当前位置:文档之家› 液压换向阀卡紧故障分析(1)

液压换向阀卡紧故障分析(1)

液压换向阀卡紧故障分析(1)
液压换向阀卡紧故障分析(1)

液压换向阀阀芯卡紧故障分析

液压换向阀阀芯卡紧故障分析 目前,液压系统中广泛使用的各种液压换向阀中,均存在着阀芯卡紧现象。其中有液压卡紧,也有机械卡紧。为解决液压卡紧,国内外都在设计中采用阀芯外工作表面加工若干个平衡槽的办法,其效果很好。对于机械卡紧也都制定了一些相应的技术规范来限制其配合间隙和偏心量等主要影响因素。但尽管这样,卡紧现象仍时有发生,下面就卡紧产生的原因和解决办法作详细讨论。 1、产生卡紧的原因 1.1 液压卡紧 来自滑阀副几何形状误差和同轴度误差所引起的径向不平衡压力,即液体在高压下通过偏心环状锥形间隙,并且沿液体流动方向缝隙是逐渐扩大的,这时就会产生通常所说的液压卡紧现象。 1)阀芯因加工误差而带有倒锥(锥体大端朝向高压腔),在阀芯与阀孔中心线平行且不重合时,阀芯受到径向不平衡力的作用。使阀芯和阀孔的偏心矩越来越大, 直到两者表面接触而发生卡紧现象。此时,径向不平衡力达到最大值。 2)阀芯无几何形状误差,但是由于装配误差使阀芯在阀孔中歪斜放置,或者颗粒状污染物凝聚楔入阀孔与阀芯的间隙,使阀芯在孔中偏斜放置,产生很大的径向不平衡力及转矩。 3)在加工或工序间转移过程中,将阀芯碰伤,有局部凸起及残留毛刺。这时凸起部分背后的液压流将造成较大的压降,产生一个使凸起部分压向阀孔的力矩。这也是液压卡紧的一种成因。 4)设计时为防止径向不平衡力的产生,杜绝液压卡紧,在阀芯上开若干个环形槽,以均衡阀芯受到的径向压力,一般称为平衡槽。但在加工中有时环形槽与阀芯不同心;或由于淬火变形,造成磨削后环形槽深浅不一,这样亦会产生径向不平衡力导致液压卡紧。 1.2 机械卡紧 换向阀在使用中除发生液压卡紧外,有时还会发生机械卡紧,机械卡紧一般有下列原因。 1)液压油中的污染物(如砂粒、铁屑、漆皮)楔入阀芯与阀孔间隙使之卡紧。

液压与气动的仿真

第一单元液压传动基础 1 薄壁小孔流.exe 液体流经薄壁小孔的情况如动画所示。液流在小孔上游大约d/2处开始加速并从四周流向小孔。由于流 线不能突然转折到与管轴线平行,在液体惯性的作用下,外层流线逐渐向管轴方向收缩,逐渐过渡到与 管轴线方向平行,从而形成收缩截面A 。对于圆孔,约在小孔下游d/2处完成收缩。通常把最小收缩面积 c Ac与孔口截面积之比值称为收缩系数Cc,即Cc=Ac/A。其中A为小孔的通流截面积。 液流收缩的程度取决于Re、孔口及边缘形状、孔口离管道内壁的距离等因素。对于圆形小孔,当管道直 径D与小孔直径d之比D/d≥7时,流速的收缩作用不受管壁的影响,称为完全收缩。反之,管壁对收缩程 度有影响时,则称为不完全收缩。 2 非恒定流动.exe 当液体流动时,可以将流动液体中空间任一点上质点的运动参数,例如压力p、流速v及密度g表示为空 间坐标和时间的函数,例如: 压力p=p(x,y,z,t) 速度v=v(x,y,z,t) 密度=(x,y,z,t) 在流体的运动参数中,只要有一个运动参数随时间而变化,液体的运动就是非定常流动或非恒定流动。 3 恒定流动.exe 当液体流动时,可以将流动液体中空间任一点上质点的运动参数,例如压力p、流速v及密度g表示为空 间坐标和时间的函数,例如: 压力p=p(x,y,z,t) 速度v=v(x,y,z,t) 密度=(x,y,z,t) 如果空间上的运动参数p、v及在不同的时间内都有确定的值,即它们只随空间点坐标的变化而变化,不 随时间t变化,对液体的这种运动称为定常流动或恒定流动。 4 蕾诺实验.exe 1883年奥斯本?雷诺(Osborne Reynolds)所作的有名的实验。对流体的流动模式有了更完整的说明。雷 诺实验装置,主要为一水平玻璃管,安置于一大水槽中,玻璃管一端成喇叭状,另一端设一排水阀(A), 打开阀(A)可控制水在玻璃管中的流速。水槽上方有一瓶染色墨汁,将阀(B)打开,墨汁可流至玻璃管入 口处,以利观察玻璃管中流体的流动情形。当流速小时,染料自始至终均成一直线,而不向周围扩散, 称为层流(laminar flow)。而当流速甚大时,管内染料则将整支管子染色,此乃因其向周围扩散之故, 称为扰流(turbulent flow)。

