北师大版高中数学必修5第一篇数列数列的应用
- 格式:ppt
- 大小:468.00 KB
- 文档页数:28
§2 等差数列2.1 等差数列第1课时等差数列的概念及其通项公式学习目标核心素养1.理解等差数列的概念.(难点)2.掌握等差数列的判定方法.(重点) 3.会求等差数列的通项公式及利用通项公式求特定的项.(重点、难点) 1.通过等差数列概念的学习培养学生的数学抽象素养.2.借助于等差数列的通项公式提升学生的数学运算素养.1.等差数列的概念阅读教材P10~P11例1以上部分,完成下列问题.文字语言从第2项起,每一项与它前一项的差等于同一个常数,这样的数列就叫作等差数列.这个常数称为等差数列的公差,通常用字母d 表示符号语言若a n-a n-1=d(n≥2),则数列{a n}为等差数列思考:(1)数列{a n}的各项为:n,2n,3n,4n,…,数列{a n}是等差数列吗?[提示] 不是,该数每一项与其前一项的差都是n,不是常数,所以不是等差数列.(2)若一个数列从第二项起每一项与它前一项的差都是常数,这个数列一定是等差数列吗?[提示] 不一定,当一个数列从第二项起每一项与它前一项的差都是同一个常数时,这个数列才是等差数列.如数列:1,2,3,5,7,9,就不是等差数列.2.等差数列的通项公式如果等差数列{a n}的首项为a1,公差为d,那么它的通项公式为a n=a1+(n-1)d.思考:(1)若已知等差数列{a n}的首项a1和第二项a2,可以求其通项公式吗?[提示] 可以,可利用a2-a1=d求出d,即可求出通项公式.(2)等差数列的通项公式一定是n的一次函数吗?[提示] 不一定,当公差为0时,等差数列的通项公式不是n的一次函数,而是常数函数.3.等差数列通项公式的推导如果等差数列{a n}的首项是a1,公差是d,根据等差数列的定义得到a2-a1=d,a3-a2=d,a4-a3=d,…所以a2=a1+d,a 3=a 2+d =a 1+d +d =a 1+2d, a 4=a 3+d =a 1+2d +d =a 1+3d, ……由此归纳出等差数列的通项公式为a n =a 1+(n -1)d .1.等差数列{a n }中a 1=2,公差d =3,则a n =( ) A .2n +1 B .3n +1 C .2n -1D .3n -1D [a n =a 1+(n -1)d =2+3(n -1)=3n -1.] 2.在等差数列{a n }中,a 1=0,a 3=4,则公差d =( ) A .4 B .2 C .-4D .-2B [a 3-a 1=4-0=2d,故d =2.]3.等差数列32,-12,-52,…的第10项为( )A .-372B .-332C .372D .332B [由a 1=32,d =-12-32=-2,得a n =32+(n -1)(-2)=-2n +72.所以a 10=-2×10+72=-332.]4.已知等差数列{a n }中,d =-13,a 7=8,则a 1=________.10 [由a 7=a 1+6d =8且d =-13代入解得a 1=8-6d =8+2=10.]等差数列的判定【例1(1)a n =3-2n ;(2)a n =n 2-n.[解] (1)因为a n +1-a n =[3-2(n +1)]-(3-2n)=-2,是常数,所以数列{a n }是等差数列.(2)因为a n +1-a n =[(n +1)2-(n +1)]-(n 2-n)=2n,不是常数,所以数列{a n }不是等差数列.等差数列的判断方法——定义法等差数列的定义是判断一个数列是否为等差数列的重要依据,要证明一个数列是等差数列,可用a n +1-a n =d(常数)或a n -a n -1=d(d 为常数且n≥2).但若要说明一个数列不是等差数列,则只需举出一个反例即可.[提醒] 当d >0时,等差数列{a n }是递增数列; 当d <0时,等差数列{a n }是递减数列; 当d =0时,等差数列{a n }是常数列.1.若数列{a n }满足a n +1=a n2a n +1,a 1=1,求证:数列⎩⎨⎧⎭⎬⎫1a n 是等差数列.[证明] 由a n +1=a n 2a n +1得1a n +1=2a n +1a n =2+1a n ,即1a n +1-1a n =2,所以数列⎩⎨⎧⎭⎬⎫1a n 是首项为1,公差为2的等差数列.等差数列的通项公式及应用【例2】 (1)求等差数列8,5,2,…的第20项;(2)在等差数列{a n }中,已知a 6=12,a 18=36,求通项公式a n . [解] (1)由a 1=8,a 2=5,得d =a 2-a 1=5-8=-3, 故a n =8-3(n -1)=11-3n, 则a 20=11-3×20=-49.(2)由题意可得⎩⎪⎨⎪⎧a 1+5d =12,a 1+17d =36,解得d =2,a 1=2,故a n =2n.