⎛⎭⎫2π3,0中心对称,则( ) A .f (x )在区间⎝⎛⎭⎫0,5π12上单调递减 B .f (x )在区间⎝⎛⎭⎫-π12,11π12上有两个极值点 C .直线x =7π6是曲线y =f (x )的对称轴D .直线y =32-x 是曲线y =f (x )的切线 答案 AD解析 因为函数f (x )的图象关于点⎝⎛⎭⎫2π3,0中心对称,所以sin ⎝⎛⎭⎫2×2π3+φ=0,可得4π3+φ=k π(k ∈Z ),φ=-4π3+k π(k ∈Z ),结合0<φ<π,得φ=2π3,所以f (x )=sin ⎝⎛⎭⎫2x +2π3. 对于A ,当x ∈⎝⎛⎭⎫0,5π12时,2x +2π3∈⎝⎛⎭⎫2π3,3π2,所以函数f (x )在区间⎝⎛⎭⎫0,5π12上单调递减,故A 正确;对于B ,当x ∈⎝⎛⎭⎫-π12,11π12时,2x +2π3∈⎝⎛⎭⎫π2,5π2,所以函数f (x )在区间⎝⎛⎭⎫-π12,11π12上只有一个极值点,故B 不正确;对于C ,因为f ⎝⎛⎭⎫7π6=sin ⎝⎛⎭⎫2×7π6+2π3=sin 3π=0,所以x =7π6不是曲线y =f (x )的对称轴,故C 不正确;对于D ,因为f ′(x )=2cos ⎝⎛⎭⎫2x +2π3,若直线y =32-x 为曲线y =f (x )的切线, 则由2cos ⎝⎛⎭⎫2x +2π3=-1,得2x +2π3=2k π+2π3或2x +2π3=2k π+4π3(k ∈Z ), 所以x =k π或x =k π+π3(k ∈Z ).当x =k π(k ∈Z )时,f (x )=32, 则由32=32-k π(k ∈Z ),解得k =0; 当x =k π+π3(k ∈Z )时,f (x )=-32,方程-32=32-k π-π3(k ∈Z )无解. 综上所述,直线y =32-x 为曲线y =f (x )的切线,故D 正确. (2)(2022·广州联考)若函数y =tan ⎝⎛⎭⎫ωx +π4在⎣⎡⎦⎤-π3,π3上单调递减,且在⎣⎡⎦⎤-π3,π3上的最大值为3,则ω=________. 答案 -14解析 因为函数y =tan ⎝⎛⎭⎫ωx +π4在⎣⎡⎦⎤-π3,π3上单调递减, 所以ω<0,π|ω|≥2π3,则-32≤ω<0,又因为函数在⎣⎡⎦⎤-π3,π3上的最大值为3, 所以-π3ω+π4=π3+k π,k ∈Z ,即ω=-14-3k ,k ∈Z ,所以ω=-14.专题强化练一、单项选择题1.(2022·日照模拟)已知角θ的终边经过点P ⎝⎛⎭⎫12,-32,则角θ可以为( )A.5π6B.2π3C.11π6D.5π3 答案 D解析 ∵角θ的终边经过点P ⎝⎛⎭⎫12,-32,∴θ是第四象限角,且cos θ=12,sin θ=-32,则θ=5π3+2k π,k ∈Z ,结合选项知角θ可以为5π3.2.(2022·惠州模拟)已知tan α=2,π<α<3π2,则cos α-sin α等于( )A.55 B .-55 C.355 D .-355答案 A解析 由tan α=sin αcos α=2,且sin 2α+cos 2α=1,π<α<3π2,得sin α=-255,cos α=-55,所以cos α-sin α=-55-⎝⎛⎭⎫-255=55. 3.(2022·济宁模拟)如图,某时钟显示的时刻为9:45,此时时针与分针的夹角为θ,则(sin θ+cos θ)(sin θ-cos θ)等于( )A.22 B .-22 C.32 D .-32答案 B解析 时针指向9时,分针指向12,当分针转到指向9时,旋转了圆周的34,因此时针旋转了1个小时⎝⎛⎭⎫即2π12的34,所以θ=2π12×34=π8, 所以(sin θ+cos θ)(sin θ-cos θ)=sin 2θ-cos 2θ =-cos 2θ=-cos π4=-22.4.(2022·全国甲卷)将函数f (x )=sin ⎝⎛⎭⎫ωx +π3(ω>0)的图象向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则ω的最小值是( ) A.16 B.14 C.13 D.12答案 C解析 记曲线C 的函数解析式为g (x ),则g (x )=sin ⎣⎡⎦⎤ω⎝⎛⎭⎫x +π2+π3=sin ⎣⎡⎦⎤ωx +⎝⎛⎭⎫π2ω+π3.因为函数g (x )的图象关于y 轴对称,所以π2ω+π3=k π+π2(k ∈Z ),得ω=2k +13(k ∈Z ).因为ω>0,所以ωmin =13.故选C.5.(2022·福州质检)已知函数f (x )=sin(ωx -φ)⎝⎛⎭⎫-π2<φ<π2的部分图象如图所示,则f (x )的单调递增区间为( )A.⎣⎡⎦⎤k π-16,k π+56,k ∈Z B.⎣⎡⎦⎤2k π-16,2k π+56,k ∈Z C.⎣⎡⎦⎤k -16,k +56,k ∈Z D.⎣⎡⎦⎤2k -16,2k +56,k ∈Z 答案 D解析 由图象可知,函数y =f (x )的最小正周期T 满足T 2=43-13=1,∴T =2,ω=2π2=π, ∴f (x )=sin(πx -φ),由f ⎝⎛⎭⎫13=sin ⎝⎛⎭⎫π3-φ=0, 得π3-φ=k π,得φ=π3-k π,k ∈Z , ∵-π2<φ<π2,∴φ=π3, ∴f (x )=sin ⎝⎛⎭⎫πx -π3, 由2k π-π2≤πx -π3≤2k π+π2,k ∈Z , 得2k -16≤x ≤2k +56,k ∈Z , 因此,函数y =f (x )的单调递增区间为⎣⎡⎦⎤2k -16,2k +56,k ∈Z . 6.(2022·云南师大附中模拟)已知函数f (x )=sin x +a cos x (a >0)的最大值为2,若方程f (x )=b在区间⎝⎛⎭⎫0,13π6内有三个实数根x 1,x 2,x 3,且x 1<x 2<x 3,则x 1+2x 2+x 3等于( ) A.8π3 B.10π3 C .4π D.25π6答案 A解析 f (x )=sin x +a cos x =1+a 2sin(x +φ),由题知1+a 2=2,且a >0,解得a =3,于是f (x )=2sin ⎝⎛⎭⎫x +π3. 方程f (x )=b 在区间⎝⎛⎭⎫0,13π6内的实数根,即为在区间⎝⎛⎭⎫0,13π6内y =f (x )的图象与直线y =b 的交点的横坐标,如图所示,由f (x )图象的对称性可知,x 1+x 22=π6,x 2+x 32=7π6, 即x 1+x 2=π3,x 2+x 3=7π3, 所以x 1+2x 2+x 3=(x 1+x 2)+(x 2+x 3)=8π3. 7.(2022·全国甲卷)沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”.如图,AB ︵是以O 为圆心,OA 为半径的圆弧,C 是AB 的中点,D 在AB ︵上,CD ⊥AB .“会圆术”给出AB ︵的弧长的近似值s 的计算公式:s =AB +CD 2OA.当OA =2,∠AOB =60°时,s 等于( )A.11-332B.11-432C.9-332D.9-432 答案 B解析 由题意知,△OAB 是等边三角形,所以AB =OA =2.连接OC (图略),因为C 是AB 的中点,所以OC ⊥AB ,OC =OA 2-AC 2= 3.又CD ⊥AB ,所以O ,C ,D 三点共线,所以CD =OD -OC =2-3, 所以s =AB +CD 2OA =2+(2-3)22=11-432. 8.(2022·潍坊模拟)设函数y =sin ⎝⎛⎭⎫2x +π3在区间⎣⎡⎦⎤t ,t +π4上的最大值为g 1(t ),最小值为g 2(t ),则g 1(t )-g 2(t )的最小值为( )A .1B.22C.2-12D.2-22答案 D 解析 因为函数y =sin ⎝⎛⎭⎫2x +π3的最小正周期为T =2π2=π, 所以区间⎣⎡⎦⎤t ,t +π4的区间长度是该函数的最小正周期的14, 因为函数y =sin ⎝⎛⎭⎫2x +π3在区间⎣⎡⎦⎤t ,t +π4上的最大值为g 1(t ),最小值为g 2(t ), 所以当区间⎣⎡⎦⎤t ,t +π4关于它的图象的对称轴对称,即对称轴为t +t +π42=t +π8时,g 1(t )-g 2(t )取得最小值,且此时函数y =sin ⎝⎛⎭⎫2x +π3在⎣⎡⎦⎤t ,t +π4上有最值±1,不妨设y 在⎣⎡⎦⎤t ,t +π4上有最大值g 1(t )=1,则有sin ⎣⎡⎦⎤2⎝⎛⎭⎫t +π8+π3=1,所以sin ⎝⎛⎭⎫2t +7π12=1,即2t +7π12=π2+2k π,k ∈Z ,得t =k π-π24,k ∈Z ,所以g 2(t )=sin ⎝⎛⎭⎫2t +π3=sin ⎣⎡⎦⎤2⎝⎛⎭⎫k π-π24+π3=sin ⎝⎛⎭⎫2k π+π4=22,所以g 1(t )-g 2(t )的最小值为2-22.二、多项选择题9.(2022·武汉质检)函数f (x )=sin ⎝⎛⎭⎫π6-2x 在下列区间上单调递增的是( )A.⎝⎛⎭⎫0,π2 B.⎝⎛⎭⎫π3,π2C.⎝⎛⎭⎫-2π3,-π6 D.⎝⎛⎭⎫π3,π答案 BC解析 f (x )=-sin ⎝⎛⎭⎫2x -π6,由π2+2k π≤2x -π6≤3π2+2k π,k ∈Z ,解得π3+k π≤x ≤5π6+k π,k ∈Z .当k =0时,有x ∈⎣⎡⎦⎤π3,5π6;当k =-1时,有x ∈⎣⎡⎦⎤-2π3,-π6,只有B ,C 符合.10.(2022·山东联考)已知曲线C 1:y =cos 2x ,C 2:y =-sin ⎝⎛⎭⎫x +2π3,则下面结论正确的是()A .把曲线C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移5π6个单位长度,得到曲线C 2B .把曲线C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2C .把曲线C 1向左平移7π12个单位长度,再把得到的曲线上各点的横坐标伸长到原来的2倍,纵坐标不变,得到曲线C 2D .