液压系统常见故障分析及处理

液压系统常见故障分析及处理 液压传动是以液体为工作介质,通过能量转换来实行执行机构所需运动的一种传动方式。首先,液压泵将电动机(或其它原动机)的机械能转换为液体的压力能,然后,通过液压缸(或液压马达)将以液体的压力能再转化为机械能带动负载运动。文中概括介绍了液压系统在日常使用中常见故障分析以及处理方法。 一.工作原理 液压传动是以液体为工作介质,通过能量转换来实行执行机构所需运动的一种传动方式。首先,液压泵将电动机(或其它原动机)的机械能转换为液体的压力能,然后,通过液压缸(或液压马达)将以液体的压力能再转化为机械能带动负载运动。 二.液压系统的组成 液压传动系统通常由以下五部分组成。 1.动力装置部分。其作用是将电动机(或其它原动机)提供的机械能转换为液体的压力能。简单地说,就是向系统提供压力油的装置。如各类液压泵。 2.控制调节装置部分。包括压力、流量、方向控制阀,是用以控制和调节液压系统中液流的压力、流量和流动方向,以满足工作部件所需力(或力矩)、速度(或转速)和运动方向(或运动循环)的要求。 3.执行机构部分。其作用是将液体的压力能转化为机械能以带动工作部件运动。包括液压缸和液压马达。 4.自动控制部分。主要是指电气控制装置。 5.辅助装置部分。除上述四大部分以外的油箱、油管、集成块、滤油器、蓄能器、压力表、加热器、冷却器等等。它们对于保证液压系统工作的可靠性和稳定性是不可缺少的,具有重要的作用。 三.液压缸 液压缸是把液压能转换为机械能的执行元件。液压缸常见故障有:液压缸爬行、液压外泄漏、液压缸机械别劲、液压缸进气、液压缸冲击等。 1.液压缸爬行故障分析及处理 (1)缸或管道内存有空气,处理方法:设置排气装置;若无排气装置,可开动液压系统以最大行程往复数次,强迫排除空气;对系统及管道进行密封。 (2)缸某处形成负压,处理方法:找出液压缸形成负压处加以密封;并排气。 (3)密封圈压得太紧,处理方法:调整密封圈,使其不松不紧,保证活塞杆能来回用手拉动。 (4)活塞与活塞杆不同轴,处理方法:两者装在一起,放在V形块上校正,使同度误差在0.04mm以内;换新活塞。 (5)活塞杆不直(有弯曲),处理方法:单个或连同活塞放在V形块上,用压力机控直和用千分表校正调直。

液压系统常见的故障系统处理

1 常见故障的诊断方法 5。液压设备是由机械、液压、电气等装置组合而成的,故出现的故障也是多种多样的。某一种故障现象可能由许多因素影响后造成的,因此分析液压故障必须能看懂液压系统原理图,对原理图中各个元件的作用有一个大体的了解,然后根据故障现象进行分析、判断,针对许多因素引起的故障原因需逐一分析,抓住主要矛盾,才能较好的解决和排除。液压系统中工作液在元件和管路中的流动情况,外界是很难了解到的,所以给分析、诊断带来了较多的困难,因此要求人们具备较强分析判断故障的能力。在机械、液压、电气诸多复杂的关系中找出故障原因和部位并及时、准确加以排除。 5.1.1 简易故障诊断法 简易故障诊断法是目前采用最普遍的方法,它是靠维修人员凭个人的经验,利用简单仪表根据液压系统出现的故障,客观的采用问、看、听、摸、闻等方法了解系统工作情况,进行分析、诊断、确定产生故障的原因和部位,具体做法如下: 1)询问设备操作者,了解设备运行状况。其中包括:液压系统工作是否正常;液压泵有无异常现象;液压油检测清洁度的时间及结果;滤芯清洗和更换情况;发生故障前是否对液压元件进行了调节;是否更换过密封元件;故障前后液压系统出现过哪些不正常现象;过去该系统出现过什么故障,是如何排除的等,需逐一进行了解。 2)看液压系统工作的实际状况,观察系统压力、速度、油液、泄漏、振动等是否存在问题。

3)听液压系统的声音,如:冲击声;泵的噪声及异常声;判断液压系统工作是否正常。 4)摸温升、振动、爬行及联接处的松紧程度判定运动部件工作状态是否正常。 总之,简易诊断法只是一个简易的定性分析,对快速判断和排除故障,具有较广泛的实用性。 5.1.2 液压系统原理图分析法 根据液压系统原理图分析液压传动系统出现的故障,找出故障产生的部位及原因,并提出排除故障的方法。液压系统图分析法是目前工程技术人员应用最为普遍的方法,它要求人们对液压知识具有一定基础并能看懂液压系统图掌握各图形符号所代表元件的名称、功能、对元件的原理、结构及性能也应有一定的了解,有这样的基础,结合动作循环表对照分析、判断故障就很容易了。所以认真学习液压基础知识掌握液压原理图是故障诊断与排除最有力的助手,也是其它故障分析法的基础。必须认真掌握。 5.1.3 其它分析法 液压系统发生故障时,往往不能立即找出故障发生的部位和根源,为了避免盲目性,人们必须根据液压系统原理进行逻辑分析或采用因果分析等方法逐一排除,最后找出发生故障的部位,这就是用逻辑分析的方法查找出故障。为了便于应用,故障诊断专家设计了逻辑流程图或其它图表对故障进行逻辑判断,为故障诊断提供了方便。

液压专业术语翻译

A ability 性能;能力load-carrying ability 承载能力absorber 吸收器;吸收剂;过滤器;减震器accessories 辅件,附件,配件hydraulic accessories 液压辅件accumulate 储存;蓄能;累积accumulator 蓄能器;蓄电池;累加器 accuracy 准确性;精度action 作用;动作;作用力;行程actuated 操纵,控制directly actuated 直接操纵的,直接控制的pilot actuated 先导控制的,液控的actuator 执行元件;液压缸;马达adapter 接头;衬套;压环;连接件pipe adapter 管接头admission 供给,供油,供气alignment 找正,定心,对中amplifier 放大器differential pressure amplifier 压差放大器flow amplifier 流量放大器assembly 组合,组件,机组axis 轴 B back-flow 回流back-up 支撑hydrostatic back-up 静压支撑barrel 桶,缸体base 底座;支座bearing 支承;轴承;方位radial ball bearing 径向球轴承rolling bearing 滚动轴承sliding bearing 滑动轴承thrust bearing 止推轴承bed 台pump test bed 泵实验台behavior 性能;工况bend 弯头;弯管blade 叶片flat blade 平面叶片forward inclined blade 前倾叶片guide blade 导叶

工程建设机械液压卡紧的危害、原因及消除措施通用范本

内部编号:AN-QP-HT130 版本/ 修改状态:01 / 00 The Production Process Includes Determining The Object Of The Problem And The Scope Of Influence, Analyzing The Problem, Proposing Solutions And Suggestions, Cost Planning And Feasibility Analysis, Implementation, Follow-Up And Interactive Correction, Summary, Etc. 编辑:__________________ 审核:__________________ 单位:__________________ 工程建设机械液压卡紧的危害、原因及消除措施通用范本

