仿真分析液压卡紧现象
- 格式:docx
- 大小:157.49 KB
- 文档页数:3
专业的论文在线写作平台
工程建设机械液压卡紧的危害、原因及消除措施
电动机的特点是允许短时间过载(在短时间内可以通过起动电流),但不允许长时间过载,更不允许出现内部短路故障。
因此,对电动机一般都采取保护措施,常见的保护方式有以下几种:
(1)短路保护这是指安装短路保护装置。
当感应电动机发生短路故障时,短路保护装置能迅速切断电源,防止电动机烧毁和由引起的事故。
通常采用熔断器作为感应电动机的短路保护装置。
(2)失压保护这是指电压过低时不允许电动机起动和及时切断正在低压下运行的电动机的电源,同时在突然停电又恢复供电的情况下,不允许电动机自行起动。
失压保护通过磁力交流接触器、自动空气开关或自耦降压补偿器等来实现。
(3)过载保护这是指电动机因某种原因而过载运行时,通过热继电器等过载保护装置断开电动机的电源,防止电动机因严重过热而损坏。
通常,小容量感应电动机采用熔断器就可实现短路保护和过载保护。
对于额定电流为10~150安的电动机,为了对其过载进行有效的保护,还要加装相应的热继电器。
热继电器常与交流接触器配合使用。
交流接触器、自动空气开关或自耦降压补偿器等用于控制电动机时,可以实现对电动机的失压保护。
液压输油管道力学特性仿真分析一、前言随着石油、天然气等重要能源的开发和利用,液压输油管道的应用越来越广泛。
输油管道的安全与运行稳定对于保障人民生命财产安全以及保障国家经济安全至关重要。
因此,深入了解和分析液压输油管道的力学性质具有重要的理论和实际意义。
二、液压输油管道力学特性分析液压输油管道力学特性主要包括受力特性、变形特性以及稳定性特性。
通过数值仿真方法可以有效地模拟液压输油管道的受力、变形和稳定性。
1. 受力特性分析液压输油管道在运行过程中,会受到外部载荷的作用,例如地震、风荷载、自重荷载等。
因此,对于液压输油管道来说,研究其受力特性是非常重要的。
通过数值仿真方法可以对液压输油管道在不同外载荷作用下的受力情况进行模拟分析,进而预测输油管道的受力状态,以便调整管道结构以提高其受力性能。
2. 变形特性分析输油管道在运行过程中,容易受到外力的作用从而发生变形,特别是当管道出现局部变形时,特别容易导致管道破裂或漏油情况的发生。
因此,了解液压输油管道的变形特性是非常重要的。
通过数值仿真方法可以准确计算出管道的变形情况,并进一步分析管道的稳定性,为管道结构的改进提供了科学的依据。
3. 稳定性特性分析输油管道在运行过程中,容易受到液流作用的影响,而流体的作用力会使得管道变形或者偏移,甚至导致管道的破裂或者漏油。
稳定性特性分析是研究输油管道在流体作用力下的稳定性情况,进而可以优化管道结构设计,加强管道的稳定性。
三、液压输油管道力学特性数值仿真数值仿真是一种计算机辅助设计方法,在输油管道的力学特性分析中,数值仿真方法十分重要。
常用的数值仿真方法主要有有限元法、网格法、边界元法等。
在具体分析中,可以根据对分析问题的理解以及所掌握的仿真方法的优势来合理地选择数值仿真方法。
下面以有限元法为例,对液压输油管道力学特性的数值仿真方法进行分析。
1. 有限元法基本原理有限元法是以微分方程为基础的计算方法,通过将大物体分割成能够用简单形状描述的小单元,然后针对每个小单元作微分方程求解,最后得到整个物体的受力、变形情况。
提升绞车液压系统故障分析论文1绞车液压系统常见的故障1.1泄漏相对于其他类型故障,液压系统泄漏现象比较直观,可以通过外观检查看到,泄漏的产生不仅造成油液损失、环境污染,严峻时可以引起设备磨损。