把曲线C 1向左平移π12个单位长度,再把得到的曲线上各点的横坐标伸长到原来的2倍,纵坐标不变,最后把得到的曲线向右平移π个单位长度,得到曲线C 2答案 ACD解析 对于选项A ,把曲线C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移5π6个单位长度,所得曲线对应的函数解析式为 y =cos ⎝⎛⎭⎫x -5π6=cos ⎝⎛⎭⎫x +2π3-3π2 =-sin ⎝⎛⎭⎫x +2π3,故A 正确; 对于选项B ,把曲线C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,所得曲线对应的函数解析式为 y =cos ⎝⎛⎭⎫x -π6=cos ⎝⎛⎭⎫x +2π3-5π6≠-sin ⎝⎛⎭⎫x +2π3, 故B 错误;对于选项C ,把曲线C 1向左平移7π12个单位长度,再把得到的曲线上各点的横坐标伸长到原来的2倍,纵坐标不变,所得曲线对应的函数解析式为y =cos ⎝⎛⎭⎫x +7π6=cos ⎝⎛⎭⎫x +2π3+π2 =-sin ⎝⎛⎭⎫x +2π3,故C 正确; 对于选项D ,把曲线C 1向左平移π12个单位长度,再把得到的曲线上各点的横坐标伸长到原来的2倍,纵坐标不变,最后把得到的曲线向右平移π个单位长度,所得曲线对应的函数解析式为y =cos ⎝⎛⎭⎫x -5π6=cos ⎝⎛⎭⎫x +2π3-3π2 =-sin ⎝⎛⎭⎫x +2π3,故D 正确.11.(2022·衡水模拟)已知函数f (x )=cos(ωx +φ)⎝⎛⎭⎫0<ω<4,|φ|<π2满足f ⎝⎛⎭⎫13π12-x =f ⎝⎛⎭⎫x +13π12,且f ⎝⎛⎭⎫4π3=0,则下列说法正确的有( )A .ω=2B .φ=π6C .直线x =13π12是f (x )图象的一条对称轴 D .点⎝⎛⎭⎫7π3,0是f (x )图象的一个对称中心答案 ACD解析 由f ⎝⎛⎭⎫13π12-x =f ⎝⎛⎭⎫x +13π12 可知直线x =13π12是函数f (x )的图象的一条对称轴,故C 选项正确; 又f ⎝⎛⎭⎫4π3=0,所以⎝⎛⎭⎫4π3,0是函数f (x )的图象的一个对称中心, 所以4π3-13π12=T 4+kT 2(k ∈Z ), 即T =π2k +1(k ∈Z ), 又因为T =2πω, 所以ω=4k +2(k ∈Z ),因为0<ω<4,所以当k =0时,ω=2符合,故A 选项正确;所以13π12×2+φ=k π(k ∈Z ), 所以φ=k π-13π6(k ∈Z ), 因为|φ|<π2,所以当k =2时,φ=-π6符合条件,故B 选项错误; 从而f (x )=cos ⎝⎛⎭⎫2x -π6, f ⎝⎛⎭⎫7π3=cos ⎝⎛⎭⎫14π3-π6=cos 9π2=0,故点⎝⎛⎭⎫7π3,0是f (x )图象的一个对称中心,故D 选项正确. 12.(2022·德州联考)声音是由物体振动产生的声波,纯音的数学模型是函数y =A sin ωt ,我们听到的声音是由纯音合成的,称之为复合音.若一个复合音的数学模型是函数f (x )=|cos x |+3|sin x |,则下列结论不正确的是( )A .f (x )是偶函数B .f (x )的最小正周期为2πC .f (x )在区间⎣⎡⎦⎤0,π2上单调递增 D .f (x )的最小值为1答案 BC解析 因为x ∈R ,f (-x )=f (x ),所以f (x )是偶函数,A 正确;f (x )显然是周期函数,因为f (x +π)=|cos(x +π)|+3|sin(x +π)|=|cos x |+3|sin x |=f (x ),B 错误;因为当x ∈⎣⎡⎦⎤0,π2时, f (x )=|cos x |+3|sin x |=cos x +3sin x =2sin ⎝⎛⎭⎫x +π6, 所以f (x )在区间⎣⎡⎦⎤0,π3上单调递增, 在区间⎝⎛⎦⎤π3,π2上单调递减,C 错误;因为当x ∈⎣⎡⎦⎤π2,π时,f (x )=|cos x |+3|sin x |=-cos x +3sin x =2sin ⎝⎛⎭⎫x -π6, 所以f (x )=⎩⎨⎧ 2sin ⎝⎛⎭⎫x +π6,x ∈⎣⎡⎦⎤0,π2,2sin ⎝⎛⎭⎫x -π6,x ∈⎝⎛⎦⎤π2,π,当x ∈⎣⎡⎦⎤0,π2时,设t =x +π6, 则t ∈⎣⎡⎦⎤π6,2π3,所以sin t ∈⎣⎡⎦⎤12,1,所以f (x )∈[1,2],同理,当x ∈⎝⎛⎦⎤π2,π时,f (x )∈[1,2],由B 中解答知,π是f (x )的周期,所以f (x )的最小值为1,D 正确.三、填空题13.(2022·黄山模拟)已知tan ⎝⎛⎭⎫3π2-x =1cos x ,则sin x =________.答案 5-12解析 由tan ⎝⎛⎭⎫3π2-x =1cos x ,得sin ⎝⎛⎭⎫3π2-x cos ⎝⎛⎭⎫3π2-x =1cos x , 即-cos x -sin x =1cos x ,即cos 2x =sin x , 整理得sin 2x +sin x -1=0,而-1≤sin x ≤1,解得sin x =5-12. 14.(2022·石家庄模拟)已知角α的终边经过点P (8,3cos α).则sin α=________.答案 13解析 ∵|OP |=82+(3cos α)2=64+9cos 2α,∴sin α=3cos α64+9cos 2α, cos α=864+9cos 2α, ∴sin α·64+9cos 2α=3cos α,即sin 2α(64+9cos 2α)=9cos 2α,∴sin 2α[64+9(1-sin 2α)]=9(1-sin 2α),即9sin 4α-82sin 2α+9=0,解得sin 2α=9(舍去)或sin 2α=19, ∵cos α>0 ∴sin α>0,∴sin α=13. 15.(2022·全国乙卷)记函数f (x )=cos(ωx +φ)(ω>0,0<φ<π)的最小正周期为T .若f (T )=32,x =π9为f (x )的零点,则ω的最小值为________. 答案 3解析 因为T =2πω,f ⎝⎛⎭⎫2πω=32, 所以cos ()2π+φ=32,即cos φ=32.又0<φ<π,所以φ=π6. 所以f (x )=cos ⎝⎛⎭⎫ωx +π6. 因为x =π9为f (x )的零点, 所以π9ω+π6=π2+k π(k ∈Z ), 解得ω=9k +3(k ∈Z ). 又ω>0,所以当k =0时,ω取得最小值,且最小值为3.16.(2021·全国甲卷)已知函数f (x )=2cos(ωx +φ)的部分图象如图所示,则满足条件⎣⎡⎦⎤f (x )-f ⎝⎛⎭⎫-7π4⎣⎡⎦⎤f (x )-f ⎝⎛⎭⎫4π3>0的最小正整数x 为________.答案 2解析 由题图可知,34T =13π12-π3=3π4(T 为f (x )的最小正周期),得T =π,所以ω=2,所以f (x )=2cos(2x +φ).点⎝⎛⎭⎫π3,0可看作“五点作图法”中的第二个点,则2×π3+φ=π2,得φ=-π6, 所以f (x )=2cos ⎝⎛⎭⎫2x -π6, 所以f ⎝⎛⎭⎫-7π4=2cos ⎣⎡⎦⎤2×⎝⎛⎭⎫-7π4-π6 =2cos ⎝⎛⎭⎫-11π3=2cos π3=1, f ⎝⎛⎭⎫4π3=2cos ⎝⎛⎭⎫2×4π3-π6=2cos 5π2=0, 所以⎣⎡⎦⎤f (x )-f ⎝⎛⎭⎫-7π4⎣⎡⎦⎤f (x )-f ⎝⎛⎭⎫4π3>0, 即[f (x )-1]·f (x )>0,可得f (x )>1或f (x )<0,所以cos ⎝⎛⎭⎫2x -π6>12或cos ⎝⎛⎭⎫2x -π6<0.当x =1时,2x -π6=2-π6∈⎝⎛⎭⎫π3,π2, cos ⎝⎛⎭⎫2x -π6∈⎝⎛⎭⎫0,12,不符合题意; 当x =2时,2x -π6=4-π6∈⎝⎛⎭⎫π,7π6, cos ⎝⎛⎭⎫2x -π6<0,符合题意. 所以满足题意的最小正整数x 为2.。
三角函数的图像与性质一、知识梳理1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )π3.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期. (2)正切曲线相邻两对称中心之间的距离是半个周期.(3).对于y =tan x 不能认为其在定义域上为增函数,而是在每个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )内为增函数.二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”) (1)余弦函数y =cos x 的对称轴是y 轴.( ) (2)正切函数y =tan x 在定义域内是增函数.( ) (3)已知y =k sin x +1,x ∈R ,则y 的最大值为k +1.( ) (4)y =sin|x |是偶函数.( )解析 (1)余弦函数y =cos x 的对称轴有无穷多条,y 轴只是其中的一条. (2)正切函数y =tan x 在每一个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )上都是增函数,但在定义域内不是单调函数,故不是增函数.(3)当k >0时,y max =k +1;当k <0时,y max =-k +1. 答案 (1)× (2)× (3)× (4)√2.若函数y =2sin 2x -1的最小正周期为T ,最大值为A ,则( ) A.T =π,A =1 B.T =2π,A =1 C.T =π,A =2D.T =2π,A =2解析 最小正周期T =2π2=π,最大值A =2-1=1.故选A. 答案 A3.函数y =-tan ⎝ ⎛⎭⎪⎫2x -3π4的单调递减区间为________.解析 由-π2+k π<2x -3π4<π2+k π(k ∈Z ), 得π8+k π2<x <5π8+k π2(k ∈Z ),所以y =-tan ⎝ ⎛⎭⎪⎫2x -3π4的单调递减区间为⎝ ⎛⎭⎪⎫π8+k π2,5π8+k π2(k ∈Z ). 答案 ⎝ ⎛⎭⎪⎫π8+k π2,5π8+k π2(k ∈Z )4.(2017·全国Ⅱ卷)函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3的最小正周期为( )A.4πB.2πC.πD.π2解析 由题意T =2π2=π. 答案 C5.(2017·全国Ⅲ卷)函数f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+cos ⎝ ⎛⎭⎪⎫x -π6的最大值为( )A.65B.1C.35D.15解析 cos ⎝ ⎛⎭⎪⎫x -π6=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫x +π3=sin ⎝ ⎛⎭⎪⎫x +π3,则f (x )=15sin ⎝ ⎛⎭⎪⎫x +π3+sin ⎝ ⎛⎭⎪⎫x +π3=65sin ⎝ ⎛⎭⎪⎫x +π3,函数的最大值为65. 答案 A6.(2018·江苏卷)已知函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2 的图象关于直线x =π3对称,则φ的值是________.