工程建设机械液压卡紧的危害、原因及 消除措施通用范本 使用指引:本解决方案文件可用于对工作想法的进一步提升,对工作的正常进行起指导性作用,产生流程包括确定问题对象和影响范围,分析问题提出解决问题的办法和建议,成本规划和可行性分析,执行,后期跟进和交互修正,总结等。资料下载后可以进行自定义修改,可按照所需进行删减和使用。 1 液压卡紧的危害 在工程建设机械的液压系统中,因毛刺和污物楔入液压元件滑动配合间隙,造成的卡阀现象,通常称为机械卡紧。 在工程建设机械的液压系统中,因毛刺和污物楔入液压元件滑动配合液体流过阀芯阀体的缝隙时,作用在阀芯上的径向力使阀芯卡住,称为液压卡紧,液压元件产生液压卡紧时,会导致下列危害。 1.轻度的液压卡紧,使液压元件内的相对移动(如阀芯、叶片、柱塞、活塞等)运动时

液压系统故障原因分析

液压系统故障原因分析 一、液压系统好长时间没有用,这次开机后,震动、噪音大。 可能是长时间放置,蓄能器氮气泄露,没起到减少脉动的作用。检查氮气的压力,补压或者更换皮囊。噪音是由于振动太大而产生的,没有了震动,就会消除。 二、油缸工作不正常,只能出不能回。 检查油缸的另一端是否出油,电磁阀是否换向,油缸内泄是不是特别严重。回油管路是否被异物堵死。 三、油缸启动压力高。 油缸启动压力高和油缸的制造质量(如活塞杆弯曲、缸筒弯曲等)、密封的形式和安装等因素有关。对于伺服油缸,启动压力高会影响其的动态特性。 对于普通油缸,启动压力的要求没有伺服油缸那样严格,但是也不能太高。一旦发现启动压力高,需要认真对油缸的零件进行尺寸复测,并检查密封的安装质量。 1、内部阻力过大。 2、外部执行部分有机械故障。 油缸的启动压力与油缸的设计结构有关,油口与活塞接触的受力面积,如油口的大小即活塞初始启动的受力面积,启动压力就高,油口与活塞接触间加工受力面积腔(启动压力腔)启动压力就很小。 四、液压系统油缸要求同步。 在支管路上加单向节流阀,价格比较便宜。要求比较高就加个分流节流阀,造价高,但效果较好。 五、液压系统维修率特别高。 主要原因是环境恶劣,液压系统是比较精密的设备,平常要多注意保养,油质要好,加油时要过滤,系统密封要好。各类检测设备要完善,需要有专业的人员对系统的工作情况进

行记录和维护。 六、液压缸动作不规则。 1、电磁阀换向不规则,需要检查电炉部分 2、电液伺服、比例阀的放大器失灵或调整不当。 3、也有就是油缸磨损严重,需修理或者更换。 4、可能是液压管路混杂有空气,需要找出混入空气的部位,然后清洗检查,重新安装和更换元辅件。

仿真分析液压卡紧现象

仿真分析液压卡紧现象 1、仿真分析方法 基于Fluent软件对液压卡紧现象进行仿真分析。首先利用Inventor软件建立带有锥度的间隙密封卡紧模型,使用ICEM对模型流体域进行网格划分,最后采用Fluent对网格模型进行压力场仿真,对获取的数据进行分析计算,得到最优的间隙密封结构。 2、模型参数 滑阀卡紧力仿真几何模型以阀芯、阀套间隙密封中流场为基型,采用三维模型的形式。模型的基本参数为:密封长度为20mm,阀套的直径为20.05,阀心的大端直径为20.01,小端直径为20mm。

顺锥模型示意圈如图所示,其中1d 、2d 、0D 、e 别为小端直径、大端直径、阀套孔直径、偏心量,1P 、2P 为进出口压差,参数设置如前文所述。将倒锥模型导入到Fluent 软件中。 滑阀间隙密封内部流场仿真分析结果如图所示,图1为阀总表面压力分布图,图2为模型上下对称面压力分布曲线。由图可知,压力沿X轴从12Mpa 到2MPa 依次减小,由于仿真模型的偏屯、量是沿着Y轴正方向,根据前文的理论分析可知,由于阀忘下对称面间隙高度小,压力下降慢,故下对称面的压力高于上对称面压力,与仿真结果一致,如图所示。最终会产生一个使阀芯沿Y轴负方向运动的力,使阀,芭对中。在Fluent 中设置力监测器,得出阀芯沿Y轴的受力为14.31N ,使阀巧对中。因此,阀芯的顺锥模型有利于滑阀的对中。

倒锥模型与顺锥模型结构上基本相同,只是在阀芯的安装方向上有所不同,倒锥模型阀狂大端朝向高压进口腔。将模型导入到Fluent中,边界条件与顺锥设置相同。 由图可知,压力在阀巧表面沿X轴方向依次减小,但是分布并不均匀,滑阀上对称面压降比上对称面的压降慢,在曲线上显示为上对称面曲线在下对称面曲线上方,两曲线形成一封闭区域,由公式可知,封闭区域对阀拉圆周表面积分即为阀巧卡紧力大小。在Fluent中设置力传感器,监测得到阀孩受到的卡紧力为12.20N,方向沿着Y轴正方向,最终会使阀总向阀孔底侧壁面移动,直到卡死。

工程建设机械液压卡紧的危害原因及消除措施

工程建设机械液压卡紧的危害原因及消除措施 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

工程建设机械液压卡紧的危害、原因及消除措施1液压卡紧的危害 在工程建设机械的液压系统中,因毛刺和污物楔入液压元件滑动配合间隙,造成的卡阀现象,通常称为机械卡紧。 在工程建设机械的液压系统中,因毛刺和污物楔入液压元件滑动配合液体流过阀芯阀体的缝隙时,作用在阀芯上的径向力使阀芯卡住,称为液压卡紧,液压元件产生液压卡紧时,会导致下列危害。 1.轻度的液压卡紧,使液压元件内的相对移动(如阀芯、叶片、柱塞、活塞等)运动时的摩擦阻力增大,造成动作迟缓,甚至动作错乱的现象; 2.严重的液压卡紧,使液压元件内的相对移动件完全卡住,不能运动,造成不能动作(如换向阀不能换向,柱塞泵柱塞不能运动而不能实现吸油和压油等)的现象,使手柄的操作力增大。 2产生液压卡紧现象的原因