等差数列通项公式的四个应用(1)已知a n ,a 1,n,d 中的任意三个量,可以求出第四个量.(2)由等差数列的通项公式可以求出该数列中的任意项,也可以判断某一个数是不是该数列中的项. (3)根据等差数列的两个已知条件建立关于“基本量”a 1和d 的方程组,求出a 1和d,从而确定通项公式,求出待求项.(4)若数列{a n }的通项公式是关于n 的一次函数或常数函数,则可判断数列{a n }是等差数列.2.(1)等差数列{a n }中,a 2=4,公差d =3,a n =22,求n ;(2)判断-401是不是等差数列-5,-9,-13,…的项,如果是,是第几项?[解] (1)由条件知⎩⎪⎨⎪⎧a 1+3=4,a 1+3(n -1)=22,解得a 1=1,n =8;(2)由a 1=-5,d =-9-(-5)=-4,得这个数列的通项公式为a n =-5+(n -1)×(-4)=-4n -1. 由题意,令-401=-4n -1,得n =100, 即-401是这个数列的第100项.等差数列的实际应用[1.一种游戏软件的租金,第一天5元,以后每一天比前一天多1元,那么第n(n≥2)天的租金怎样表示?每天的租金数有什么特点?[提示] 每天的租金构成以5为首项,以1为公差的等差数列,a n =5+(n -1)×1=n +4(n≥2). 2.直角三角形三边长成等差数列,你能求出三边的比吗?[提示] 设直角三角形的三边长分别为a,a +d,a +2d(a >0,d >0),则(a +2d)2=a 2+(a +d)2,即a 2-2ad -3d 2=0,解得a =3d,则三边长分别为3d,4d,5d, 故三边长的比为3∶4∶5.【例3】 某市出租车的计价标准为1.2 元/km,起步价为10元,即最初的4 km(不含4 km)计费10元,如果某人乘坐该市的出租车去往14 km 处的目的地,且一路畅通,等候时间为0,那么需要支付多少车费?思路探究:某人需支付的车费构成等差数列,运用等差数列的知识去解决.[解] 根据题意,当该市出租车的行程大于或等于4 km 时,每增加1 km,乘客需要支付1.2元.所以,可以建立一个等差数列{a n }来计算车费. 令a 1=11.2,表示4 km 处的车费,公差d =1.2, 那么当出租车行至14 km 处时,n =11,此时需要支付车费a 11=11.2+(11-1)×1.2=23.2(元).即需要支付车费23.2元.1.(变条件)在例3中,若某人乘坐该市的出租车去往18.5 km(不足1 km,按1 km 计费),且一路畅通,等候时间为0,那么,需支付多少车费?[解] 由题意知,当出租车行至18.5 km 处时,n =16,此时需支付车费a 16=11.2+(16-1)×1.2=29.2(元).2.(变结论)在例3中,若某人乘坐该市的出租车去往n km(n ∈ N +)处的目的地,求其需支付的车费a n .[解] 当n ∈{1,2,3}时,a n =10,当n ∈N +,且n≥4时,a n =11.2+(n -4)×1.2=1.2n +6.4.所以a n =⎩⎪⎨⎪⎧10,n ∈{1,2,3},1.2n +6.4,n≥4且n ∈N +.应用等差数列解决实际问题的步骤(1)审题,读懂题意,把握已知条件与求解问题. (2)将实际问题抽象为等差数列模型. (3)利用等差数列解决问题.(4)验证答案是否符合实际问题的意义.1.等差数列的通项公式为a n =a 1+(n -1)d,已知a 1,n,d,a n 这四个量中的三个,可以求得另一个量. 2.等差数列的判定关键是看a n +1-a n (或a n -a n -1(n≥2))是否为一个与n 无关的常数. 3.对于通项公式的理解.a n =a 1+(n -1)d ⇒a n =nd +(a 1-d),所以,当d≠0时,a n 是关于n 的一次函数,一次项系数就是等差数列的公差,当d =0时,等差数列{a n }为常数列:a 1,a 1,a 1,…,a 1,…1.判断正误(正确的打“√”,错误的打“×”) (1)常数列是等差数列.( )(2)-1,-2,-3,-4,-5不是等差数列.( ) (3)若数列{a n }是等差数列,则其公差d =a 7-a 8.( ) [答案] (1)√ (2)× (3)×[提示] (1)正确,(2)不正确,数列-1,-2,-3,-4,-5是公差为-1的等差数列;(3)不正确,公差d =a 8-a 7.2.下列数列是等差数列的是( ) A .13,15,17,19 B .1,3,5,7 C .1,-1,1,-1D .0,0,0,0D [由等差数列的定义知:0,0,0,0是等差数列,选D .] 3.在等差数列{a n }中,a 2=4,a 8=a 6+3,则a 1=________.52 [由已知得⎩⎪⎨⎪⎧a 1+d =4,a 1+7d =a 1+5d +3,解得a 1=52.]4.在等差数列{a n }中,a 5=10,a 12=31,求a 20,a n . [解] 由a 5=10,a 12=31, 得7d =a 12-a 5=21,所以d =3,a 1=a 5-4d =10-4×3=-2. 所以a 20=a 1+19d =-2+19×3=55,a n =a 1+(n -1)d =-2+3(n -1)=3n -5(n ∈N +).。