产生泄漏的主要原因:密封件破损和老化,油液加注过多导致液面过高,油液温度过高,元件损坏,配合间隙过大等。
1.2液压卡紧液压系统中产生液压卡紧,将加剧机件的磨损,并降低元件的使用寿命,在液压系统使用中,产生卡紧现象主要原因是油液中有杂质,当杂质进入配合间隙,导致卡紧现象发生,另外阀芯在高压下发生变形也是产生卡紧现象的原因。
因此,做好油液的日常治理和防护是幸免液压卡紧现象发生的首要措施。
1.3液压冲击在液压系统中,液体流动方向的迅速改变或停止运动,在系统中形成一个很大的压力峰值,这种现象叫做液压冲击。
液压冲击不仅影响系统的稳定性和可靠性,还会产生噪声和振动,使液压系统产生温度升高,紧固件的松动,甚至破坏管路,液压元件老化等。
1.4执行器爬行液压系统中出现爬行现象,改变了执行器的预定期望值,直接影响运动动作输出,如果没有闭环操纵系统,危害极大。
造成执行器爬行的主要原因是空气进入液压系统中导致油液刚度降低、液压元件磨损,间隙增大,配合工作面各处摩擦阻力不均等。
1.5空穴与气蚀在流动的液体中,因流速变化引起压降而产生气泡的现象叫空穴。
空穴与气蚀的出现会使液压系统工作性能恶化,容积效率降低,损坏机件,降低液压元件的寿命,引起液压冲击、振动和噪声等。
油液噪声升高、压力降低,通道狭窄或急剧拐弯都造成空穴与气蚀的产生。
1.6液压系统振动和噪声振动和噪声直接危机到人的情绪、健康和工作环境,容易使人产生疲乏,造成安全事故。
产生振动和噪声的主要原因有空气的侵入、零件的磨损造成间隙过大,泵的工作频率与系统的固有频率一致而产生共振,溢流阀不稳定,换向阀调整不当,零件松动等。
1.7温度升高温度升高将油液迅速氧化,并释放出难溶的酸、树脂及污泥等,加速零件磨损和腐蚀;同时油液因过热而变得迟缓,并增加泄露的机会。
液压阀失效原因之二分析:液压卡紧
在上文我们已经分析过机械性失效的原因,在本文我们将对液压卡紧的原因进行系统性的分析。
1、导致液压卡紧的原因
压力油液流经液压阀圆柱形滑阀结构时,作用在阀芯上的径向不平衡力使阀芯卡住,称为“液压卡紧”。
液压系统中产生“液压卡紧”是由于滑阀运动副几何形状误差和同轴度变化使阀芯产生径向不平衡力的结果。
2、液压卡紧的危害
轻微的液压卡紧使阀芯移动时摩擦阻力增加,严重的可导致所控制的系统元件动作滞后,使液压设备发生故障。
①当液压卡紧阻力大于阀芯移动力时,阀芯便会被液压卡死,无法移动。
②如果液压阀芯的移动是以电磁力驱动的,一旦发生阀芯被液压卡死,交流电磁铁极易损坏。
③液压卡紧会加速滑阀的磨损,降低元件的使用寿命。
3、液压卡紧的消除
①应提高液压油的清洁度,减少颗粒性污染物进。
②阀芯与阀孔配合面的几率。
要保证阀芯和阀孔的配合精度。
③装配、安装滑阀时,保证紧定扭矩,并且应均匀扭紧。
④保证液压油使用中的合适温度,以免阀芯受热膨胀而变形。
⑤对于表面开有均压槽的阀芯,则应注意均压槽的畅通。
液压换向阀阀芯卡紧故障分析目前,液压系统中广泛使用的各种液压换向阀中,均存在着阀芯卡紧现象。
其中有液压卡紧,也有机械卡紧。
为解决液压卡紧,国内外都在设计中采用阀芯外工作表面加工若干个平衡槽的办法,其效果很好。
对于机械卡紧也都制定了一些相应的技术规范来限制其配合间隙和偏心量等主要影响因素。
但尽管这样,卡紧现象仍时有发生,下面就卡紧产生的原因和解决办法作详细讨论。