解析 由函数y =sin(2x +φ)⎝ ⎛⎭⎪⎫-π2<φ<π2的图象关于直线x =π3对称,得sin ⎝ ⎛⎭⎪⎫2π3+φ=±1.所以2π3+φ=π2+k π(k ∈Z ),所以φ=-π6+k π(k ∈Z ),又-π2<φ<π2,所以φ=-π6. 答案 -π6考点一 三角函数的定义域【例1】 (1)函数f (x )=-2tan ⎝ ⎛⎭⎪⎫2x +π6的定义域是( ) A.⎩⎨⎧⎭⎬⎫x |x ≠π6 B.⎩⎨⎧⎭⎬⎫x |x ≠-π12 C.⎩⎨⎧⎭⎬⎫x |x ≠k π+π6(k ∈Z ) D.⎩⎨⎧⎭⎬⎫x |x ≠k π2+π6(k ∈Z ) (2)不等式3+2cos x ≥0的解集是________.(3)函数f (x )=64-x 2+log 2(2sin x -1)的定义域是________. 解析 (1)由2x +π6≠k π+π2(k ∈Z ),得x ≠k π2+π6(k ∈Z ).(2)由3+2cos x ≥0,得cos x ≥-32,由余弦函数的图象,得在一个周期[-π,π]上,不等式cos x ≥-32的解集为⎩⎨⎧⎭⎬⎫x |-5π6≤x ≤56π,故原不等式的解集为⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z .(3)由题意,得⎩⎨⎧64-x 2≥0,①2sin x -1>0,②由①得-8≤x ≤8,由②得sin x >12,由正弦曲线得π6+2k π<x <56 π+2k π(k ∈Z ).所以不等式组的解集为⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8. 答案 (1)D (2)⎩⎨⎧⎭⎬⎫x |-56π+2k π≤x ≤56π+2k π,k ∈Z (3)⎝ ⎛⎭⎪⎫-116π,-76π∪⎝ ⎛⎭⎪⎫π6,56π∪⎝ ⎛⎦⎥⎤13π6,8【训练1】 (1)函数y =sin x -cos x 的定义域为________. (2)函数y =lg(sin x )+cos x -12的定义域为______.解析 (1)要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]上,满足sin x =cos x 的x 为π4,5π4再结合正弦、余弦函数的周期是2π,所以原函数的定义域为⎩⎨⎧⎭⎬⎫x |π4+2k π≤x ≤54π+2k π,k ∈Z .(2)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0, 即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k π,-π3+2k π≤x ≤π3+2k π(k ∈Z ),所以2k π<x ≤π3+2k π(k ∈Z ),所以函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z .答案(1)⎩⎨⎧⎭⎬⎫x |π4+2k π≤x ≤54π+2k π,k ∈Z (2)⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z考点二 三角函数的值域与最值【例2】 (1)y =3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域是________.(2)(2017·全国Ⅱ卷)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________. (3)函数y =sin x -cos x +sin x cos x 的值域为________.解析 (1)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1,故3sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3,即y =3sin ⎝ ⎛⎭⎪⎫2x -π6的值域为⎣⎢⎡⎦⎥⎤-32,3. (2)由题意可得f (x )=-cos 2x +3cos x +14=-(cos x -32)2+1.∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴cos x ∈[0,1].∴当cos x =32,即x =π6时,f (x )max =1. (3)设t =sin x -cos x ,则t 2=sin 2x +cos 2x -2sin x cos x ,sin x cos x =1-t22,且-2≤t ≤2,所以y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-2时,y min =-12- 2 .所以函数的值域为⎣⎢⎡⎦⎥⎤-12-2,1. 答案 (1)⎣⎢⎡⎦⎥⎤-32,3 (2)1 (3)⎣⎢⎡⎦⎥⎤-12-2,1【训练2】 (1)函数f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x 的最大值为( )A.4B.5C.6D.7(2)(2019·临沂模拟)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +π6,其中x ∈⎣⎢⎡⎦⎥⎤-π3,a ,若f (x )的值域是⎣⎢⎡⎦⎥⎤-12,1,则实数a 的取值范围是________. 解析 (1)由f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x =1-2sin 2x +6sin x =-2⎝ ⎛⎭⎪⎫sin x -322+112,又sin x ∈[-1,1],所以当sin x =1时函数的最大值为5.(2)由x ∈⎣⎢⎡⎦⎥⎤-π3,a ,知x +π6∈⎣⎢⎡⎦⎥⎤-π6,a +π6.因为x +π6∈⎣⎢⎡⎦⎥⎤-π6,π2时,f (x )的值域为⎣⎢⎡⎦⎥⎤-12,1,所以由函数的图象知π2≤a +π6≤7π6,所以π3≤a ≤π. 答案 (1)B(2)⎣⎢⎡⎦⎥⎤π3,π考点三 三角函数的单调性 角度1 求三角函数的单调区间【例3-1】 (1)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间是( ) A.⎣⎢⎡⎦⎥⎤k π12-π12,k π2+5π12(k ∈Z ) B.⎝ ⎛⎭⎪⎫k π12-π12,k π2+5π12(k ∈Z )C.⎝ ⎛⎭⎪⎫k π+π6,k π+2π3(k ∈Z )D.⎝ ⎛⎭⎪⎫k π-π12,k π+5π12(k ∈Z ) (2)函数y =sin ⎝ ⎛⎭⎪⎫-2x +π3的单调递减区间为________. 解析 (1)由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x -π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-π12,k π2+5π12(k ∈Z ).(2)y =-sin ⎝ ⎛⎭⎪⎫2x -π3,它的减区间是y =sin ⎝ ⎛⎭⎪⎫2x -π3的增区间.令2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故其单调递减区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z . 答案 (1)B (2)⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z角度2 利用单调性比较大小【例3-2】 已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6,设a =f ⎝ ⎛⎭⎪⎫π7,b =f ⎝ ⎛⎭⎪⎫π6,c =f ⎝ ⎛⎭⎪⎫π4,则a ,b ,c 的大小关系是( ) A.a >b >c B.a >c >b C.c >a >bD.b >a >c解析 令2k π≤x +π6≤2k π+π,k ∈Z ,解得2k π-π6≤x ≤2k π+5π6,k ∈Z ,∴函数f (x )=2cos ⎝ ⎛⎭⎪⎫x +π6在⎣⎢⎡⎦⎥⎤-π6,5π6上是减函数,∵-π6<π7<π6<π4<5π6, ∴f ⎝ ⎛⎭⎪⎫π7>f ⎝ ⎛⎭⎪⎫π6>f ⎝ ⎛⎭⎪⎫π4. 答案 A角度3 利用单调性求参数【例3-3】 (2018·全国Ⅱ卷)若f (x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( ) A.π4B.π2C.3π4D.π解析 f (x )=cos x -sin x =2cos ⎝ ⎛⎭⎪⎫x +π4,由题意得a >0,故-a +π4<π4,因为f (x )=2cos ⎝ ⎛⎭⎪⎫x +π4在[-a ,a ]是减函数,所以⎩⎪⎨⎪⎧-a +π4≥0,a +π4≤π,a >0,解得0<a ≤π4,所以a 的最大值是π4.答案 A【训练3】 (1)设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3,x ∈⎣⎢⎡⎦⎥⎤-π2,π,则以下结论正确的是( )A.函数f (x )在⎣⎢⎡⎦⎥⎤-π2,0上单调递减B.函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递增 C.函数f (x )在⎣⎢⎡⎦⎥⎤π2,5π6上单调递减 D.函数f (x )在⎣⎢⎡⎦⎥⎤5π6,π上单调递增(2)cos 23°,sin 68°,cos 97°的大小关系是________.(3)若函数f (x )=sin ωx (ω>0)在⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω=________.解析 (1)由x ∈⎣⎢⎡⎦⎥⎤-π2,0,得2x -π3∈⎣⎢⎡⎦⎥⎤-4π3,-π3,此时函数f (x )先减后增;由x ∈⎣⎢⎡⎦⎥⎤0,π2,得2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,此时函数f (x )先增后减;由x ∈⎣⎢⎡⎦⎥⎤π2,5π6,得2x -π3∈⎣⎢⎡⎦⎥⎤2π3,4π3,此时函数f (x )单调递减;由x ∈⎣⎢⎡⎦⎥⎤5π6,π,得2x -π3∈⎣⎢⎡⎦⎥⎤4π3,5π3,此时函数f (x )先减后增.(2)sin 68°=cos 22°,又y =cos x 在[0°,180°]上是减函数,∴sin 68°>cos 23°>cos 97°.(3)法一 由于函数f (x )=sin ωx (ω>0)的图象经过坐标原点,由已知并结合正弦函数的图象可知,π3为函数f (x )的14周期,故2πω=4π3,解得ω=32.