§4数列在日常经济生活中的应用知识点一零存整取模型[填一填](1)单利:单利的计算是仅在原有本金上计算利息,对本金所产生的利息不再计算利息,其公式为利息=本金×利率×存期.若以P代表本金,n代表存期,r代表利率,S代表本金和利息和(以下简称本利和),则有S=P(1+nr).(2)复利:把上期末的本利和作为下一期的本金,在计算时每一期本金的数额是不同的.复利的计算公式是S=P(1+r)n.[答一答]1.简单总结一下本节课中几种模型的规律方法.提示:(1)银行存款中的单利是等差数列模型,本息和公式为S=P(1+nr).(2)银行存款中的复利是等比数列模型,本利和公式为S=P(1+r)n.(3)产值模型:原来产值的基础数为N,平均增长率为P,对于时间x的总产值y=N(1+P)x.(4)分期付款模型:a为贷款总额,r为年利率,b为等额还款数,则b=r(1+r)n a (1+r)n-1.知识点二数列知识的实际应用及解决问题的步骤[填一填](1)数列知识有着广泛的应用,特别是等差数列和等比数列.例如银行中的利息计算,计算单利时用等差数列,计算复利时用等比数列,分期付款要综合运用等差、等比数列的知识.(2)解决数列应用题的基本步骤为:①仔细阅读题目,认真审题,将实际问题转化为数列模型;②挖掘题目的条件,分析该数列是等差数列,还是等比数列,分清所求的是项的问题,还是求和问题;③检验结果,写出答案.[答一答]2.数列应用题中常见模型是哪些? 提示:等差模型和等比模型.1.数列实际应用题的解题策略解等差、等比数列应用题时,首先要认真审题,深刻理解问题的实际背景,理清蕴含在语言中的数学关系,把应用问题抽象为数学中的等差、等比数列问题,然后求解.2.处理分期付款问题的注意事项(1)准确计算出在贷款全部付清时,各期所付款额及利息(注:最后一次付款没有利息). (2)明确各期所付的款以及各期所付款到最后一次付款时所产生的利息之和等于商品售价及从购买到最后一次付款时的利息之和,只有掌握了这一点,才可以顺利建立等量关系.类型一 单利计算问题【例1】 有一种零存整取的储蓄项目,它是每月某日存入一笔相同的金额,这是零存;到约定日期,可以提出全部本金及利息,这是整取.它的本利和公式如下:本利和=每期存入金额×⎣⎡⎦⎤存期+12存期×(存期+1)×利率. (1)试解释这个本利和公式;(2)若每月初存入100元,月利率5.1‰,到第12个月底的本利和是多少?(3)若每月初存入一笔金额,月利率是5.1‰,希望到第12个月底取得本利和2 000元,那么每月应存入多少金额?【思路探究】 存款储蓄是单利计息,若存入金额为A ,月利率为P ,则n 个月后的利息是nAP .【解】 (1)设每期存入金额A ,每期利率P ,存入期数为n ,则各期利息之和为 AP +2AP +3AP +…+nAP =12n (n +1)AP .连同本金,就得:本利和=nA +12n (n +1)AP =A ⎣⎡⎦⎤n +12n (n +1)P . (2)当A =100,P =5.1‰,n =12时,本利和=100×⎝⎛⎭⎫12+12×12×13×5.1‰=1 239.78(元). (3)将(1)中公式变形得 A =本利和n +12n (n +1)P= 2 00012+12×12×13×5.1‰≈161.32(元).即每月应存入161.32元.规律方法 单利的计算问题,是等差数列模型的应用.王先生为今年上高中的女儿办理了“教育储蓄”,已知当年“教育储蓄”存款的月利率是2.7‰.(1)欲在3年后一次支取本息合计2万元,王先生每月大约存入多少元?(2)若教育储蓄存款总额不超过2万元,零存整取3年期教育储蓄每月至多存入多少元?此时3年后本息合计约为多少元?(精确到1元)解:(1)设王先生每月存入A 元,则有A (1+2.7‰)+A (1+2×2.7‰)+…+A (1+36×2.7‰)=20 000,利用等差数列前n 项和公式,得A ⎝⎛⎭⎫36+36×2.7‰+36×352×2.7‰=20 000,解得A ≈529元.(2)由于教育储蓄的存款总额不超过2万元,所以3年期教育储蓄每月至多存入20 00036≈555(元),这样,3年后的本息和为:555(1+2.7‰)+555(1+2×2.7‰)+…+555(1+36×2.7‰)=555⎝⎛⎭⎫36+36×2.7‰+36×352×2.7‰≈20 978(元).