1 产生卡紧的原因1.1 液压卡紧来自滑阀副几何形状误差和同轴度误差所引起的径向不平衡压力,即液体在高压下通过偏心环状锥形间隙,并且沿液体流动方向缝隙是逐渐扩大的,这时就会产生通常所说的液压卡紧现象。
1) 阀芯因加工误差而带有倒锥(锥体大端朝向高压腔),在阀芯与阀孔中心线平行且不重合时,阀芯受到径向不平衡力的作用。
使阀芯和阀孔的偏心矩越来越大,直到两者表面接触而发生卡紧现象。
此时,径向不平衡力达到最大值。
2) 阀芯无几何形状误差,但是由于装配误差使阀芯在阀孔中歪斜放置,或者颗粒状污染物凝聚楔入阀孔与阀芯的间隙,使阀芯在孔中偏斜放置,产生很大的径向不平衡力及转矩。
3) 在加工或工序间转移过程中,将阀芯碰伤,有局部凸起及残留毛刺。
这时凸起部分背后的液压流将造成较大的压降,产生一个使凸起部分压向阀孔的力矩。
这也是液压卡紧的一种成因。
4) 设计时为防止径向不平衡力的产生,杜绝液压卡紧,在阀芯上开若干个环形槽,以均衡阀芯受到的径向压力,一般称为平衡槽。
但在加工中有时环形槽与阀芯不同心;或由于淬火变形,造成磨削后环形槽深浅不一,这样亦会产生径向不平衡力导致液压卡紧。
1.2 机械卡紧换向阀在使用中除发生液压卡紧外,有时还会发生机械卡紧,机械卡紧一般有下列原因。
1) 液压油中的污染物(如砂粒、铁屑、漆皮)楔入阀芯与阀孔间隙使之卡紧。
2) 阀芯与阀孔配合间隙过小造成卡紧。
3) 对于手动换向阀,由于其结构上的原因,阀芯、阀孔都较长,因而存在着直线度误差。
又由于残余应力的存在,有时会使阀芯在使用中产生弯曲,严重时阀芯与阀孔间会产生较大的接触压力,阀芯运动时产生摩擦,造成阀芯运动阻滞,产生机械卡紧。
消除液压卡紧现象的几点措施21105年第1期煤矿机电?79?立井提升罐道水平力测试方法七五生建煤矿王爱国陈玉江七五煤矿许楼副井井筒装备水平力测试采用的是非电罐笼的滚轮罐耳上,用来测试提升罐笼在提升运行过程中与井筒装备罐道相互作用的水平力,并将其转变为电信号,经在具有防水,防震,防电磁干扰的集装箱内并固定在罐笼上,带上的测试数据进行分析后,依据统计结果可以判断井简装在聚胺脂滚轮罐耳上特制的碟簧式水平力传感装置,动态电阻应变仪放大装置,TEAC,MR一30七通道磁带记录仪及12V蓄电池直流电源和逆变器.水平力传感装置由压力秆,压力传感器和碟簧组成.测试后,利用磁带记录仪对实测信号进行重放,利用模数转换装置和计算机对磁带上所记录的信号进行处理,绘制出水平力的实测曲线,计算出井简装备实际所受到的水平作用力的大小,寻找出每次测试各罐耳作用的过对水平力实测数据进行统计分析,对不合格罐道进行了整改,找出了在今后使用及维修中应注意的问题,对保证副井正常运行具有重要意义.该测试方法简单易行,投资少,准确度高,是我国煤矿检测,检查井简装备质量,查找隐患的一种有效的测试方法.采煤机截齿与粉尘生成量及灭尘的关系新汶矿业集团协庄煤矿禹尧李继水褚士勤煤矿生产中,采掘机械的工作参数,诸如截深,截齿材料,喷嘴位置和滚筒的转速和直径,截齿的截深,煤层中的含矸量及矸石的强度特性以及煤层的开采条件对截齿的磨损大,散热越慢,当截齿温度超过它的临界温度时,截齿磨损会显着增加,截齿温度也随滚筒转速,岩石特性,煤层的属性及截齿重量为0.9kg,经使用后重量平均为0.75kg,截齿重量减少了8.3%,磨损量16%,磨损最为严重的地方是在截齿的前端锥形部分,根据现场实际观测,当截齿前端的钨钢磨损>50%时,如果再继续使用则截割效率差,截割比能耗增截齿截割岩石时,截齿温度升高更快.加大截深,一般都有利于减少粉尘,但在坚硬的煤层中,速度过快也会增加粉尘的生成量.