法二 由题意,得f (x )max =f ⎝ ⎛⎭⎪⎫π3=sin π3ω=1.由已知并结合正弦函数图象可知,π3ω=π2+2k π(k ∈Z ),解得ω=32+6k (k ∈Z ),所以当k =0时,ω=32.答案 (1)C (2)sin 68°>cos 23°>cos 97° (3)32考点四 三角函数的周期性、奇偶性、对称性 角度1 三角函数奇偶性、周期性【例4-1】 (1)(2018·全国Ⅰ卷)已知函数f (x )=2cos 2x -sin 2x +2,则( ) A.f (x )的最小正周期为π,最大值为3 B.f (x )的最小正周期为π,最大值为4 C.f (x )的最小正周期为2π,最大值为3 D.f (x )的最小正周期为2π,最大值为4(2)(2019·杭州调研)设函数f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ⎝ ⎛⎭⎪⎫|θ|<π2的图象关于y 轴对称,则θ=( ) A.-π6 B.π6 C.-π3 D.π3解析 (1)易知f (x )=2cos 2x -sin 2x +2=3cos 2x +1=3cos 2x +12+1=32cos 2x +52,则f (x )的最小正周期为π,当2x =2k π,即x =k π(k ∈Z )时,f (x )取得最大值,最大值为4.(2)f (x )=sin ⎝ ⎛⎭⎪⎫12x +θ-3cos ⎝ ⎛⎭⎪⎫12x +θ=2sin ⎝ ⎛⎭⎪⎫12x +θ-π3, 由题意可得f (0)=2sin ⎝ ⎛⎭⎪⎫θ-π3=±2,即sin ⎝ ⎛⎭⎪⎫θ-π3=±1,∴θ-π3=π2+k π(k ∈Z ),∴θ=5π6+k π(k ∈Z ). ∵|θ|<π2,∴k =-1时,θ=-π6. 答案 (1)B (2)A角度2 三角函数图象的对称性【例4-2】 (1)已知函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,则函数g (x )=sin x +a cos x 的图象( )A.关于点⎝ ⎛⎭⎪⎫π3,0对称B.关于点⎝ ⎛⎭⎪⎫2π3,0对称 C.关于直线x =π3对称 D.关于直线x =π6对称解析 (1)因为函数f (x )=a sin x +cos x (a 为常数,x ∈R )的图象关于直线x =π6对称,所以f (0)=f ⎝ ⎛⎭⎪⎫π3,所以1=32a +12,a =33,所以g (x )=sin x +33cos x =233sin ⎝ ⎛⎭⎪⎫x +π6,函数g (x )的对称轴方程为x +π6=k π+π2(k ∈Z ),即x =k π+π3(k ∈Z ),当k =0时,对称轴为直线x =π3,所以g (x )=sin x +a cos x 的图象关于直线x =π3对称. 规律方法 1.对于可化为f (x )=A sin(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可;如果求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z ),求x 即可.2.对于可化为f (x )=A cos(ωx +φ)形式的函数,如果求f (x )的对称轴,只需令ωx +φ=k π(k ∈Z ),求x ;如果求f (x )的对称中心的横坐标,只需令ωx +φ=π2+k π(k ∈Z ),求x 即可.【训练4】 (1)(2018·全国Ⅲ卷)函数f (x )=tan x1+tan 2x的最小正周期为( )A.π4B.π2C.πD.2π(2)设函数f (x )=cos ⎝ ⎛⎭⎪⎫x +π3,则下列结论错误的是( )A.f (x )的一个周期为-2πB.y =f (x )的图象关于直线x =8π3对称 C.f (x +π)的一个零点为x =π6 D.f (x )在⎝ ⎛⎭⎪⎫π2,π单调递减解析 (1)f (x )的定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π+π2,k ∈Z .f (x )=sin x cos x 1+⎝ ⎛⎭⎪⎫sin x cos x 2=sin x ·cos x =12sin 2x ,∴f (x )的最小正周期T =2π2=π.(2)A 项,因为f (x )的周期为2k π(k ∈Z 且k ≠0),所以f (x )的一个周期为-2π,A 项正确.B 项,因为f (x )图象的对称轴为直线x =k π-π3(k ∈Z ),当k =3时,直线x =8π3是其对称轴,B 项正确.C 项,f (x +π)=cos ⎝ ⎛⎭⎪⎫x +4π3,将x =π6代入得到f ⎝ ⎛⎭⎪⎫7π6=cos 3π2=0,所以x =π6是f (x+π)的一个零点,C 项正确.D 项,因为f (x )=cos ⎝ ⎛⎭⎪⎫x +π3的递减区间为⎣⎢⎡⎦⎥⎤2k π-π3,2k π+2π3 (k ∈Z ),递增区间为⎣⎢⎡⎦⎥⎤2k π+2π3,2k π+5π3 (k ∈Z ),所以⎝ ⎛⎭⎪⎫π2,2π3是减区间,⎣⎢⎡⎭⎪⎫2π3,π是增区间,D 项错误.答案 (1)C (2)D三、课后练习1.若对于任意x ∈R 都有f (x )+2f (-x )=3cos x -sin x ,则函数f (2x )图象的对称中心为( )A.⎝ ⎛⎭⎪⎫k π-π4,0(k ∈Z ) B.⎝ ⎛⎭⎪⎫k π-π8,0(k ∈Z ) C.⎝ ⎛⎭⎪⎫k π2-π4,0(k ∈Z ) D.⎝ ⎛⎭⎪⎫k π2-π8,0(k ∈Z ) 解析 因为f (x )+2f (-x )=3cos x -sin x ,所以f (-x )+2f (x )=3cos x +sin x .解得f (x )=cos x +sin x =2sin ⎝ ⎛⎭⎪⎫x +π4,所以f (2x )=2sin ⎝ ⎛⎭⎪⎫2x +π4. 令2x +π4=k π(k ∈Z ),得x =k π2-π8(k ∈Z ).所以f (2x )图象的对称中心为⎝ ⎛⎭⎪⎫k π2-π8,0(k ∈Z ). 答案 D2.(2017·天津卷)设函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,|φ|<π.若f ⎝ ⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π,则( ) A.ω=23,φ=π12 B.ω=23,φ=-11π12C.ω=13,φ=-11π24D.ω=13,φ=7π24解析 ∵f ⎝ ⎛⎭⎪⎫5π8=2,f ⎝ ⎛⎭⎪⎫11π8=0,且f (x )的最小正周期大于2π, ∴f (x )的最小正周期为4⎝ ⎛⎭⎪⎫11π8-5π8=3π, ∴ω=2π3π=23,∴f (x )=2sin ⎝ ⎛⎭⎪⎫23x +φ. ∴2sin ⎝ ⎛⎭⎪⎫23×5π8+φ=2,得φ=2k π+π12(k ∈Z ), 又|φ|<π,∴取k =0,得φ=π12.答案 A3.已知x 0=π3是函数f (x )=sin(2x +φ)的一个极大值点,则f (x )的单调递减区间是________.解析 因为x 0=π3是函数f (x )=sin(2x +φ)的一个极大值点,所以sin ⎝ ⎛⎭⎪⎫2×π3+φ=1,解得φ=2k π-π6(k ∈Z ). 不妨取φ=-π6,此时f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6, 令2k π+π2≤2x -π6≤2k π+3π2(k ∈Z ),得f (x )的单调递减区间是⎣⎢⎡⎦⎥⎤k π+π3,k π+56π(k ∈Z ). 答案 ⎣⎢⎡⎦⎥⎤k π+π3,k π+56π(k ∈Z )4.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x +32. (1)求f (x )的最大值及取得最大值时x 的值;(2)若方程f (x )=23在(0,π)上的解为x 1,x 2,求cos(x 1-x 2)的值.解 (1)f (x )=cos x sin x -32(2cos 2x -1) =12sin 2x -32cos 2x =sin ⎝ ⎛⎭⎪⎫2x -π3. 当2x -π3=π2+2k π(k ∈Z ),即x =512π+k π(k ∈Z )时,函数f (x )取最大值,且最大值为1.(2)由(1)知,函数f (x )图象的对称轴为x =512π+k π(k ∈Z ),∴当x ∈(0,π)时,对称轴为x =512π.又方程f (x )=23在(0,π)上的解为x 1,x 2.∴x 1+x 2=56π,则x 1=56π-x 2,∴cos(x 1-x 2)=cos ⎝ ⎛⎭⎪⎫56π-2x 2=sin ⎝ ⎛⎭⎪⎫2x 2-π3, 又f (x 2)=sin ⎝ ⎛⎭⎪⎫2x 2-π3=23, 故cos(x 1-x 2)=23.5.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x -π6,若对任意的实数α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,都存在唯一的实数β∈[0,m ],使f (α)+f (β)=0,则实数m 的最小值是________.解析 因为α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,所以α-π6∈⎣⎢⎡⎦⎥⎤-π,-2π3,则f (α)=sin ⎝ ⎛⎭⎪⎫α-π6∈⎣⎢⎡⎦⎥⎤-32,0,因为对任意的实数α∈⎣⎢⎡⎦⎥⎤-5π6,-π2,都存在唯一的实数β∈[0,m ],使f (α)+f (β)=0,所以f (β)在[0,m ]上单调,且f (β)∈⎣⎢⎡⎦⎥⎤0,32,则sin ⎝ ⎛⎭⎪⎫β-π6∈⎣⎢⎡⎦⎥⎤0,32,则β-π6∈⎣⎢⎡⎦⎥⎤0,π3,所以β∈⎣⎢⎡⎦⎥⎤π6,π2,即实数m 的最小值是π2. 答案 π26.(2017·山东卷)函数y =3sin 2x +cos 2x 的最小正周期为( )A.π2B.2π3C.πD.2π解析 ∵y =2⎝ ⎛⎭⎪⎫32sin 2x +12cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6, ∴T =2π2=π.答案 C7.(2019·石家庄检测)若⎝ ⎛⎭⎪⎫π8,0是函数f (x )=sin ωx +cos ωx 图象的一个对称中心,则ω的一个取值是( )A.2B.4C.6D.8解析 因为f (x )=sin ωx +cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π4,由题意,知f ⎝ ⎛⎭⎪⎫π8=2sin ⎝ ⎛⎭⎪⎫ωπ8+π4=0,所以ωπ8+π4=k π(k ∈Z ),即ω=8k -2(k ∈Z ),当k =1时,ω=6.