类型二 关于复利模型问题【例2】 小张为实现“去上海,看世博”的梦想,于2005年起,每年2月1日到银行新存入a 元(一年定期),若年利率r 保持不变,且每年到期存款自动转为新的一年定期,到2010年2月1日,将所有存款及利息全部取回,试求他可以得到的总钱数.【思路探究】 由题意知,本题为定期自动转存问题,应为等比数列前n 项和的模型. 【解】 依题意每一年的本息和构成数列{a n },则2005年2月1日存入的a 元钱到2006年1月31日所得本息和为a 1=a (1+r ).同理,到2007年1月31日所得本息和为 a 2=[a (1+r )+a ](1+r )=a (1+r )2+a (1+r ), 到2008年1月31日所得本息和为[a (1+r )2+a (1+r )+a ](1+r )=a (1+r )3+a (1+r )2+a (1+r ), 到2009年1月31日所得本息和为[a (1+r )3+a (1+r )2+a (1+r )+a ](1+r )=a (1+r )4+a (1+r )3+a (1+r )2+a (1+r ), 到2010年1月31日所得本息和为[a (1+r )4+a (1+r )3+a (1+r )2+a (1+r )+a ](1+r )=a (1+r )5+a (1+r )4+a (1+r )3+a (1+r )2+a (1+r ),所以2010年2月1日他可取回的钱数为a (1+r )5+a (1+r )4+a (1+r )3+a (1+r )2+a (1+r )=a ·(1+r )[1-(1+r )5]1-(1+r )=ar [(1+r )6-(1+r )](元).规律方法 本例主要考查阅读理解能力,这里关键是每年2月1日又新存入a 元,因此每年到期时所得钱的本息和组成一个等比数列前n 项和模型.某牛奶厂2013年初有资金1 000万元,由于引进了先进生产设备,资金年平均增长率可达到50%.每年年底扣除下一年的消费基金后,余下的资金投入再生产.这家牛奶厂每年应扣除多少消费基金,才能实现经过5年资金达到2 000万元的目标?解:设这家牛奶厂每年应扣除x 万元消费基金. 2013年底剩余资金是1 000(1+50%)-x ;2014年底剩余资金是[1 000(1+50%)-x ]·(1+50%)-x =1 000(1+50%)2-(1+50%)x -x ;……5年后达到资金1 000(1+50%)5-(1+50%)4x -(1+50%)3x -(1+50%)2x -(1+50%)x =2 000, 解得x =459(万元). 类型三 分期付款模型【例3】 用分期付款的方式购买一件家用电器,其价格为1 150元.购买当天先付150元,以后每月这一天都交付50元,并加付欠款的利息,月利率为1%,分20次付完.若交付150元以后的第1个月开始算分期付款的第1个月,问:分期付款的第10个月需交付多少钱?全部贷款付清后,买这件家电实际花了多少钱?【思路探究】 构建等差数列模型,利用等差数列的前n 项和公式求解.【解】 购买时付款150元,欠1 000元,以后每月付款50元,分20次付清.设每月付款数顺次构成数列{a n },则a 1=50+1 000×1%=60,a 2=50+(1 000-50)×1%=59.5=60-0.5×1, a 3=50+(1 000-50×2)×1%=59=60-0.5×2, ……a 10=50+(1 000-50×9)×1%=55.5=60-0.5×9, 则a n =60-0.5(n -1)=-0.5n +60.5(1≤n ≤20). 所以数列{a n }是以60为首项,-0.5为公差的等差数列,所以付款总数为S 20+150=20×60+20×192×(-0.5)+150=1 255(元).所以第10个月需交55.5元,全部付清实际花了1 255元.规律方法 解题时务必要注意第一次付款的利息是1 000元欠款的利息,而不是950元的利息,而最后一次付款的利息是50元欠款的利息.某人在2015年年初向银行申请个人住房公积金贷款20万元购买住房,月利率为3.375‰,按复利计算,每月等额还贷一次,并从贷款后的次月初开始还贷.如果10年还清,那么每月应还贷多少元?(参考数据:1.003 375120≈1.498 28)解:方法一:由题意知借款总额a =200 000(元),还款次数n =12×10=120, 还款期限m =10(年)=120(个月), 月利率r =3.375‰ .代入公式得,每月还款数额为: 200 000×0.003 375×(1+0.003 375)120(1+0.003 375)120-1≈2 029.66.故如果10年还清,每月应还贷约2 029.66元.方法二:设每月应还贷x 元,共付款12×10=120(次),则有x [1+(1+0.003 375)+(1+0.003 375)2+…+(1+0.003 375)119]=200 000×(1+0.003 375)120,解方程得x ≈2 029.66.