随着矿井开拓的不断延伸,煤层的埋藏深度和厚度,顶板和底板的性质,煤岩机械性质,截割阻抗等也在发生煤机在开采过程中产生的粉尘:①据资料介绍,非对称布置比对称布置的双滚筒采煤机粉尘的生成量几乎增加1倍;立滚筒产生的粉尘比水平滚筒少;在保证正常工作的前提下, 减少滚筒上安装的截齿数量也能够减少粉尘;②确定采煤机工作参数时,注意考虑灭尘的要求,提高牵引速度,降低滚筒转速和加大截深;③使滚筒避免截顶板和底板,如果截齿截割底顶板时,牵引速度必然要放慢,会生成大量的粉尘,且可能产生火花,甚至引起瓦斯事故;④装设灭尘装置,扑灭法是喷雾灭尘.采煤机采用内喷雾和外喷雾相结合的方法,内喷雾是从滚筒里面向截齿喷射,因为喷嘴离截齿很近,甚至对着截齿前端喷雾,把粉尘扑灭在刚刚生成而还没有扩散开来的时候,因而用较少的水就可以达到较好的效果;外喷雾是将喷嘴装在机壳上,离截齿较远,因而离粉尘的起源较远,粉尘就容易扩散开,为了达到较好的灭尘效果要消耗较多的水.据现场调查发现,采煤机司机一般都习惯于用外喷供水压力直接影响喷雾液滴的粒径分布,从而也影响灭尘效果,供水压力过低,不易捕获粉尘,灭尘效果差;压力过高,则液滴粒径太细,容易随风流飘逸,灭尘效果不会有显着的改善.通过对多个工作面的实际观测得出:采煤机进水口的压路的通径.一般选用+25mm为宜,并且要在供水系统中设置减压阀,以便调整供水压力.消除液压卡紧现象的几点措施邵阳学院谢明在液压系统中广泛使用的各种液压换向阀,液体流过阀芯阀体间的配合间隙时,作用在阀芯上的径向不平衡力使阀时,轻度的径向不平衡力使阀芯运动时摩擦阻力增加,造成动作迟缓,甚至自动循环错乱;严重的径向不平衡力使阀芯的液压卡紧,加工质量引起的液压卡紧和其它因素引起的液压卡紧.消除液压卡紧现象的措施主要包括以下几点:1.提高机械加工与装配的质量.具体包括:①尽可能减少热处理的变形量.对于细长阀芯用20Cr钢,热处理后的变形小,且能较长时间保持阀芯的原有尺寸;②阀芯类零件的中心孔几乎是所有加工工序的工艺基准,热处理后的中心孔在精加工前一定要仔细研磨修整,以获得较高的表面质量和较小的形位公差;③精加工后应仔细消除毛刺,锐边倒钝. 保证锐边的部位不应倒角和修圆,以免影响轴向尺寸,如伺服阀中的控制边等;④修复阀孔精度时一般采用研磨和珩磨.阀孔成批加工时,采用金刚石绞刀,可以提高形位公差及尺寸精度;⑤结合面各连接螺钉的紧固力应均匀,以免组合螺栓预紧力过大;⑥配件的尺寸和形位公差根据要求选配间隙;⑦严格控制阀?80?煤矿机电2005年第1期芯和阀孔的制造精度,一般阀芯的圆度和圆柱度控制在开环形均压槽后,环形槽把压力分成了几段,可使向上的径的清洁度,防止油液被污染,油液的过滤精度不得低于0.03mm.4.改进设计方法.具体为:①有意识地将阀芯做成一倒锥,小端朝向高压腔,可以大大减少径向不平衡压力;②由于式电磁铁改为湿式电磁铁,电磁铁的推杆由动密封的液压卡紧现象是共性问题,不仅换向阀有,其它液压控制阀也存在.只要我们制定一些相关的技术,限制其配合间隙,偏心量及径向不平衡压力等主要影响因素,就可以减少甚至消除液压卡紧现象.变电所监控及网络系统的技改方案安徽理工大学电气工程系李红月吴永祥目前,我国部分煤矿变电所管理水平较低,仍然采用落后的手工抄表及人工控制的监控方式,既浪费人力,物力, 操作又不够安全,因此,利用计算机监控系统实现变电所的485协议为基础,作为网络信息控制中心的Pc机为上位机, 80C552单片机为核心的智能监控单元为下位机的变电所微机测控及其网络系统的技术改造方案,在实际应用中获得了良好的效果.