1.阀芯外径、阀体(套)孔形位公差大,有锥度,且大端朝着高压区,或阀芯阀孔失圆,装配时二者又不同心,存在偏心距,这样压力油通过上缝隙与下缝隙产生的压力降曲线不重合,产生一向上的径向不平衡力(合力),使阀芯更加向上偏移。上移后,上缝隙更缩小,下缝隙更增大,向上的径向不平衡力随之增大,最后将阀芯顶死阀体孔上。 2.阀芯与阀孔因加工和装配误差,阀芯在阀孔内倾斜成一定角度,压力油经上下缝隙后,上缝隙不断增大,下缝隙不断减小,其压力降曲线也不同,压力差值产生偏心力和一个使阀芯阀体孔的轴线互不平衡的力矩,使阀芯在孔内更倾斜,最后阀芯卡死在阀孔内。 3.阀芯上面因碰伤有局部凸起或毛刺,产生一个使凸起部分压向阀套的力矩,将阀芯卡死在阀孔内。 4.为减少径向不平衡力,往往在阀芯上加工若干条环形均压槽。加工时环形槽与阀芯外圆若不同心,经热处理后再磨加工,可导致环形均压槽深浅不一,产生径向不平衡力而卡死阀心。 5.污物颗粒进入阀芯与阀孔配合间隙,使阀芯在阀孔内偏心放置,将产生径向不平衡力导致液压卡紧。

液压系统故障诊断

第十一章液压系统故障诊断 第一节概述 液压系统的故障诊断是指在不拆卸液压设备的情况下,凭观察和仪表测试判断液压设备的故障所在和原因。液压设备的故障是指液压设备的各项技术指标偏离了它的正常状态,如管路和某些元件损坏、漏油、发热、致使设备的工作能力丧失,功率下降,产生振动和噪声增大等。 在使用液压设备时,液压系统可能出现的故障是多种多样的。即使是同一个故障现象,产生故障的原因也不一样,它是许多因素综合影响的结果。特别是新装置的液压设备,在试车时产生的故障现象,其原因更是多方面的。液压系统是一个密闭的系统,各元件的工作状态是看不见,摸不着的。因此,在进行故障诊断时,必须对引起故障的因素逐一分析,注意到其内在联系,找出主要矛盾,这样才能比较容易地排除故障。 液压系统的故障主要是由构成回路的液压元件本身产生的动作不良、系统回路的相 少液压设备出现故障的有力措施。 当然,液压系统的故障除由元件本身和工作油液的污染引起的以外,还因安装、调试和设计不当等原因引起的也较多。 液压系统的故障诊断,过去一般凭经验,随着液压测试技术的发展,国内外正研制和应用专用的测试仪和设备。如手提式测试器、液压故障诊断器和液压故障检修车等。应用这些专用仪器和设备能在现场很快查出液压元件及系统的故障,并进行排除。 近年来,在液压系统故障诊断与状态监测技术方面取得了较大进展。如利用振动信

号、油液光谱分析、油液铁谱分析、超声波泄漏指示器、红外线测试仪等来进行检测的技术,利用微机进行分析处理信号和预报故障的技术等的应用已有不少报道。而在港口工程机械液压系统中,普遍使用这些技术来进行故障诊断及状态监测,则还需经过有关各方面的努力才可能逐步实现。 第二节液压系统的故障预兆 液压系统产生故障以前,通常都有预兆。如压力失调、噪声过大、振动过大、温升过高,泄漏过大等等。如果这些现象能及时发现,并加以适当控制或排除,系统的故障就可以减少或避免发生。 一、液压系统的工作压力失调 压力失调常表现为压力不稳定、压力调不上去或调不下来、压力转换滞后、卸荷压力较高等。产生压力失调的原因主要有以下几个方面: 1.液压泵引起的压力失调 1)液压泵的轴向、径向间隙由于磨损而增大; 2)泵的“困油”未得到圆满解决; 3)泵内零件加工及装配精度较差; 4)泵内个别零件损坏等。 2. 液压控制阀引起的压力失调 1)在压力控制阀中: ①先导阀的锥阀与阀座配合不良; ②调压弹簧太软或损坏; ③主阀芯的阻尼孔被堵塞,滑阀失去控制作用; ④主阀芯被污物卡住在开口位置或闭口位置; ⑤溢流阀作远程控制用时,其远程连接通道过小或泄漏; ⑥溢流阀作卸荷阀用时,其控制卸荷的换向阀失灵等。 2)在方向控制阀中: ①油路切换过快而产生液压冲击; ②电磁换向阀换向推杆过长或过短等。 3.辅助元件引起的压力失调 1)油滤器堵塞; 2)液流通道过小,回油不畅; 3)油液粘度太稠或太稀等。 4.其他 1)机械部分未调整好,摩擦阻力过大; 2)空气进入系统; 3)油液污染; 4)电机功率不足或转速过低;

液压系统常见故障的成因及其预防与排除

在 在液压传动系统中,都是一些比较精密的零件。人们对机械的液压传动虽然觉得省力方便,但同时又感到它易于损坏。究其原因,主要是不太清楚其工作原理和构造特性,从而也不大了解其预防保养的方法。 液压系统有3个基本的“致病”因素: 污染、过热和进入空气。这3个不利因素有着密切的内在联系,出现其中任何一个问题,就会连带产生另外一个或多个问题。由实践证明,液压系统75%“致病”的原因,均是这三者造成的。 如果液压系统的制造质量没有问题,则造成故障的原因大多是预防保养不当,操作不当的因素一般较少。之所以如此,主要是由于对它的工作条件认识不足。如果懂得一些基本原理,弄明白导致故障的上述3个有害因素,就能长期地保证系统处于良好的工作状况。 1、工作油液因进入污物而变质 进入油液中的污物(如灰、砂、土等)的来源有: (1)系统外部不清洁。不清洁物在加油或检查油量时被带入系统,或通过损坏的油封或密封环而进入系统; (2)内部清洗不彻底。在油箱或部件内仍留有微量的污物残渣; (3)加油容器或用具不洁; (4)制造时因热弯油管而在管内产生锈皮; (5)油液储存不当,在加入系统前就不洁或已变质; (6)已逐渐变质的油会腐蚀零件。被腐蚀金属可能成为游离分子悬浮在油中。

