∠ ABC = ∠ADC=∠ AEC
课堂练习
1.如图,⊙O是 ABC的外接圆,连接OA,OB,
∠ OBA=50°,求∠C的度数.
解:∵OA=OB
∴∠ OBA=∠ OAB=50° ∴∠ AOB=80°
由圆周角定理可知:
∠ C= 12∠AOB=40°
C O
A
B
课堂练习
2.试找出下图中所有相等的圆周角。
所对的圆心角的一半.
D
A
C
O·
E
B
小试牛刀
1.如图,在⊙O中,∠BOC=60°, 求∠A、∠D的度数.
A
D
O
解:由圆周角定理可知:
∠A=
12∠BOC=
1 2
×60°=
30°
∠D= 12∠BOC= 12×60°= 30°
B
C
发现:同弧所对的圆周角相等
小试牛刀
2.如图,若 CD=EF ,∠A与∠B相等吗?
练一练:下列各图中的∠BAC是否为圆周角并简
述理由.
B O·
B
C
A
O·
A
A
C O·
√ C (1) A
顶点(不2)在圆上 B
B 边(AC3没)有和圆相交
O·
A O·
CC
·O
B
C
顶点(不4在)圆上
√ (5)
A B
√ (6)
探索新知
探究2:在⊙O上任取一条BC,画出BC所对的一 个圆周角∠BAC和圆心角∠BOC,用量角器测量
他所处的位置B对球门AC的张角∠ABC有关).
A
A
E B
C D
E
AC所对的角ห้องสมุดไป่ตู้ ABC 、∠ADC、