答案 C8.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值是-2,则ω的最小值等于( ) A.23 B.32 C.2 D.3解析 ∵ω>0,-π3≤x ≤π4,∴-ωπ3≤ωx ≤ωπ4.由已知条件知-ωπ3≤-π2,∴ω≥32.答案 B9.(2019·湖南十四校联考)已知函数f (x )=2sin ωx -cos ωx (ω>0),若f (x )的两个零点x 1,x 2满足|x 1-x 2|min =2,则f (1)的值为( ) A.102 B.-102 C.2 D.-2解析 依题意可得函数的最小正周期为2πω=2|x 1-x 2|min =2×2=4,即ω=π2,所以f (1)=2sin π2-cos π2=2.答案 C10.(2018·北京卷)设函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx -π6(ω>0).若f (x )≤f ⎝ ⎛⎭⎪⎫π4对任意的实数x 都成立,则ω的最小值为________.解析 由于对任意的实数都有f (x )≤f ⎝ ⎛⎭⎪⎫π4成立,故当x =π4时,函数f (x )有最大值,故f ⎝ ⎛⎭⎪⎫π4=1,πω4-π6=2k π(k ∈Z ),∴ω=8k +23(k ∈Z ).又ω>0,∴ωmin =23. 答案 2311.(2019·北京通州区质检)已知函数f (x )=sin ωx -cos ωx (ω>0)的最小正周期为π.(1)求函数y =f (x )图象的对称轴方程;(2)讨论函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调性. 解 (1)∵f (x )=sin ωx -cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx -π4,且T =π, ∴ω=2,于是f (x )=2sin ⎝ ⎛⎭⎪⎫2x -π4. 令2x -π4=k π+π2(k ∈Z ),得x =k π2+3π8(k ∈Z ).即函数f (x )图象的对称轴方程为x =k π2+3π8(k ∈Z ).(2)令2k π-π2≤2x -π4≤2k π+π2(k ∈Z ),得函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π8,k π+3π8(k ∈Z ). 注意到x ∈⎣⎢⎡⎦⎥⎤0,π2,所以令k =0,得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的单调递增区间为⎣⎢⎡⎦⎥⎤0,3π8; 同理,其单调递减区间为⎣⎢⎡⎦⎥⎤3π8,π2.。
三角函数超全考点与题型分析第一部分三角函数定义【思维导图】【常见考法】考点一:终边相同的角1.终边在第二、四象限的角平分线上的角可表示为。
【答案】180135,k k Z⋅︒+︒∈【解析】角的终边在第二象限的角平分线上,可表示为:13601352180135k k α=⋅︒+︒=⋅︒+︒,k Z ∈,角的终边在第四象限的角平分线上,可表示为:2360315(21)180135k k α=⋅︒+︒=+⋅︒+︒,k Z ∈.故当角的终边在第二、四象限的角平分线上时,可表示为:180135k α=⋅︒+︒,k Z ∈.2.下列各组角中,终边相同的角是。
A.2k π与()2k k Z ππ+∈B.3±k ππ与()3k k Z π∈C.()21+k π与()()41k k Z π±∈D.6k ππ+与()6k k Z ππ±∈【答案】C【解析】对于A 选项,()2k k Z π∈表示2π的整数倍,()()2122k k k Z πππ++=∈表示2π的奇数倍,2k π与()2k k Z ππ+∈的终边不一定相同;对于B 选项,()()3133k k k Z πππ±±=∈ ,()31k k Z +∈表示除3余数为1的整数,()()31312k k k Z -=-+∈表示除3余数为2的整数,而()3k k Z π∈表示3π的整数倍,所以,,,33k x x k k Z x x k Z πππ⎧⎫⎧⎫=±∈=∈⎨⎬⎨⎬⎩⎭⎩⎭Ö,则3±k ππ与()3k k Z π∈的终边不一定相同;对于C 选项,对于()41k π±,取1k k Z =∈得()()14141k k ππ±=±,对于()21+k π,取2k k Z =∈得()()22121k k ππ+=+,()()()()12121241214222k k k k k k ππππ+-+=-=- ,()()()()1212124121422221k k k k k k ππππ--+=--=--均为2π的整数倍,则()21+k π与()()41k k Z π±∈的终边相同;对于D 选项,显然,66x x k k Z x x k k Z ππππ⎧⎫⎧⎫=+∈=±∈⎨⎬⎨⎬⎩⎭⎩⎭Ö,则6k ππ+与()6k k Z ππ±∈的终边不一定相同.故选:C.3.已知集合|22,42k k k Z ππαπαπ⎧⎫+≤≤+∈⎨⎬⎩⎭则角α的终边落在阴影处(包括边界)的区域是。
三角函数知识点归纳 一、任意角与弧度制 1.任意角 (I)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形. J 按旋转方向不同分为正角、负角、零角. (2)分类[按终边位置不同分为象限角和轴线角(3)终边相同的角:所有与角a 终边相同的角,连同角a 在内,可构成一个集合S={缈=a+ 2kιt, Λ∈Z!.(3)象限角与轴线角 今1(第一象限角)卜| 第二致限角阳2A"专VaV2痴 2⅛π<α<2⅛π+-g-,⅛∈z} +π,⅛∈ZT 第三敛限角)卜性"τrVaV2"+等"刃 第四象限角]{α∣2⅛π+^<α<2⅛π+2π,⅛∈z}2.弧度制的定义和公式 角a 的弧度数公式 IaI=%/表示弧长)角度与弧度的换算 ①1。
=念 rad ;② 1 rad=, 弧长公式 l=∖a ∖r 扇形面积公式S=»=如/ (1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. 3.任意角的三角函数 一、定义:设α是一个任意角,它的终边与单位圆交于点P(x, y),那么Sina=y, cos α=x, tan α=^(x≠()).二、常用结论汇总——规律多一点(1)一个口诀:三角函数值在各象限的符号:一全正、二正弦、三正切、四余弦.(2)三角函数定义的推广:设点P(x, y)是角Q终边上任意一点且不与原点重合,r=∣OP∣,则• V X V,1八、sin a= , COSa=-, tanα=-(Xw0).r rχ∖ ,三、特殊角的三角函数:3.1 象限角及终边相同的角例1、若角。
是第二象限角,则辞()A.第一象限角B.第二象限角C.第一或第三象限角D.第二或第四象限角∩例2、一的终边在第三象限,则。
的终边可能在() 2A.第一、三象限B.第二、四象限C.第一、二象限或y轴非负半轴D.第三、四象限或y轴非正半轴3.2 三角函数的定义例1、已知角α的终边经过点P(一χ, — 6),且COSa=—/,则1;+%½= _________________ .1J SlIl (A IdIl (A例2、已知角α的终边经过点(3, -4),则Sin a+»^=.3.3 、三角函数符号的判定例1、已知Sina < 0旦cosa > 0,则a的终边落在()A.第一象限B.第二象限C.第三象限D.第四象限3.4 扇形面积问题1.已知一个扇形的弧长和半径都等于2,则这个扇形的面积为().A. 2B. 3C. 4D. 6二、同角三角函数的基本关系与诱导公式1 .同角三角函数的基本关系(1)平方关系:siMα+cos2α=l; (2)商数关系:tan α=黑吃.同角三角函数的基本关系式的几种变形(l)sin2α= 1 — cos2α=(l + cos «)(1 —cos a); cos2a= 1 - sin2a=(l ÷sin a)(l — sin a); (sin a±cos a)2 =l±2sin acos a.(2)sin a=tan acos a(a≠5+E, &WZ).2 .诱导公式“奇变偶不变,符号看象限”公式一:sin(a+2⅛π)=sin a, cos(a÷2hc)=cos a»la∏(6Z + <λkτf)= t∏∏OC其中公式二:sin(π+ct)= ~sin a> cos(π+cc)=~cos ct> Ian(Tr+a)=Ian a.公式三:sin(π~a)=sin a,cos(π-a) = — cos ct, ta∏(^-6Z)= —ta∏ OC ∙公式四:sin(-ct)=—sin a, cost—«)=cos a,t<l∏) = -13∏ CX .公式五:Sine-a) =cos a, COSe—a) =Sina 公式六:SinC+a)=cos a,CoSC+«) = -sin a.诱导公式可概括为〃∙]±a的各三角函数值的化简公式.口诀:奇变偶不变,符号看象限.其中的奇、偶是指方的奇数倍和偶数倍,变与不变是指函数名称的变化.若是奇数倍,则函数名称要变(正弦变余弦,余弦变正弦);若是偶数倍,则函数名称不变,符号看象限是指:把a看成锐角时,根据在哪个象限判断厚三曲函数值的符号,最后作为结果符号.8.方法与要点一个口诀I、诱导公式的记忆。