污物会造成零件的磨损与腐蚀,尤其是对于精加工的零件,它们会擦伤胶皮管的内壁、油封环和填料,而这些东西损伤后又会导致更多的污物进入系统中,这样就形成恶性循环的损坏。 2、过热 造成系统过热可能由以下一种或多种原因造成: (1)油中进入空气或水分,当液压泵把油液转变为压力油时,空气和水分就会助长热的增加而引起过热; (2)容器内的油平面过高,油液被强烈搅动,从而引起过热; (3)质量差的油可能变稀,使外来物质悬浮着,或与水有亲合力,这也会引起生热; (4)工作时超过了额定工作能力,因而产生热; (5)回油阀调整不当,或未及时更换已损零件,有时也会产生热。 过热将使油液迅速氧化,氧化又会释放出难溶的树脂、污泥与酸类等,而这些物质聚积油中造成零件的加速磨损和腐蚀,且它们粘附在精加工零件表面上还会使零件失去原有功能。油液因过热变稀还会使传动工作变迟缓。 上述过热的结果,常反映在操纵时传动动作迟缓和回油阀被卡死。 3、进入空气 油液中进入空气的原因有下列几种: (1)加油时不适当地向下倾倒,致使有气泡混入油内而带入管路中; (2)接头松了或油封损坏了,空气被吸入; (3)吸油管路被磨穿、擦破或腐蚀,因而空气进入。 空气进入油中除引起过热外,也会有相当数量空气在压力下被溶于油内。如果被压缩的体积大约有10%是属于被溶的空气,则压力下降时便会形成泡

液压系统常见故障及排除方法

液压系统常见故障及排除方法: 液压系统大部分故障并不是突然发生的,一般总有一些预兆。如噪声、振动、冲击、爬行、污染、气穴和泄漏等。如及时发现并加以适当控制与排除,系统故障就可以消除或相对减少。 一、振动和噪声 (一)液压元件的合理选择 (二)液压泵吸油管路的气穴现象 排除方法:(1)增加吸油管道直径,减少或避免吸油管路的弯曲,以降低吸油速度,减少管路阻力损失。 (2)选用适当地吸油过滤器,并且要经常检查清洗,避免堵塞。(3)液压泵的吸入高度要尽量小。自吸性能差的液压泵应由低压辅助泵供油。。 (4)避免油粘度过高而产生吸油不足现象。 (5)使用正确的配管方法。 (三)液压泵的吸空现象 液压泵吸空主要是指泵吸进的油中混入空气,这种现象不仅容易引起气蚀,增加噪声,而且还影响液压泵的容积效率,使工作油液变质,所以是液压系统不允许存在的现象。 主要原因:油箱设计和油管安排不合理,油箱中的油液不足:吸油管浸入油箱太浅:液压泵吸油位置太高:油液粘度太大:液压泵的吸油口通流面积过小,造成吸油不畅:滤油器表面被污物阻塞:管道泄漏或回油管没有浸入油箱而造成大量空气进入油液中。 排除方法:(1)液压泵吸油管路联接处严格密封,防止进入空气。(2)合理设计油箱,回油管要以45度的斜切口面朝箱壁并靠近箱壁插入油中。流速不应应太高,防止回油冲入油箱时搅动液面而混入空气。油箱中要设置隔板。使油中气泡上浮后不会进入吸油管附近。 (3)油箱中油液要加到油标线所示的高度吸油管一定要浸入油箱的2/3深度处,液压泵的吸油口至液面的距离尽可能短,以减少吸油阻力。若油液粘度太高要更换低的油液。滤油器堵塞要及时清除污物。这样就能有效的防止过量的空气浸入。 (4)采用消泡性好的工作油液,或在油内加入消泡剂。 (四)、液压泵的噪声与控制 从液压泵的结构设计上下功夫。 (五)、排油管路和机械系统的振动 避免措施:(1)用软管连接泵与阀、管路。 (2)配置排油管时防止共振与驻波现象发生。 (3)配管的支撑应设在坚固定台架上。

液压卡紧的危害、原因及消除措施

工程建设机械液压卡紧的危害、原因及消除措施 ◇江苏徐州工程兵指挥学院工程装备教研室侯宪春马晓军 1 液压卡紧的危害 在工程建设机械的液压系统中,因毛刺和污物楔入液压元件滑动配合间隙,造成的卡阀现象,通常称为机械卡紧。 液体流过阀芯阀体的缝隙时,作用在阀芯上的径向力使阀芯卡住,称为液压卡紧,液压元件产生液压卡紧时,会导致下列危害。 1.轻度的液压卡紧,使液压元件内的相对移动(如阀芯、叶片、柱塞、活塞等)运动时的摩擦阻力增大,造成动作迟缓,甚至动作错乱的现象; 2.严重的液压卡紧,使液压元件内的相对移动件完全卡住,不能运动,造成不能动作(如换向阀不能换向,柱塞泵柱塞不能运动而不能实现吸油和压油等)的现象,使手柄的操作力增大。 2 产生液压卡紧现象的原因 1.阀芯外径、阀体(套)孔形位公差大,有锥度,且大端朝着高压区,或阀芯阀孔失圆,装配时二者又不同心,存在偏心距,这样压力油通过上缝隙与下缝隙产生的压力降曲线不重合,产生一向上的径向不平衡力(合力),使阀芯更加向上偏移。上移后,上缝隙更缩小,下缝隙更增大,向上的径向不平衡力随之增大,最后将阀芯顶死阀体孔上。 2.阀芯与阀孔因加工和装配误差,阀芯在阀孔内倾斜成一定角度,压力油经上下缝隙后,上缝隙不断增大,下缝隙不断减小,其压力降曲线也不同,压力差值产生偏心力和一个使阀芯阀体孔的轴线互不平衡的力矩,使阀芯在孔内更倾斜,最后阀芯卡死在阀孔内。 3.阀芯上面因碰伤有局部凸起或毛刺,产生一个使凸起部分压向阀套的力矩,将阀芯卡死在阀孔内。 4.为减少径向不平衡力,往往在阀芯上加工若干条环形均压槽。加工时环形槽与阀芯外圆若不同心,经热处理后再磨加工,可导致环形均压槽深浅不一,产生径向不平衡力而卡死阀心。 5.污物颗粒进入阀芯与阀孔配合间隙,使阀芯在阀孔内偏心放置,将产生径向不平衡力导致液压卡紧。 6.阀芯与阀孔配合间隙大,阀芯与阀孔台肩尖边与沉角槽的锐边毛刺倾倒的程度不一样,引起阀芯与阀孔轴线不同心,产生液压卡紧。 7.阀心与阀体孔配合间隙过小,污垢颗粒楔入间隙,装配扭斜别劲,温度变化引起变形,困油等也是卡阀现象产生的原因。 3 消除减少液压卡紧的方法和措施 1.提高阀芯和阀体孔的加工精度,提高其形状精度和位置精度。