故每月应还贷约2 029.66元. 类型四 增长率问题【例4】 从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游业.根据规划,本年度投入800万元,以后每年投入将比上年减少15,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加14.(1)设n 年内(本年度为第一年)总投入为a n 万元,旅游业总收入为b n 万元,写出a n ,b n 的表达式;(2)至少经过几年旅游业的总收入才能超过总投入?【思路探究】 (1)由题设知各年的投入费用及旅游业收入分别构成等比数列,利用等比数列的前n 项和公式易得a n 与b n ;(2)建立a n 与b n 的不等关系,解不等式即得.【解】 (1)第一年投入为800万元,第二年投入为800⎝⎛⎭⎫1-15万元,…,第n 年投入为800⎝⎛⎭⎫1-15n -1万元,各年投入依次构成以800为首项,1-15=45为公比的等比数列,所以n 年内的总投入为a n =800⎣⎡⎦⎤1-⎝⎛⎭⎫45n 1-45=4 000-4 000·⎝⎛⎭⎫45n . 第一年旅游业收入为400万元,第二年旅游业收入为400⎝⎛⎭⎫1+14万元,…,第n 年旅游业收入为400⎝⎛⎭⎫1+14n -1万元,各年旅游业收入依次构成以400为首项,1+14=54为公比的等比数列,所以n 年内的旅游业总收入为b n =400⎣⎡⎦⎤1-⎝⎛⎭⎫54n 1-54=1 600⎝⎛⎭⎫54n -1 600. (2)设经过n 年旅游业的总收入才能超过总投入,则b n -a n >0,即1 600⎝⎛⎭⎫54n-1 600-4 000+4 000⎝⎛⎭⎫45n>0,化简得2⎝⎛⎭⎫54n +5⎝⎛⎭⎫45n-7>0.设⎝⎛⎭⎫45n=x ,代入上式得5x 2-7x +2>0,根据二次函数y =5x 2-7x +2的图像解此不等式, 得x <25或x >1(舍去),即⎝⎛⎭⎫45n <25,由此得n ≥5.故至少经过5年旅游业的总收入才能超过总投入.规律方法 当问题中涉及的各量依次以相同的倍数变化时,则考虑构建等比数列模型.其解题步骤为:(1)由题意构建等比数列模型(有时需要从特殊情况入手,归纳总结出一般规律,进而构建等比数列模型);(2)确定其首项a 1与公比q ,分清是求第n 项a n ,还是求前n 项和S n ; (3)利用等比数列的通项公式及前n 项和公式求解; (4)经过检验得出实际问题的答案.某商场出售甲、乙两种不同价格的笔记本电脑,其中甲商品因供不应求,连续两次提价10%,而乙商品由于外观过时而滞销,只得连续两次降价10%,最后甲、乙两种电脑均以9 801元售出.若商场同时售出甲、乙电脑各一台,与价格不升不降比较,商场赢利情况是少赚598元.解析:设甲原价是m 元,则m (1+10%)2=9 801⇒m =9 8011.21,设乙原价是n 元,则n (1-10%)2=9 801⇒n =9 8010.81.(m +n )-2×9 801=9 801×⎝⎛⎭⎫11.21+10.81-19 602=9 801× 2.021.21×0.81-19 602=20 200-19 602=598.——多维探究系列——数列中的探索性问题探索性问题是一种具有开放性和发散性的问题,此类题目的条件或结论不完备,要求考生自己去探索,结合已知条件,进行观察、分析、比较和概括.它对考生的数学思想、数学意识及综合运用数学方法解决问题的能力提出了较高的要求.这类问题不仅考查考生的探索能力,而且给考生提供了创新思维的空间,所以备受高考的青睐,是高考重点考查的内容.探索性问题一般可以分为:条件探索性问题、规律探索性问题、结论探索性问题、存在探索性问题等.【例5】 已知S n 是等比数列{a n }的前n 项和,S 4,S 2,S 3成等差数列,且a 2+a 3+a 4=-18. (1)求数列{a n }的通项公式;(2)是否存在正整数n ,使得S n ≥2 013?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.【思路分析】 (1)根据已知条件得出关于a 1,q 的方程组,求解即可;(2)只需表示出前n 项和,解指数不等式.【规范解答】 (1)设等比数列{a n }的公比为q ,则a 1≠0,q ≠0.由题意得⎩⎪⎨⎪⎧ S 2-S 4=S 3-S 2,a 2+a 3+a 4=-18,即⎩⎪⎨⎪⎧-a 1q 2-a 1q 3=a 1q 2,a 1q (1+q +q 2)=-18,解得⎩⎪⎨⎪⎧a 1=3,q =-2.故数列{a n }的通项公式为a n =3×(-2)n -1. (2)由(1)有S n =3[1-(-2)n ]1-(-2)=1-(-2)n .