5.2.1 三角函数的概念知识点1 任意角的三角函数1.定义:设α是一个任意角,它的终边与单位圆交于点(,)P x y ,那么:sin y α=,cos x α=,tan (0)yx xα=≠. 2.推广:设点(,)P x y 是角α终边上任意一点且不与原点重合,r OP =,则:sin y r α=,cos x r α=,tan (0)yx xα=≠. 注:三角函数的值与点P 在终边上的位置无关,仅与角的大小有关,我们只需计算点到原点的距离22r OP x y ==+,那么22sin x y α=+22cos x y α=+tan (0)yx xα=≠知识点2 正弦、余弦、正切函数值在各象限内的符号 1.图示:2.口诀:“一全正,二正弦,三正切,四余弦”.意为:第一象限各三角函数值均为正;第二象限只有正弦值为正,其余均为负;第三象限只有正切值为正,其余均为负;第四象限只有余弦值为正,其余均为负.考点一 三角函数的定义及应用解题方略:(1)求已知角三角函数值,一般求已知角的终边与单位圆的交点坐标,再利用三角函数的定义求解. (2)已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后用三角函数的定义求解.sin y r α=,cos x r α=,tan y xα=. 注:利用三角函数的定义,求一个角的三角函数值时,需确定三个量:角的终边上任意一个异于原点的点的横坐标x ,纵坐标y ,该点到原点的距离r .(3)已知角α的终边在直线上求α的三角函数值时,常用的解题方法有以下两种:①先利用直线与单位圆相交,求出交点坐标,然后利用三角函数的定义求出相应的三角函数值. ①注意到角的终边为直线,所以应分两种情况来处理,取射线上任一点坐标(,)(0)a b a ≠,则对应角的正弦值22sin a b α=+,余弦值22cos a b α=+tan baα=. 注:若题目中已知角的终边在一条直线上,此时注意“在终边上任取一点”应分两种情况(点所在象限不同)进行分析.(4)当角的终边上的点的坐标以参数的形式给出时,要根据问题的实际情况对参数进行分类讨论.(一)利用定义求角的三角函数值【例1-1】已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点(2,1)-,则sin α的值为( )A .5B 5C .25D 25【答案】B【解析】已知点()2,1P -,则()22215r OP ==-+5sin =5y r α=.变式1-1-1:若角α的终边经过点2(5,)1P -,则sin α=_______,cos α=______,tan α=________.【答案】1213-;513;125- 【解析】因为5,12x y ==-,所以225(12)13r =+-,则12512sin ,cos tan 13135y x y r r x ααα==-====-,.变式1-1-2:已知角α的终边过点()43-,,则2sin cos αα+=( ) A .1 B .25-C .25D .1-【答案】B【解析】因为角α的终边过点()43-,, 所以()()222234sin ,cos 554343αα=-==+-+-,所以3422sin cos 2555αα⎛⎫+=⨯-+=- ⎪⎝⎭,变式1-1-3:(多选)已知函数()()log 2401a f x x a a =-+>≠且的图象经过定点A ,且点A 在角θ的终边上,则11tan sin θθ+的值可能是( ) A .2 B .3 C 171+ D 171+【答案】AC【解析】由题意,可知(3,4)A 或(1,4)A ,当点是(3,4)A 时,由三角函数的定义有2244tan ,sin 3534θθ==+,所以11352tan sin 44θθ+=+=; 当点是(1,4)A 时,由三角函数的定义有224tan 4,sin 11714θθ==+11117171tan sin 4θθ+∴+==变式1-1-4:(多选)若角α的终边上有一点(4,)P a -,且3sin cos αα⋅=,则a 的值为( ) A .3 B 3 C .43-D .43【答案】CD【解析】由三角函数的定义可知,()22sin 4a α=-+()22cos 4a α=-+又3sin cos αα⋅=,则()22434a a -=-+43a =-433(二)由三角函数值求终边上的点或参数【例1-2】已知角α的顶点与平面直角坐标系的原点重合,始边与x 轴的正半轴重合,终边经过点()02,y -,若π3α=,则0y 的值为( ). A .3- B .23C .3D 23【答案】A【解析】因为角α终边经过点()02,y -,且3πα=,所以0πtan332y =-023y =-变式1-2-1:已知角θ的终边经过点(,3)M m m -,且1tan 2θ=,则m =( )A .12B .1C .2D .52【答案】C【解析】由题意31tan 2m m θ-==,解得2m =.变式1-2-2:已知()2,P y -是角θ终边上一点,且22sin θ=y 的值是( ) A .22B 22C .434D 434【答案】D【解析】因为()2,P y -是角θ终边上一点,22sin 05θ=>,故点()2,P y -位于第二象限 所以0y >,2222sin (2)y θ==-+21732y =,因为0y >,所以434y =变式1-2-3:已知角θ的终边经过点()21,2a a +-,且3cos 5θ=,则实数的a 值是( )A .2-B .211C .2-或211D .1【答案】B2235(21)(2)a a =++-且210a +>,即12a >-,①2244195525a a a ++=+,则2112040a a +-=,解得2a =-或211a =,综上,211a =.变式1-2-4:已知角α的终边上有一点(3P m ,且2cos 4mα=,则实数m 取值为______.【答案】0或5【解析】因为角α的终边上有一点(3P m , 所以22cos 43mm α==+,解得0m =或5±(三)由单位圆求三角函数值【例1-3】已知角α的终边与单位圆交于点132P ⎛- ⎝⎭,则sin α的值为( )A. 3 B .12-C 3D .12【答案】C【解析】因为角α的终边与单位圆交于点132P ⎛- ⎝⎭,所以根据三角函数的定义可知,3sin y α==.变式1-3-1:角α的终边与单位圆的交点A 3sin α=________,若点A 沿单位圆逆时针运动到点B ,所经过的弧长为2π,则转过的角度为________. 132π 【解析】α的终边与单位圆的交点A 3可得:3cos α=sin 0α>,则有:22313sin 1cos 14αα⎛⎫=--=⎪⎝⎭点A 沿单位圆逆时针运动到点B ,所经过的弧长为2π,可得:2AOB π∠=变式1-3-2:已知角α的终边与单位圆交于点36(P ,则sin cos αα⋅=( ) A 3 B .2C .3D 2【答案】B【解析】α的终边与单位圆交于点36(P ,故36||1,r OP x y ====, 故636333sin cos 11y x r r αα==== 所以632sin cos 3αα⋅=(=-,(四)已知角α的终边在直线上求三角函数值【例1-4】已知角α的终边落在射线2(0)y x x =≥上,求sin α,cos α的值.【解析】设射线2(0)y x x =≥上任一点00(,)P x y ,则002y x =,220005OP r x y x ∴==+=,00025sin 55y r x α∴===,0005cos 55x r x α===.变式1-4-1:已知α的终边落在直线2y x =上,求sin α,cos α的值255255【解析】①若α的终边在第一象限内,设点(,2)(0)P a a a >是其终边上任意一点22(2)5(0)r OP a a a a ==+=>25sin 55y r a α∴===,5cos 55x r a α===①若α的终边在第三象限内,设点(,2)(0)P a a a <是其终边上任意一点22(2)5(0)r OP a a a a ==+=-<25sin 5y r a α∴===-,5cos 5x r a α===-变式1-4-2:α是第二象限角,其终边上一点(5P x ,且2cos x α=,则sin α的值为( ) A 10 B 6 C 2 D .10 【答案】A【解析】由题意可知0x <,22cos 5x x α=+,解得3x =-510sin 35α==+考点二 三角函数值符号的判定解题方略:三角函数值符号的判断方法要判定三角函数值的符号,关键是要搞清三角函数中的角是第几象限角,再根据正、余弦函数值在各象限的符号确定函数值的符号.如果角不能确定所在象限,那就要进行分类讨论求解.(一)已知角或角的范围确定三角函数式的符号【例2-1】坐标平面内点P 的坐标为()sin5,cos5,则点P 位于第( )象限.A .一B .二C .三D .四【答案】B 【解析】32π2π5<<,sin50,cos50∴<>,则点P 位于第二象限,变式2-1-1:若α为第四象限角,则( )A .cos 2α>0B .cos 2α<0C .sin 2α>0D .sin 2α<0 【答案】D【解析】法一:因为α为第四象限角,22,2k k k Z ππαπ∴-<<∈,424,k k k Z ππαπ∴-<<∈所以2α的终边在第三象限、第四象限或y 轴的负半轴上,所以sin 20α<.法二:因为α为第四象限角,sin 0α∴<,cos 0α>,sin 22sin cos 0ααα∴=<.变式2-1-2:下列各选项中正确的是( )A .sin300>0︒B .cos(305)0-︒<C .22tan 03π⎛⎫-> ⎪⎝⎭D .sin100<【答案】D【解析】30036060︒=︒-︒,则300︒是第四象限角,故sin3000︒<;30536055-︒=-︒+︒,则305-︒是第一象限角,故cos(305)0-︒>;222833πππ-=-+,则223π-是第二象限角,故22tan 03π⎛⎫-< ⎪⎝⎭; 73102ππ<<,则10是第三象限角,故sin100<,故选D.变式2-1-3:下列各式:①()sin 100-︒; ①()cos 220-︒; ①()tan 10-; ①cos π. 其中符号为负的有( )A .1个B .2个C .3个D .4个 【答案】D【解析】100-︒,故()sin 1000-︒<;220-︒在第二象限,故()cos 2200-︒<;710,32ππ⎛⎫-∈-- ⎪⎝⎭在第二象限,故()tan 100-<,cos 10π=-<.(二)由三角函数式的符号确定角的范围或象限【例2-2】已知sin tan 0θθ⋅<,则角θ位于第________象限.【答案】二或三【解析】当θ为第一象限角时,sin 0θ>,tan 0θ>,sin tan 0θθ⋅>; 当θ为第二象限角时,sin 0θ>,tan 0θ<,sin tan 0θθ⋅< 当θ为第三象限角时,sin 0θ<,tan 0θ>,sin tan 0θθ⋅< 当θ为第四象限角时,sin 0θ<,tan 0θ<,sin tan 0θθ⋅> 综上,若sin tan 0θθ⋅<,则θ位于第二或第三象限变式2-2-1:已知sin 0θ<且tan 0θ<,则θ是( )A .第一象限的角B .第二象限的角C .第三象限的角D .第四象限的角【答案】D【解析】sin 0θ<,则θ是第三、四象限的角,tan 0θ<,则θ是第二、四象限的角 ①θ是第四象限的角变式2-2-2:若角α满足sin cos 0αα⋅<,cos sin 0αα-<,则α在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】sin cos 0αα⋅<,α是第二或第四象限角;当α是第二象限角时,cos 0α<,sin 0α>,满足cos sin 0αα-<; 当α是第四象限角时,cos 0α>,sin 0α<,则cos sin 0αα->,不合题意; 综上所述:α是第二象限角.