整个系统分为三层:站级控制层,通信层,现场是一种高性能的CMOS8位单片微机,具有较高的性价比. 同时,80C552在8051基础上增加了P4,P5口,定时器12,T3组成智能监控单元的硬件电路结构简单,价格低,功能强.通信层采用RS-485总线联接方式.RS-485标准的特点是: 抗干扰能力强;传送距离远;传输速率高;能实现多点对多点统采用多机配置方式,各个管理系统组成双机热互备提高了程,利用VB自带的控件给用户提供美观,实时,直观,友好信息.同时,该系统站级控制层还可以利用公用网接入数据的采集,测量等并进行处理,所以在该单元地主程序中于具有随机干扰的信号,监控系统选取8个采样值平均,提合编程.与传统的变电所监控系统相比,该系统具有如下特点:①下位机可安装于变配电柜,对所采集的各个监控量可就地处理,转换成数字量传送;②下位机与上位主机之间的通信网络由屏蔽双绞线组成,抗干扰能力强,通信波特率较高,默认9600bps,也可以通过设定改变;③管理系统各上位Pc机组成双机热互备,提高了系统监控的可靠性,安全性;④系统可扩展性好.PROmuS总线技术的应用盘江精煤股份公司火铺矿黄华SIEMENS的现场总线PROFIBUS是一种新型的现场总线,可承担现场,控制与监控的通讯任务,降低系统及工程成本,具有较高的性价比,是当今实现分布式与集中式控制系统理想的总线技术.它具有开放性,可操作性,互换性与可集成性,大大增强了现场级的信息继承能力,提高了系统的质为屏蔽双绞线,采用分布式单段总线结构或分布式多段总线结构,单段总线不用中继器,由一段总线组成,在单段结构网络中最多可接入32个站点.若采用基带传输,RS-485总线标准的最远距离为1200m.若采用调频传输,最远距离可达5km.在多段结构网络中,每段最多可接入32个站点,整个网络中的站点总数不超过127个,在段与段之间要采用中继器连接,在任何两站之间不得超过7个中继器.PROFI. BUS总线网络采用令牌式(令牌控制主站浮动)与主从方式务局对带式输送机集中控制系统采用SIEMENS公司的S7. 300系列PLC后效果良好.主要硬件有中央处理器,负载电电平转换为内部$7-300信号电平;其二将$7-300的内部信央处理器接口连接到总线网络上,以实现系统数据传输与分基于STEP7下完成的.通过硬件配置完成PLC与PROFI. 序块,各种不同的块具有不同的功能,同一类型的块具有不输送机电控控制两台280kW/660V主电机,两台推杆制动器,两套调速型液力耦合器,给煤机,油泵开关与自动张紧装置,通过电动执行器推拉勺杆以达到软启动与多机驱动运行期问的功率平衡.具有"集控","就地","检修","遥控","手动","闭锁","煤流选择","起车预警"与"故障报警停地址选择可方便地遥控本机与其他带式输送机机的运行状作简单,易于维护,提高了生产效率.用IJ)型堵漏密封胶处理变压器渗油辽中县化工总厂薛福连变压器的渗漏主要有通过砂眼,焊缝,密封垫,碰伤处等的外漏和零部件之间的内漏,其中内漏虽然不多,但其危害性极大,如不及时处理,可能造成套管爆炸或变压器油质变坏.220kV变压器的油是强制循环的,其冷却器由镀锌钢管。
名词解释——液压卡紧现象
液压卡紧现象是指在液压设备中,由于内部零件的磨损、腐蚀或松动等原因,导致液压缸或液压管道出现卡顿或密封不良的现象。
这种现象通常会导致设备无法正常运行,甚至可能导致安全事故。