若存在n ,使得S n ≥2 013,则1-(-2)n ≥2 013, 即(-2)n ≤-2 012.当n 为偶数时,(-2)n >0,上式不成立;当n 为奇数时,(-2)n =-2n ≤-2 012,即2n ≥2 012,则n ≥11.综上,存在符合条件的正整数n ,且n 的集合为{n |n =2k +1,k ∈N ,k ≥5}.【名师点评】 求解此类题需要同学们熟练运用公式和相关概念来构建方程(组),进而求得数列的通项.本例题的难点在于对不等式2n ≥2 012的求解及对n 的奇偶性的讨论.建议熟记2的1~10次幂的值.已知数列{a n }中,a 1=1,且点P (a n ,a n +1)(n ∈N +)在直线x -y +1=0上. (1)求数列{a n }的通项公式;(2)设b n =1a n,S n 表示数列{b n }的前n 项和,试问:是否存在关于n 的关系式g (n ),使得S 1+S 2+S 3+…+S n -1=(S n -1)·g (n )对于一切不小于2的自然数n 恒成立?若存在,写出g (n )的解析式,并加以证明;若不存在,试说明理由.解:(1)由点P (a n ,a n +1)在直线x -y +1=0上, 即a n +1-a n =1,且a 1=1,即数列{a n }是以1为首项,1为公差的等差数列. 则a n =1+(n -1)×1=n (n ∈N +).(2)假设存在满足条件的g (n ), 由b n =1n ,可得S n =1+12+13+…+1n ,S n -S n -1=1n (n ≥2),nS n -(n -1)S n -1=S n -1+1, (n -1)S n -1-(n -2)S n -2=S n -2+1, …2S 2-S 1=S 1+1.以上(n -1)个等式等号两端分别相加得 nS n -S 1=S 1+S 2+S 3+…+S n -1+n -1,即S 1+S 2+S 3+…+S n -1=nS n -n =n (S n -1),n ≥2.令g (n )=n ,故存在关于n 的关系式g (n )=n ,使得S 1+S 2+S 3+…+S n -1=(S n -1)·g (n )对于一切不小于2的自然数n 恒成立.一、选择题1.有一种细菌和一种病毒,每个细菌在每秒钟末能在杀死一个病毒的同时将自身分裂为2个,现在有一个这样的细菌和100个这样的病毒,问细菌将病毒全部杀死至少需要( B )A .6秒钟B .7秒钟C .8秒钟D .9秒钟解析:依题意,得1+21+22+…+2n -1≥100, ∴1-2n 1-2≥100,∴2n ≥101,∴n ≥7, 则所求为7秒钟.2.某林厂年初有森林木材存量S 立方米,木材以每年25%的增长率生长,而每年末都砍伐固定的木材量x 立方米,为实现经过两次砍伐后的木材的存量增加50%,则x 的值是( C )A.S 32B.S 34C.S 36D.S 38解析:一次砍伐后木材的存量为S (1+25%)-x ; 二次砍伐后木材存量为[S (1+25%)-x ](1+25%)-x =2516S -54x -x =S (1+50%),解得x =S 36. 3.某工厂2013年年底制订生产计划,要使工厂的年总产值到2023年年底在原有基础上翻两番,则年总产值的平均增长率为( A )A .4110-1B .5110-1C .3110-1D .4111-1二、填空题4.一个工厂的生产总值月平均增长率是p ,那么年平均增长率为(1+p )12-1.解析:一年12个月,故1月至12月产值构成公比为1+p 的等比数列,设去年年底产值为a ,∴a 12=a (1+p )12,∴年平均增长率为a (1+p )12-aa=(1+p )12-1.5.今年,某公司投入资金500万元,由于坚持改革、大胆创新,以后每年投入资金比上一年增加30%,那么7年后该公司共投入资金5 0003(1.37-1)万元.解析:设第n 年投入的资金为a n 万元, 则a n +1=a n +a n ×30%=1.3a n ,则a n +1a n=1.3,所以数列{a n }是首项为500,公比为1.3的等比数列,所以7年后该公司共投入资金S 7=a 1(1-q 7)1-q =500×(1-1.37)1-1.3=5 0003(1.37-1)(万元).。
数列在日常经济生活中的应用前言数学是一门广泛应用于各个领域的学科,其中数列是一种最基本的数学工具。
在生活中,我们可以看到数列的应用,比如在经济学中,数列被广泛应用于分析和预测市场走势。
本文将讨论数列在日常经济生活中的应用,希望能够帮助读者更好地理解和应用数列。
重点一:财务分析数列在财务分析中被广泛使用。
例如,人们可以使用等差数列来计算他们的银行账户余额。
如果一个人每个月存入相同金额的钱,则他/她的账户余额将形成一个等差数列。