变式2-2-3:若sin tan 0αα<,且cos 0tan αα<,则角α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角【答案】C【解析】由sin tan 0αα<可知sin α,tan α异号,从而α是第二或第三象限角.由cos 0tan αα<可知cos α,tan α异号,从而α是第三或第四象限角. 综上可知,α是第三象限角.变式2-2-4:已知点P (tan α,cos α)在第四象限,则角α的终边在( )A .第一象限B .第二象限C .第三象限D .第四象限【解析】因为点P 在第四象限,所以有tan 0cos 0αα>⎧⎨<⎩,由此可判断角α的终边在第三象限.变式2-2-5:若cos α与tan α同号,那么α在( )A .第一、三象限B .第一、二象限C .第三、四象限D .第二、四象限 【答案】B【解析】因为cos α与tan α同号,则cos α与tan α的乘积为正,即正弦值为正,所以α在第一、二象限.变式2-2-6:在ABC 中,A 为钝角,则点()cos ,tan P A B 在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】在ABC 中,A 为钝角,则B 为锐角,则cos 0,tan 0A B <>,则点()cos ,tan P A B 在第二象限变式2-2-7:已知角α的终边经过点(39,2)a a -+,且cos 0α≤,sin 0α>,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3] 【答案】A【解析】①cos 0α≤,sin 0α>,①角α的终边落在第二象限或y 轴的正半轴上. ①39020a a -≤⎧⎨+>⎩ ①23a -<≤ .。
5.2.1 三角函数的概念(基础知识+基本题型)知识点一 任意角的三角函数 1、单位圆的概念在直角坐标系中,以原点O 为圆心,以单位长度为半径的圆叫单位圆. 2、任意角的三角函数的定义如图,设α是一个任意角,它的终边与单位圆交于点(,)P x y ,那么:y 叫做α的正弦,记作sin α,即sin y α=;②x 叫做α的余弦,记作cos α,即cos x α=; ③y x 叫做α的正切,记作tan α,即()tan 0yx xα=≠. 正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数。
拓展:(1)任意角的三角函数的定义一般地,设角α的终边上任意一点的坐标为(,)x y ,它与原点的距离为r =,则sin ,cos ,tan (0)y x yx r r xααα===≠ (2)在任意角的三角函数的定义中,应该明确:α是一个任意角,其范围是使函数有意义的实数集. (3)三角函数值是比值,是一个实数,这个实数的大小和(,)P x y 所在中边上的位置无关,而由角α的终边位置决定.(4)要明确sin α是一个整体,不是sin 与α的乘积,它是“正弦函数”的一个记号,就如()f x 表示自变量为x 的函数一样,离开自变量的“sin α”“cos α”“tan α”等式没有意义的.知识点二 三角函数的定义域和函数值的符号1. 正弦函数、余弦函数、正切函数的定义域如下∶2.在各个象限内的符号,如图所示.【拓展】为了便于记忆,我们把三角函数值在各象限内的符号规律概括为下面口诀:“一全正、二正弦、三正切、四余弦”,意思为:第一象限各三角函数值均为正;第二象限只有正弦值为正,其余均为负;第三象限只有正切值为正,其余均为负;第四象限只有余弦值为正,其余均为负.由于从原点到角的终边上任意一点的距离r 是正值,根据三角函数的定义,知 (1)正弦函数的符号取决于纵坐标y 的符号; (2)余弦函数的符号取决于横坐标x 的符号;(3)正切函数的符号是由,x y 的符号共同决定的,即,x y 同号为正,异号为负. 知识点三 诱导公式一公式一:()sin 2sin k παα+⋅= , ()cos 2cos k παα+⋅=, ()tan 2tan k παα+⋅=, 【提示】(1)诱导公式一说明终边相同的角的同一三角函数值相等.(2)任意给定一个角,它的三角函数值是唯一确定的;若给定一个三角函数值,则有无数个角与之对应. (3)利用诱导公式一,可以把求任意角的三角函数值,转化为求0到2π内的角 的三角 函数值.其中 k Z ∈ . 知识点四 三角函数线 1.有向线段带有方向的线段叫做有向线段. 2.三角函数线的定义如图 1.2-4,设任意角α的顶点在原点o (单位圆的圆心),始边与x 轴的非负半轴重合,终边与单位圆相交于点,()P x y ,过点p 作x 轴的垂线,垂足为点M ;过点(1,0)A 作单位圆的切线,设它与角α 的终边(当α位于第一、四象限时)或其反向延长线(当α位于第二、三象限时)相交于点T (因为过切点的半径垂直于圆的切线,所以AT 平行于y 轴 ).于是sin ,cos ,tan y MP AT y MP x OM AT x OM OAααα======== . 我们规定与坐标轴 同向时 ,方向为正向,与坐标轴反向时,方向为负向,则有向线段MP ,OM ,AT 分别叫做角α 的正弦线、余弦线、正切线,它们统称为三角函数线.【提示】(1)三角函数线的意义是可以表示三角函数的值,其长度等于三角函数的绝对值,方向表示三角函数值的正负.(2)因为三角函数线是与单位圆有关的有向线段,所以作角的三角函数线时,一定要先作出单位圆. (3)有向线段的书写:有向线段的起点字母写在前面,终点字母写在后面.考点一 三角函数的定义及函数值符号 【例1】 有下列说法:①终边相同的角的同名三角函数值相等; ②终边不同的角的同名三角函数值不等; ③若sin20α> ,则α 是第一象限角;④若α 是第二象限角,且(,)P x y 是其终边上一点,则cos α= .其中正确说法的个数是 ( ) A.1B.2C.3D.4解析: 对于此类三角函数的题目,需要逐个判断.充分利用三角函数的定义求解是关键.总结: (1)解决此类问题的关键是准确理解任意角的三角函数的定义.(2)注意问题:①对于不同象限的角,求其三角函数值时,要分象限进行讨论;②终边在坐标轴上的角不属于任何象限.考点二 求三角函数的定义域 【例2】 求下列函数的定义域: (1)sin tan y x x =+ ;(2)sin cos tan x xy x+=.解: (1)要使函数有意义, 必须使sin x 与tan x 都有意义, 所以,().2R x k k Z x ππ∈≠+∈⎧⎪⎨⎪⎩ 所以函数sin tan y x x =+的定义域为 2,k x Z x k ππ∈⎧⎫≠+⎨⎬⎩⎭.(2)要使函数有意义,必须使tan x 有意义,且tan 0x ≠ ,所以,2()Z k x k x k πππ⎧⎪⎨⎪⎩≠+∈≠所以函数sin cos tan x xy x +=的定义域为,2k x x k Z π≠∈⎧⎫⎨⎬⎩⎭. (1)解题时要注意函数本身的隐含条件.(2)求三角函数的定义域,应 熟悉各三角函数在各象限内的符号,并要注意各三角函数的定义域 ,一 般用弧度制表示.考点三 诱导公式一的应用 【例3 】计算下列各式的值:(1) ()()sin 1395cos111cos 1020sin7500︒︒︒︒-+-;(2)1112sin cos tan 465πππ⎛⎫-+ ⎪⎝⎭. 解: (1)原式()()()()sin 454360cos 303360cos 603360sin 302360︒︒︒︒︒︒︒︒=-⨯+⨯+-⨯+⨯ cos30cos60sin30sin 45︒︒︒︒+=1122=⨯14=+=(2)原式()2sin 2cos 2tan 0465πππππ⎛⎫⎛⎫=-+++ ⎪⎪⎝⎭⎝⎭21sincos0652ππ=+⨯= . 利用诱导公式一可把负角的三角函数转化为0~2π 内的角的三角函数,也可把大于2π 的角的三角函数转化为0~2π 内的角的三角函数, 即实现了“负化正 ,大化小”. 要注意记 忆特殊角的三角 函数值.考点四 三角函数线的应用【例4】 利用单位圆中的工角函数线 ,分别确定角θ的取值范围.(1)sin θ(2)1co s 2-≤< .分析: 先作出三角函数在边界时的三角函数线,观察角在什么范围内变化, 再根据范围区域写出θ 的取值范围.解: (1)图①中阴影部分就是满足条件的角θ 的范围, 即,32223k k k Z πππθπ+≤≤∈+ .(2)图②中阴影部分就是满足条件的角θ 的范围,即22362k k πππθπ<--+≤+ 或22,326k k Z k ππθππ<≤+∈+ .解形如()f m α≤ 或()()1f m m α≥< 的式子时,在直角坐标及单位圆中标出满足()f m α= 的两个角的终边(若为正弦函数,则角的终边是直线y m = 与单位圆的两个交点 与原点的连线;若为余弦函数,则角的终边是直线x m = 与单位圆的两个交点与原点的连 线 ;若为正切函数,则角的终边与角的终边的反向延长线表示的正切值相同). 根据三角函数值的大小,先找出α 在0~2π (或 ~ππ- )内 的取值 ,再加上2()k k Z π∈ 即可.。
完整版)高三三角函数专题复习(题型全面)三角函数考点1:三角函数的概念三角函数是以角度或弧度为自变量的函数,包括正弦函数、余弦函数、正切函数等。
考点2:三角恒等变换三角恒等变换包括两角和、差公式、倍角半角公式、诱导公式、同角的三角函数关系式等。
考点3:正弦函数、余弦函数、正切函数的图像和性质正弦函数、余弦函数、正切函数的定义域、值域、最值、单调区间、最小正周期、对称轴对称中心等性质都需要掌握。
考点4:函数y=Asin(x)(A,)的图像与性质函数y=Asin(x)(A,)的定义域、值域、最值、单调区间、最小正周期、对称轴对称中心等性质也需要掌握。
此外,该函数的图像还可以通过一定的变换得到。
一、三角函数求值问题1.三角函数的概念例1.若角的终边经过点P(4a,3a)(a0),则sin=-3/5.2.公式法例2.设(0,π/2),若sin=1/2,则2cos()=√3.练1.已知角的终边上一点的坐标为(sinθ。
cosθ)(θ∈(π/2,π)),则sin=-cosθ。
3.化简求值例3.已知为第二象限角,且sin=15/17,求sin(+π/4)的值。
练:1.已知sin=1/5,则sin4-cos4的值为-24/25.2.已知tan(θ+)=1/2,求tanθ和sin2θ-cosθ.sinθ+2cos2θ的值。