液压系统主要故障分析

液压系统故障大致可以分为三类: 1、压力异常。一般液压管路设计时会预留很多的压力测量点,使用压力表测出该点的实际数值与正常 值进行比较分析,即可确定发生压力异常的液压元件。 2、速度异常。逐一调节节流阀、调速阀、变量泵等调速机构,对应测试执行原件的速度范围值,与设 计值比较分析即可确定发生速度异常的机构。 3、动作异常。切换每个换向阀,观察每个执行元件的动作状态是否正常,即可找出异常换向阀,再检 查动作顺序和行程控制,找出异常处。

液压系统的故障分析及判断方法 随着液压技术的广泛应用和发展, 液压系统中设备的可靠性运行显得尤为突出和重要, 它有效地改变运动方向, 易于载荷控制, 液压系统在使用过程中, 由于机械磨损以及使用保养不当或意外损坏等原因, 会发生各种故障。如何准确及时地判断故障发生的位置和分析故障产生的原因, 直接关系到设备使用。因此对液压系统故障分析和判断就更加重要,为了尽快找到故障原因, 采取措施, 及时排除故障,必须掌握诊断故障的基本要点和方法。 1 液压系统常见故障分析 1) 液压冲击。在液压系统中, 液体流动方向的迅速改变或停止运动, 在系统中形成一个很大的压力峰值, 这种现象叫做液压冲击。液压冲击不仅影响系统的稳定性和可靠性, 还会产生噪音和振动, 使液压系统产生温升, 联接件松动; 甚至破坏管路, 液压原件老化等问题。造成液压冲击的主要原因有: 节流缓冲装置失灵, 压力阀调整不当或发生故障, 系统中进入大量空气等。 2) 空穴和气蚀。在流动的液体中, 因流速变化引起压降而产生气泡的现象叫空穴。空穴和气蚀的出现会使液压系统工作性能恶化, 容积效率降低, 损坏机件, 降低液压原件的寿命, 引起液压冲击, 振动和噪声等。油液温度升高, 压力降低, 通道狭窄或急剧拐弯等都利于空穴和气蚀的产生。 3) 液压卡紧。液压系统中产生液压卡紧, 将加剧液压原件的磨损, 并降低元件的使用寿命, 在液压系统使用中产生卡紧现象主要原因是油液中有杂质, 当杂质进入配合间隙, 导致卡紧现象发生, 另外阀芯在高压下发生变形也是产生卡紧现象的原因。因此, 做好油液的日常管理和防护是避免卡紧现象的主要措施。 4) 温度升高。温度升高将油液迅速氧化, 并释放出难溶的酸、树脂及污泥等, 加速零件磨损和腐蚀, 同时油液因过热而使动作变得迟缓, 并增加泄漏的机会。造成系统过热的主要原因有: 工作时负荷过大, 超过额定功率, 容器内油面过高, 油液质量不符合标准等。 5) 执行器爬行。液压系统中出现爬行现象改变了执行原件的预定期望值, 直接影响运动动作输出,如液压支架影响支架的升降速度, 导致支架的支护质量和支护速度降低。造成执行原件产生爬行的主要原因有: 液压系统中进入空气导致油液刚度降低,液压元件磨损, 间隙增大, 配合工作面各处磨擦阻力不均等。 6) 液压系统振动和噪声。振动和噪声直接危害到人的情绪、健康和工作环境, 容易使人产生疲倦,造成安全事故, 产生振动和噪声的主要原因有空气的侵入, 零件的磨损造成间隙过大, 泵的工作频率与设备固有频率一致产生共振, 溢流阀不稳定, 换向阀调整不当, 零件松动。 7) 液压系统泄漏。相对于其他类型故障, 液压系统泄漏现象比较直观, 可以通过外观检查看到, 泄漏的产生造成油液损失, 环境污染, 引起设备磨损,产生泄漏的主要原因: 密封件损坏老化, 油液加注过多导致液面过高, 油液温度过高, 元件坏损, 配合间隙过大等。 2 基本要点 1) 熟悉液压系统的原理、结构及其内在联系。在进行液压系统的故障分析之前, 必须弄清楚整个液压系统的传动原理、结构特点, 然后根据故障现象进行判断, 液压系统主要由能源装置、执行装置、控制调节装置和辅助装置构成。 a) 能源装置主要是将机械能转换成油液的液压能的装置。给液压系统提供压力油。 b) 执行装置是根据工作的需要, 把油液液压能转换成机械能的装置。 c) 控制调节装置是控制液压系统中的油液压力, 流量和流动方向的装置。

工程建设机械液压卡紧的危害、原因及消除措施正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.工程建设机械液压卡紧的危害、原因及消除措施正 式版

工程建设机械液压卡紧的危害、原因 及消除措施正式版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 1 液压卡紧的危害 在工程建设机械的液压系统中,因毛刺和污物楔入液压元件滑动配合间隙,造成的卡阀现象,通常称为机械卡紧。 在工程建设机械的液压系统中,因毛刺和污物楔入液压元件滑动配合液体流过阀芯阀体的缝隙时,作用在阀芯上的径向力使阀芯卡住,称为液压卡紧,液压元件产生液压卡紧时,会导致下列危害。 1.轻度的液压卡紧,使液压元件内的相对移动(如阀芯、叶片、柱塞、活塞等)运动时的摩擦阻力增大,造成动作迟

缓,甚至动作错乱的现象; 2.严重的液压卡紧,使液压元件内的相对移动件完全卡住,不能运动,造成不能动作(如换向阀不能换向,柱塞泵柱塞不能运动而不能实现吸油和压油等)的现象,使手柄的操作力增大。 2 产生液压卡紧现象的原因 1.阀芯外径、阀体(套)孔形位公差大,有锥度,且大端朝着高压区,或阀芯阀孔失圆,装配时二者又不同心,存在偏心距,这样压力油通过上缝隙与下缝隙产生的压力降曲线不重合,产生一向上的径向不平衡力(合力),使阀芯更加向上偏移。上移后,上缝隙更缩小,下缝隙更增大,向上的径向不平衡力随之增大,最后