通过使用数列的公式和时间价值,可以计算出银行账户的余额,帮助人们更好地管理他们的财务状况。
此外,在股票市场的分析和预测中也使用了数列,股票市场中的股票价格是一个会不断变化的数列。
通过找到股票价格中的模式和规律,可以根据数列的趋势预测股票的价格变化,从而使人们做出更好的投资决策。
重点二:生产和供应数列在生产和供应方面同样非常有用。
例如,供应商可以使用等比数列来确定价格的优惠程度。
通过确定价格的变化趋势,供应商可以调整商品的风险和利润水平。
此外,生产部门也可以使用数列来决定生产率的增长速度。
通过确定与公司生产率相关的因素并建立数列模型,生产部门可以更好地了解生产率变化的趋势和周期性,并进行相应的应对。
重点三:销售和营销数列在销售和营销过程中同样扮演着重要角色。
例如,销售人员可以使用等差数列来记录销售额和客户数量。
通过检查数字的模式和规律,销售人员可以预测未来销售和客户数量的变化情况,从而采取相关的策略和措施以维持或增加销售额和客户数量。
此外,营销部门还可以使用等比数列来确定不同市场中的客户数量和每个市场的市场份额。
这有助于营销部门更好地制定市场策略和推广计划。
总结综述以上,数列在日常经济生活中扮演着重要角色。
它可以帮助人们更好地了解和分析市场趋势,并进行决策。
通过建立数列模型和算法,人们可以更好地用数学工具解决实际问题。
[A 基础达标]1.某工厂总产值月平均增长率为p ,则年平均增长率为( ) A .p B .12p C .(1+p )12D .(1+p )12-1解析:选D.设原有总产值为a ,年平均增长率为r ,则a (1+p )12=a (1+r ),解得r =(1+p )12-1,故选D.2.某种产品计划每年降低成本q %,若三年后的成本是a 元,则现在的成本是( ) A .a 3q % B .a ·(q %)3 C .a (1-q %)3D .a(1-q %)3解析:选D.设现在的成本为x 元,则x (1-q %)3=a ,所以x =a(1-q %)3,故选D.3.某工厂2012年年底制订生产计划,要使工厂的总产值到2020年年底在原有基础上翻两番,则总产值年平均增长率为( ) A .214-1 B .215-1 C .314-1D .315-1解析:选A.设2012年年底总产值为a ,年平均增长率为x ,则a (1+x )8=4a ,得x =214-1,故选A.4.某企业2015年12月份产值是这年1月份产值的p 倍,则该企业2015年度的产值月平均增长率为( ) A.12p B .12p -1 C.11p -1D .11p解析:选C.设2015年1月份产值为a ,则12月份的产值为pa ,假设月平均增长率为r ,则a (1+r )11=pa ,所以r =11p -1.故选C.5.某人为了观看2014世界杯,从2007年起,每年5月10日到银行存入a 元定期储蓄,若年利率为p 且保持不变,并约定每年到期存款均自动转为新的一年定期,到2014年将所有的存款及利息全部取回,则可取回的钱的总数(元)为( ) A .a (1+p )7 B .a (1+p )8 C.ap[(1+p )7-(1+p )] D.ap[(1+p )8-(1+p )]解析:选D.2007年存入的a 元到2014年所得的本息和为a (1+p )7,2008年存入的a 元到2014年所得的本息和为a (1+p )6,依次类推,则2013年存入的a 元到2014年的本息和为a (1+p ),每年所得的本息和构成一个以a (1+p )为首项,1+p 为公比的等比数列,则到2014年取回的总额为a (1+p )+a (1+p )2+…+a (1+p )7=a (1+p )[1-(1+p )7]1-(1+p )=ap [(1+p )8-(1+p )].6.小王每月除去所有日常开支,大约结余a 元.小王决定采用零存整取的方式把余钱积蓄起来,每月初存入银行a 元,存期1年(存12次),到期取出本金和利息.假设一年期零存整取的月利率为r ,每期存款按单利计息.那么,小王存款到期利息为________元. 解析:由题意知,小王存款到期利息为12ar +11ar +10ar +…+2ar +ar =12(12+1)2ar =78ar . 答案:78ar7.某人买了一辆价值10万元的新车,专家预测这种车每年按10%的速度折旧,n 年后这辆车的价值为a n 元,则a n =________,若他打算用满4年时卖掉这辆车,他大约能得到________元.解析:n 年后这辆车的价值构成等比数列{a n },其中,a 1=100 000×(1-10%),q =1-10%,所以a n =100 000×(1-10%)n ,所以a 4=100 000×(1-10%)4=65 610(元). 答案:100 000×(1-10%)n 65 6108.有这样一首诗:“有个学生资性好,一部《孟子》三日了,每日添增一倍多,问君每日读多少?”