液压卡紧现象的原因可能包括以下几个方面:
1. 零件磨损或腐蚀。
例如,在液压系统中,泵、阀门、油缸和管道等零件都可能受到磨损或腐蚀的影响,导致密封性能下降。
2. 松动或脱落。
例如,在管道系统中,管道中的零件可能因为压力变化或温度变化等原因而松动,导致液压卡紧。
3. 安装不当。
例如,如果液压系统中的零件安装不正确,就可能导致液压卡紧现象的发生。
为了预防液压卡紧现象的发生,需要对液压系统进行定期维护和检查,确保所有零件都安装在正确的位置,并采取适当的措施来保护它们免受磨损和腐蚀的影响。
此外,对于松动或脱落的问题,需要及时进行修复或更换零件,以确保设备的正常运行。
液压卡紧现象是液压系统中常见的问题,可能会导致设备故障和安全事故。
为了避免这种情况的发生,需要对液压系统进行定期维护和检查,并采取适当的措施来保护它们免受磨损和腐蚀的影响。
工程建设机械液压卡紧的危害、原因及消除措施◇江苏徐州工程兵指挥学院工程装备教研室侯宪春马晓军1 液压卡紧的危害在工程建设机械的液压系统中,因毛刺和污物楔入液压元件滑动配合间隙,造成的卡阀现象,通常称为机械卡紧。
液体流过阀芯阀体的缝隙时,作用在阀芯上的径向力使阀芯卡住,称为液压卡紧,液压元件产生液压卡紧时,会导致下列危害。
1.轻度的液压卡紧,使液压元件内的相对移动(如阀芯、叶片、柱塞、活塞等)运动时的摩擦阻力增大,造成动作迟缓,甚至动作错乱的现象;2.严重的液压卡紧,使液压元件内的相对移动件完全卡住,不能运动,造成不能动作(如换向阀不能换向,柱塞泵柱塞不能运动而不能实现吸油和压油等)的现象,使手柄的操作力增大。
2 产生液压卡紧现象的原因1.阀芯外径、阀体(套)孔形位公差大,有锥度,且大端朝着高压区,或阀芯阀孔失圆,装配时二者又不同心,存在偏心距,这样压力油通过上缝隙与下缝隙产生的压力降曲线不重合,产生一向上的径向不平衡力(合力),使阀芯更加向上偏移。
上移后,上缝隙更缩小,下缝隙更增大,向上的径向不平衡力随之增大,最后将阀芯顶死阀体孔上。
2.阀芯与阀孔因加工和装配误差,阀芯在阀孔内倾斜成一定角度,压力油经上下缝隙后,上缝隙不断增大,下缝隙不断减小,其压力降曲线也不同,压力差值产生偏心力和一个使阀芯阀体孔的轴线互不平衡的力矩,使阀芯在孔内更倾斜,最后阀芯卡死在阀孔内。
3.阀芯上面因碰伤有局部凸起或毛刺,产生一个使凸起部分压向阀套的力矩,将阀芯卡死在阀孔内。
4.为减少径向不平衡力,往往在阀芯上加工若干条环形均压槽。
加工时环形槽与阀芯外圆若不同心,经热处理后再磨加工,可导致环形均压槽深浅不一,产生径向不平衡力而卡死阀心。
5.污物颗粒进入阀芯与阀孔配合间隙,使阀芯在阀孔内偏心放置,将产生径向不平衡力导致液压卡紧。
6.阀芯与阀孔配合间隙大,阀芯与阀孔台肩尖边与沉角槽的锐边毛刺倾倒的程度不一样,引起阀芯与阀孔轴线不同心,产生液压卡紧。
燕山大学机械工程学院液压流体力学课程三级项目液压滑阀中液压卡紧力的计算与分析组员:苏国青孙景龙王志辰王娟张志壮指导教师:高殿荣2012/4/2前言在实际生产设备中安装的滑阀式换向阀, 在使用中经常出现动作失灵的现象, 经检查是滑阀阀芯“卡死”。
这是由于阀芯和阀套的滑动副之间有一定的间隙, 在正常充满油液的条件下, 摩擦力应该是很小的, 但是由于加工锥度的原因, 在圆柱滑动副的密封长度内, 各个截面上的环形缝隙中的流体压强分布不均, 对柱体产生侧向力, 这个侧向力使得阀芯和阀套之间产生摩擦力导致了滑阀卡紧现象。