液压站常见故障

一、液压泵常见故障分析与排除方法 故障现象故障分析排除方法 不出油、输油 量不足、压力上不去1、电动机转向不对 2、吸油管或过滤器堵塞 3、轴向间隙或径向间隙过大 4、连接处泄漏,混入空气 5、油液粘度太大或油液温升太高1、检查电动机转向 2、疏通管道,清洗过滤器,换新油 3、检查更换有关零件 4、紧固各连接处螺钉,避免泄漏,严 防空气混入 5、正确选用油液,控制温升 噪音严重压力波动厉害1、吸油管及过滤器堵塞或过滤器容量小 2、吸油管密封处漏气或油液中有气泡 3、泵与联轴节不同心 4、油位低 5、油温低或粘度高 6、泵轴承损坏1、清洗过滤器使吸油管通畅,正确选 用过滤器 2、在连接部位或密封处加点油,如噪 音减小,拧紧接头或更换密封圈;回油管口应在油面以下,与吸油管要有一定距离 3、调整同心 4、加油液 5、把油液加热到适当的温度 6、检查(用手触感)泵轴承部分温升 泵轴颈油封漏油漏油管道液阻达大,使泵体内压力升高到超过油封许用的耐压值检查柱塞泵泵体上的泄油口是否用单独油管直接接通油箱。若发现把几台柱塞泵的泄漏油管并联在一根同直径的总管后再接通油箱,或者把柱塞泵的泄油管接到总回油管上,则应予改正。最好在泵泄漏油口接一个压力表,以检查泵体内的压力,其值应小于0.08MPa 二、液压缸常见故障分析及排除方法 故障现象故障分析排除方法 爬行1、空气侵入 2、液压缸端盖密封圈压得太紧或过松

3、活塞杆与活塞不同心 4、活塞杆全长或局部弯曲 5、液压缸的安装位置偏移 6、液压缸内孔直线性不良(鼓形锥度等) 7、缸内腐蚀、拉毛 8、双活塞杆两端螺冒拧得太紧,使其同心度不良1、增设排气装置;如无排气装置,可开动液压系统以最大行程使工作部件快速运动,强迫排除空气 2、调整密封圈,使它不紧不松,保证活塞杆能来回用手平稳地拉动而无泄漏(大多允许微量渗油) 3、校正二者同心度 4、校直活塞杆 5、检查液压缸与导轨的平行性并校正 6、镗磨修复,重配活塞 7、轻微者修去锈蚀和毛刺,严重者须镗磨 8、螺冒不宜拧得太紧,一般用手旋紧即可,以保持活塞杆处于自然状态 冲击1、靠间隙密封的活塞和液压缸间隙,节流阀失去节流作用 2、端头缓冲的单向阀失灵,缓冲不起作用1、按规定配活塞与液压缸的间隙,减少泄漏现象 2、修正研配单向阀与阀座 推力不足或工作速度逐渐下降甚至停止1、液压缸和活塞配合间隙太大或O型密封圈损坏,造成高低压腔互通 2、由于工作时经常用工作行程的某一段,造成液压缸孔径直线性不良(局部有腰鼓形),致使液压缸两端高低压油互通 3、缸端油封压得太紧或活塞杆弯曲,使摩擦力或阻力增加 4、泄漏过多 5、油温太高,粘度减小,靠间隙密封或密封质量差的油缸行速变慢。若液压缸两端高低压油腔互通,运行速度逐渐减慢直至停止1、单配活塞或液压缸的间隙或更换O型密封圈 2、镗磨修复液压缸孔径,单配活塞 3、放松油封,以不漏油为限校直活塞杆 4、寻找泄漏部位,紧固各接全面 5、分析发热原因,设法散热降温,如密封间隙过大则单配活塞或增装密封杆 三、溢流阀的故障分析及排除 故障现象故障分析排除方法 压力波动1、弹簧弯曲或太软 2、锥阀与阀座接触不良 3、钢球与阀座密合不良

液压系统失效原因及故障分析

液压系统失效原因及故障分析 张学平 (淮北矿业集团公司铁运处,淮北 235025) 液压传动系统有许多独特优点,已广泛应用于实现各种机械的复杂运动和控制,但如液压系统设计或使用不当,经常会出现各种故障和控制失效。现对液压系统失效及故障原因做简要分析。 1 液压系统失效原因 1.1 流体污染 流体污染是液压系统失效的主要根源。据统计,液压系统故障约70%是由流体污染引起的,污染的主要原因有: (1)油液中进入空气。因管接头、液压泵控制元件、执行元件等密封不好,油箱中有气泡或油质质量差(消泡性能不好)等原因引起的。 (2)油液中混入水份,会使油液变成乳白色。一般是由潮湿空气进入油箱或冷却水泄漏引起的。 (3)固体杂质的混入,会严重影响液压系统的工作性能,降低元件的使用寿命。 流体污染会加快液压元件磨损,导致其性能下降,为了减少因流体污染造成的故障和失效,必须使流体污染度控制在关键元件污染耐受范围内。 1.2 泄漏。泄漏是液压系统普遍存在的问题。主要由于密封件的磨损、损坏,管件的松动而引起的,对液压系统危害较大。外泄漏发生在液压元件结合面、管接头等处;内泄漏发生在液压元件内部运动副间隙处。过量的泄漏会使泵的容积效率降低,液压缸“爬行”,马达转速降低等。合理选择密封结构和密封材料是保证流体稳定的重要因素。控制流体温升、污染和过大的振动,可有效减少流体泄漏。 1.3 流体化学性能发生变化。为了改进流体的性能,以满足液压系统的工作要求,在工作液体中加有各种化学添加剂。但在工作过程中,由于受高压及不良环境的影响,流体的化学性能会逐渐发生变经,使流体氧化性和污染程度加剧。因此,保持流体化学稳定性是保证液压系统工作可靠和延长元件使用寿命的重要条件。 1.4 流体物理性能发生变化。流体与液压系统工作有关的物理性能主要有粘度、粘度指数、剪切强度、体积强度模量、吸气性和含水量等。其变化超过允许范围会对液压系统和元件造成危害,因此,对流体物理性能稳定性应定期检测。1.5 液压系统过热。液压系统工作温度有一定范围,温度过高或过低都会对液体物理及化学性能产生较大影响,且影响密封材料及元器件的性能,使泄漏增大,元件运动受阻或卡死。 2 液压系统故障分析原则 液压传动系统每一元件的工况互相作用、互相影响,其故障大多是综合障碍。不同元件的失调或损坏都可能导致同一故障现象的产生,某一元件的失调或损坏会导致其他元件的失调或损坏。因此,对液压系统故障原因必须仔细检查和分析,其原则是; (1)认定故障现象、部位、罗列可能造成故障的因素; (2)检查与故障有关的各元件,顺着油路逐一顺序排除故障因素。 3 液压系统原理图分析法 液压系统故障原因分析方法很多,但最基本的方法是液压系统原理图分析法。分析时应做到以下几点。 (1)认识液压系统结构,掌握液压系统工作原理和性能要求。仔细分析液压系统回路组成、工作方法、循环压力变化、循环速度、功率利用情况等,是排除液压系统故障的基础。 (2)认清每个液压元件的结构、性能和调节方法。确认每个元件的功能和对液压的适应性,以及元件本身的结构、原理和质量指标。对油液品质,清洁度也应认真了解。 (3)明确液压、机械和电器三者的联锁关系和动作顺序,掌握其内在联系。 (4)评价液压系统。评价液压系统设计的合理性,寻找液压系统的设计缺陷,如温升、噪声、压力、冲击等问题,是否考虑到并采取措施,从而找出系统故障。 4 预防维护措施 从以上分析可以看出,液压系统的主要故障为流体污染。因此,日常保养及检修应采取以下措施,控制污染。 (1)确定达到预期寿命和工作可靠性所需的目标清洁度。 (下转53页) 45化工建设工程 2003年第25卷第6期