4.配凑求值例4.已知,∈(π/3,π/2),且sin(+)=-√3/2,sin(-)=1/2,求cos(+)的值。
练:1.设α∈(π/12,π/3),β∈(0,π/6),且sin(α+β)=-√3/2,sin(β-α)=-1/2,则cos(α+β)=1/2.1.已知三角函数的值,求其他三角函数的值已知 $sin\alpha = \frac{4}{5}$,$cos\beta = \frac{3}{5}$,$cos(\alpha - \beta) = \frac{1}{2}$,$sin(\beta + \theta) =\frac{3}{5}$,求 $sin(\alpha + \beta)$ 和 $tan(\alpha - 2\beta)$。
三角函数考点基本公式考点1、(三角函数的诱导公式):(把角写成απ±2k 形式,利用口诀:奇变偶不变,符号看象限)()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭.()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 考点2、(两角和与差的三角函数公式):⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+(()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=-(()()tan tan tan 1tan tan αβαβαβ+=+-).考点3、(二倍角的正弦、余弦和正切公式): ⑴sin 22sin cos ααα=. ⑵2222cos2cos sin 2cos 112sin ααααα=-=-=-(21cos 2cos 2αα+=,21cos 2sin 2αα-=). ⑶22tan tan 21tan ααα=-.考点4、(辅助角公式):()sin cos αααϕA +B =+,其中tan ϕB =A. 考点5、(正弦定理):2sin sin sin a b cR A B C===(R 为ABC ∆外接圆半径) 2sin 2sin 2sin a R A b R B c R C =⎧⎪=⎨⎪=⎩ ⇒ sin 2sin 2sin 2a A R b B R c C R ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩ 注意变形应用 考点6、(面积公式):111sin sin sin 222ABC S abs C ac B bc A ∆=== 开展:面积公式(1)△=21ah a =21bh b =21ch c (h a 、h b 、h c 分别表示a 、b 、c 上的高);(2)△=2R 2sin A sin B sin C 。
(R 为外接圆半径)(3)△=Rabc4;(4)△=))()((c s b s a s s ---;⎪⎭⎫⎝⎛++=)(21c b a s ;(5)△=r ·s 。
考点7、(余弦定理): 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C⎧=+-⎪=+-⎨⎪=+-⎩ ⇒ 222222222c o s 2c o s 2c o s2b c a A bc a c b B ac a b c C ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩ 考点8、(图像的平移和伸缩)函数sin y x =的图象上所有点向左(右)平移ϕ个单位长度,得到函数()sin y x ϕ=+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标伸长(缩短)到原来的|1ω|倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象. 函数sin y x =的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数sin y x ω=的图象;再将函数sin y x ω=的图象上所有点向左(右)平移||ϕω个单位长度,得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象. 考点9、(三角形中常用的关系):)sin(sin C B A +=, )cos(cos C B A +-=, 2cos 2sin CB A +=, )(2sin 2sinC B A +-=, )(2c o s 2c o s C B A +=配角方法:ββαα-+=)(,()βαβαα-++=)(2,22βαβαα-++=,22βαβαβ--+=考点10、(诱导公式应用,奇变偶不变,符号看象限).sin (2π-α)·cos (π-α)cos⎝⎛⎭⎫5π2+αsin ⎝⎛⎭⎫5π2-α=________.(1)cos (π+θ)cos θ[cos (π-θ)-1]+cos (θ-2π)sin ()θ-3π2cos (θ-π)-sin ()3π2+θ(2)sin (k π-α)cos[(k -1)π-α]sin[(k +1)π+α]cos (k π+α),k ∈Z考点11、(公式的应用):sin 50°(1+3tan 10°)-cos 20°cos 80°1-cos 20°解析: ∵sin 50°(1+3tan 10°)=sin 50°·cos 10°+3sin 10°cos 10°=sin 50°·2sin 40°cos 10°=1,cos 80°1-cos 20°=sin 10°2sin 210°=2sin 210°. ∴sin 50°(1+3tan 10°)-cos 20°cos 80°1-cos 20°=1-cos 20°2sin 210°= 2.考点1、已知解析式(化简、求最值(值域)、单调区间、周期等)例1、已知函数22()cos cos sin 1f x x x x x =⋅+--(x ∈R )(1)求函数()y f x =的单调递增区间; (2)若5[,]123x ππ∈-,求()f x 的取值范围.答案:解:(1)由题设()2cos212sin(2)16f x x x x π+-=+-……………… 3分由222262k x k ππππ-+π+≤≤,解得36k x k πππ-π+≤≤, 故函数()y f x =的单调递增区间为,36k k ππ⎡⎤π-π+⎢⎥⎣⎦(k ∈Z )……………… 6分(2)由5123x ππ-≤≤,可得22366x ππ5π-+≤≤………………………… 8分考察函数正弦函数的图像,易知1sin(2)16x π+-≤≤………………………… 10分于是32sin(2)116x π+--≤≤.故()y f x =的取值范围为[3,1]-……………………………………………… 12分例2、已知函数()2cos (sin cos )1f x x x x x =-+∈R ,.(Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,上的最小值和最大值.【相关高考1】(湖南文)已知函数2πππ()12sin 2sin cos 888f x x x x ⎛⎫⎛⎫⎛⎫=-++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 求:(I )函数()f x 的最小正周期;(II )函数()f x 的单调增区间. 【相关高考2】(湖南理)已知函数2π()cos 12f x x ⎛⎫=+⎪⎝⎭,1()1sin 22g x x =+. (I )设0x x =是函数()y f x =图象的一条对称轴,求0()g x 的值.(II )求函数()()()h x f x g x =+的单调递增区间.考点2、解析式含参数1、看图求解析式例1:已知函数()sin()(0,0,||)2f x A x A πωϕωϕ=+>><的部分图象如图所示。
(1)求函数f (x )的解析式,并写出f (x )的单调减区间; (2)△ABC 的内角分别是A ,B ,C ,若f (A )=1,cosB =45,求sinC 的值。
解:(1)由图象最高点得A=1, ……………1分由周期,22163221ωπππππ==∴=-=T ,T 2=∴ω. …………2分由图可知,图像的最高点为(16,π)当6x π=时,()1f x =,可得 sin(2)16ϕπ⋅+=,Z k k ∈+=∈+=+⨯∴,k 26Z ,k 2262ππϕππϕπ,故因为||2ϕπ<,所以6ϕπ=.)62sin()(π+=∴x x f . …………4分令t=2x+6π则y=sint 单调减区间为[ππππk 223,k 22++],k ∈Z 故ππk 22+≤t ≤ππk 223+,k ∈Z 求得Z k k x k ∈+≤≤+,326ππππ 由图象可得()f x 的单调减区间为Z k k k ∈++],32,6[ππππ. ……6分 (2)由(I )可知, 1)62sin(=+πA , ∴πππk 226A 2+=+,k ∈ZZ k ∈+=∴,k 6A ππ 中在△∵ABC A , 6π=A . ……8分53cos 1sin ,02=-=∴<<B B B π . ……………9分 )sin(sin B A C --=∴π)sin(B A += …………10分B A B A sin cos cos sin +=.1033453235421+=⨯+⨯=. ……12分例2、如图,函数π2cos()(00)2y x x >ωθωθ=+∈R ,,≤≤的图象与y轴相交于点(0,且该函数的最小正周期为π.(1)求θ和ω的值;(2)已知点π02A ⎛⎫ ⎪⎝⎭,,点P 是该函数图象上一点,点00()Q x y ,是PA 的中点,当02y =,0ππ2x ⎡⎤∈⎢⎥⎣⎦,时,求0x 的值. 【相关高考1】(辽宁)已知函数2ππ()sin sin 2cos 662x f x x x x ωωω⎛⎫⎛⎫=++--∈ ⎪ ⎪⎝⎭⎝⎭R ,(其中0ω>),(I )求函数()f x 的值域; (II )(文)若函数()y f x =的图象与直线1y =-的两个相邻交点间的距离为π2,求函数()y f x =的单调增区间.(理)若对任意的a ∈R ,函数()y f x =,(π]x a a ∈+,的图象与直线1y =-有且仅有两个不同的交点,试确定ω的值(不必证明),并求函数()y f x x =∈R ,的单调增区间.【相关高考2】(全国Ⅱ)在ABC △中,已知内角A π=3,边BC =B x =,周长为y .(1)求函数()y f x =的解析式和定义域;(2)求函数()y f x =的最大值.考点3、三角函数求值⑴、可将函数式化为的形式,利用正、余弦函数的有界性来求解。