1
= 2∠AOD,∠CBD
= 1∠COD,
2
∴ ∠ABC = 1∠AOC.
2
A C
●O B
一条弧所对的圆周角等于它所对的圆心角的一
半.
活动三:学以致用
1. 如图1,在圆O中, ∠BOC=50°,则∠BAC = 25°;
2.变式1:如图2,已知∠BCD=120°,则∠AOB= 120; °
3.变式2:如图3,已知圆心角∠AOB=100°,则
⌒ BC所对圆周角是∠ BAC , 圆心角
是∠BOC,
则∠
BAC=
1 2
∠BOC
O
A
C
B
例1.如图:OA、OB、OC都是⊙ O的半径
∠AOB=2∠BOC. ∠ACB=40°,求∠BAC的度数.
证明:∵
∠ACB=
1 2
∠AOB=40
°
∴ ∠AOB= 80 °
∵ ∠AOB=2∠BOC
O
∴ ∠BOC=40 °
特征:① 角的顶点在圆上.
② 角的两边都和圆相交 (即两边是圆的两条弦)
判别下列各图形中的角是不是圆周角。
×
√
×
√
×
×
×
当球员在B,D,E处射门时, 他所处的位置对球门AC 分别形成三个张角∠ABC, ∠ADC,∠AEC.这三个角 的大小有什么关系?.
A C
●O
B
E
D
圆周角: ∠ABC,
∠ADC, ∠AEC.
新人教版九年级上册数学
24.1.4圆周角(第1课时)
问题:请同学们想一想,球员射中球门的难易 与什么有关?
总结:如图所示,球员射中球门的难易与他所在的位置B对球门