液压系统的故障诊断常用方法

一、液压系统的故障诊断常用方法 1、经验诊断法现场诊断要求维修人员有一定的液压传动知识和实践经验。在对一种新机型作故障诊断前,要认真阅读随机的使用维护说明书,以对该机液压系统有一个基本的认识。通过阅读技术资料,掌握其系统的主要参数;熟悉系统的原理图,掌握系统中各元件符号的职能和相互关系,分析每个支回路的功用;对每个液压元件的结构和工作原理也应有所了解;分析导致某一故障的可能原因;对照机器了解每个液压元件所在的部位,以及它们之间的连接方式。具体诊断故障时,应遵循“有外到内,先易后难”的顺序,对导致某一故障的可能原因逐一进行排查。现场诊断液压系统故障的主要方法还是经验诊断法。即为,维修人员利用已掌握的理论知识和积累的经验,结合本机实际,运用“问、看、听、摸、试”手段,快速的诊断出故障所在部位和原因的一种方法。具体为: (1)、问“问”就是向操作手询问故障机器的基本情况。主要了解机器有哪些异常现象;故障是突发的还是渐发的;使用中是否存在违规操作,维修保养情况;液压油牌号是否正确及更换的情况;故障发生的时机,即是在工作开始时还是在作业一段时间后才出现的,等等。获得这些信息后,即可基本确定该液压系统所出现故障的特点。一般来说,突发性故障,大多是因液压油过脏或弹簧折断造成阀封闭不严引起的;渐发性故障,则多数是因元件磨损严重或橡胶密封、管件老化而出现的。吸油管松动或油箱油面太低等。 (2)、看“看”就是通过眼睛查看液压系统的工作情况。如油箱内的油量是否符合要求,有无气泡和变色现象(机器的噪声、振动和爬行等常与油液中大量气泡有关);密封部位和管街头等处的漏油情况;压力表和油温表在工作中指示值的变化;故障部位有无损伤、连接渐脱落和固定件松动的现象。当出现液压油外漏的故障时,在排除禁固螺栓扭力不足或不均匀后,在更换可能已严重磨损或损坏的油封前,还应检查其压力是否超限。安装油封时,应检验油封型号和质量,并做到准确装配。(3)、听“听”就是用耳朵检查液压系统有无异常响声。正常的机器运转声响有一定的节奏和音律,并保持稳定。因此,熟悉和掌握这些规律,并保持稳定。因此,熟悉和掌握这些规律,就能准确地诊断出液压系统是否工作正常;同时,根据节奏和音律的变化情况,以及不正常声音产生的部件,就可确定故障发生的部件,就可确定故障发生的部位和损伤程度。如高音刺耳的啸叫声,通常是吸进了空气;液压泵的“喳喳”或“咯咯”声,往往是泵轴或轴承损坏;换向阀发出“哧哧”的声音,是阀杆开度不足;粗沉的“嗒嗒”声,可能是过载阀过载的声音。若是气蚀声,则可能是滤油器被污物堵塞、液压泵吸油管松动或油箱油面太低等。 (4)、摸“摸”就是利用灵敏的手指触觉,检查压系统的管路或元件是否发生振动、冲击和油液温升异常等故障。如用手触摸泵壳或液压件,跟据冷热程度就可判断出液压系统是否有异常温升,并判明温升原因及部位。若泵壳过热,则说明泵内泄严重或吸进了空气。若感觉振动异常,可能是回转部件安装平衡不好、紧固螺钉松动或系统内有气体等故障。 (5)、试“试”就是操作一下机器液压系统的执行元件,从其工作情况判定故障的部位和原因。 a、全面试。根据液压系统的设计功能,逐个做实验,以确定故障是在局部区域还是在全区域。如全机动作失灵或无力,则应首先检查先导操纵压力是否正常,离合器(连轴器)是否打滑(松脱),发动机动力是否足够,液压油油量是否充足和液压泵进口的密封情况。如一台挖掘机地故障症状仅表现为动臂自动下降,则故障原因可能在换向阀、过载阀或液压缸的油路之中,与液压泵及主安全阀无关。 b、交换试。当液压系统中仅出现某一回路或某一功能丧失时,可与相同(或相关)功能的油路交换,以进一步确定故障部位。如挖掘机有两个互相独立的工作回路,每一个回路都有自己的一些元件,当一个回路发生故障时,可通过交换高压油管使另一泵于这个回路接通,若故障还在一侧,则说明故障不在泵上,应检查该回路的其它元件;否则,说明故障在泵上。 c、更换试。利用技术状态良好的元件替换怀疑有故障的元件,通过比较更换元件前、后所反映的现象,确认元件是否有故障。 d、调整试。对系统的溢流阀或换向阀作调整,比较其调整前、后机器工况的变化来诊断故障。当对液压系统的压力作调整时,若其压力(压力表指示表)达不到规定值或上升后又降了下来,则表示系统内漏严重。

相关主题
文本预览
相关文档 最新文档