本文详细推导了滑阀卡紧现象的相关公式, 并借助这些公式说明了阀芯“卡死”产生的原因, 并提出了相关解决方案。
第一章 液压阀上的作用力液压阀的阀芯在工作过程中所受的作用力是所中多样的,掌握各种作用力的特点及计算方法是分析液压阀的基础。
下面将介绍液压阀设计中常见的集中作用力。
1-1 液压力液压元件中,由于液体重力引起的液体压力相差对于液压力而言是极小的,可以忽略不计。
因此,在计算时认为同一容腔中液体的压力相同。
作用在容腔周围固体壁上的液压力p F 的大小为p AAF Pd=⎰⎰ 式1-1当壁面为平面时,液压力p F 为压强p 与作用面积A 的乘积,即p F pA =1-2 液动力立体经过阀口时,由于流动方向和流速的变化造成液体动量的改变,使阀芯受到附加的作用力,这就是液动力。
在阀口开度一定的稳定流动情况下,流动力为稳态液动力;当阀口开度发生变化时,还有瞬态液动力的作用。
1. 稳态液动力如图1-1所示,取进出口之间的阀芯与阀体孔所构成的环形通道为控制体积。
对于某一固定的阀口开度x 而言,根据动量定理,控制体积对阀芯轴线方向的稳态液动力s F 的计算公式为2cos 2cos s d V F qv C C W x p ραα==∆ 式1-2式中 ρ——油液密度q ——流经阀口的流量 α——阀口的射流角 d C ——阀口的流量系数 V C ——阀口的流速系数 W ——阀口梯度图 1-12. 瞬态液动力所谓瞬态作用力,是指由于阀口开度变化引起流经法力的液流速度变化,导致流道中液体动量变化而产生的液动力。
仿真分析液压卡紧现象
1、仿真分析方法
基于Fluent软件对液压卡紧现象进行仿真分析。
首先利用Inventor软件建立带有锥度的间隙密封卡紧模型,使用ICEM对模型流体域进行网格划分,最后采用Fluent对网格模型进行压力场仿真,对获取的数据进行分析计算,得到最优的间隙密封结构。
2、模型参数
滑阀卡紧力仿真几何模型以阀芯、阀套间隙密封中流场为基型,采用三维模型的形式。
模型的基本参数为:密封长度为20mm,阀套的直径为20.05,阀心的大端直径为20.01,小端直径为20mm。
顺锥模型示意圈如图所示,其中1d 、2d 、0D 、e 别为小端直径、大端直径、阀套孔直径、偏心量,1P 、2P 为进出口压差,参数设置如前文所述。
将倒锥模型导入到Fluent 软件中。
滑阀间隙密封内部流场仿真分析结果如图所示,图1为阀总表面压力分布图,图2为模型上下对称面压力分布曲线。
由图可知,压力沿X轴从12Mpa 到2MPa 依次减小,由于仿真模型的偏屯、量是沿着Y轴正方向,根据前文的理论分析可知,由于阀忘下对称面间隙高度小,压力下降慢,故下对称面的压力高于上对称面压力,与仿真结果一致,如图所示。
最终会产生一个使阀芯沿Y轴负方向运动的力,使阀,芭对中。
在Fluent 中设置力监测器,得出阀芯沿Y轴的受力为14.31N ,使阀巧对中。
因此,阀芯的顺锥模型有利于滑阀的对中。
倒锥模型与顺锥模型结构上基本相同,只是在阀芯的安装方向上有所不同,倒锥模型阀狂大端朝向高压进口腔。
将模型导入到Fluent中,边界条件与顺锥设置相同。
由图可知,压力在阀巧表面沿X轴方向依次减小,但是分布并不均匀,滑阀上对称面压降比上对称面的压降慢,在曲线上显示为上对称面曲线在下对称面曲线上方,两曲线形成一封闭区域,由公式可知,封闭区域对阀拉圆周表面积分即为阀巧卡紧力大小。
在Fluent中设置力传感器,监测得到阀孩受到的卡紧力为12.20N,方向沿着Y轴正方向,最终会使阀总向阀孔底侧壁面移动,直到卡死。