(注:《孟子》全书约34 685字,“一倍多”指一倍),由此诗知该君第二日读了________字.解析:设第一日读的字数为a ,由“每日添增一倍多”得此数列是以a 为首项,公比为2的等比数列,可求得三日共读的字数为a (1-23)1-2=7a =34 685,解得a =4 955,则2a =9 910,即该君第二日读的字数为9 910. 答案:9 9109.某银行设立了教育助学贷款,其中规定一年期以上贷款月均等额还本付息(利息按月以复利计算).如果贷款10 000元,两年还清,月利率为0.457 5%,那么每月应还多少钱呢? 解:贷款10 000元两年到期时本金与利息之和为:10 000×(1+0.457 5%)24 =10 000×1.004 57524(元). 设每月还x 元,则到期时总共还 x +1.004 575x +…+1.004 57523x =x ·1-1.004 575241-1.004 575.于是x ·1-1.004 575241-1.004 575=10 000×1.004 57524. 所以x ≈440.91(元). 即每月应还440.91元.10.甲、乙两超市同时开业,第一年的全年销售额为a 万元,由于经营方式不同,甲超市前n 年的总销售额为a 2(n 2-n +2)万元,乙超市第n 年的销售额比前一年销售额多a ⎝⎛⎭⎫23n -1万元.(1)求甲、乙两超市第n 年销售额的表达式;(2)若其中某一超市的年销售额不足另一超市的年销售额的50%,则该超市将被另一超市收购,判断哪一超市有可能被收购?如果有这种情况,将会出现在第几年? 解:(1)设甲、乙两超市第n 年的销售额分别为a n ,b n .则有a 1=a ,当n ≥2时, a n =a 2(n 2-n +2)-a2[(n -1)2-(n -1)+2]=(n -1)a ,所以a n =⎩⎪⎨⎪⎧a ,n =1,(n -1)a ,n ≥2.b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1) =⎣⎡⎦⎤3-2⎝⎛⎭⎫23n -1a (n ∈N +).(2)易知b n <3a ,所以乙超市将被甲超市收购, 由b n <12a n ,得⎣⎡⎦⎤3-2⎝⎛⎭⎫23n -1a <12(n -1)a .所以n +4⎝⎛⎭⎫23n -1>7,所以n ≥7,即第7年乙超市的年销售额不足甲超市的一半,乙超市将被甲超市收购.[B 能力提升]11.某商场今年销售计算机5 000台,如果平均每年的销售量比上一年的销售量增加10%,那么从今年起,大约多少年可以使总销售量达到30 000台?(结果保留到个位)(参考数据:lg 1.1≈0.041,lg 1.6≈0.204)( ) A .3年 B .4年 C .5年D .6年解析:选C.设大约n 年可使总销售量达到30 000台,由题意知:每年销售量构成一个等比数列,首项为a 1=5 000台,公比q =1.1,S n =30 000,所以由30 000=5 000(1-1.1n )1-1.1⇒1.1n=1.6⇒n =lg 1.6lg 1.1≈5,故选C.12.商家通常依据“乐观系数准则”确定商品销售价格,即根据商品的最低销售限价a ,最高销售价b (b >a )以及实数x (0<x <1)确定实际销售价格c =a +x (b -a ).这里,x 被称为乐观系数.经验表明,最佳乐观系数x 恰好使得(c -a )是(b -c )和(b -a )的等比中项.据此可得,最佳乐观系数x 的值等于________.解析:由已知(c -a )是(b -c )和(b -a )的等比中项,即(c -a )2=(b -c )(b -a ),把c =a +x (b -a )代入上式,得x 2(b -a )2=[b -a -x (b -a )](b -a ),即x 2(b -a )2=(1-x )(b -a )2,因为b >a ,b -a ≠0,所以x 2=1-x ,即x 2+x -1=0,解得x =-1±52,因为0<x <1,所以最佳乐观系数x 的值等于 -1+52.答案: -1+5213.祖国大陆允许台湾农民到大陆创业以来,在11个省区设立了海峡两岸农业合作试验区和台湾农民创业园,台湾农民在那里申办个体工商户可以享受“绿色通道”的申请、受理、审批一站式服务,某台商到大陆一创业园投资72万美元建起一座蔬菜加工厂,第一年各种经费12万美元,以后每年增加4万美元,每年销售蔬菜收入50万美元,设f (n )表示前n 年的纯收入.求从第几年开始获取纯利润?(f (n )=前n 年的总收入-前n 年的总支出-投资额) 解:由题意,知每年的经费是以12为首项,4为公差的等差数列.设纯利润与年数的关系为f (n ),则f (n )=50n -⎣⎡⎦⎤12n +n (n -1)2×4-72=-2n 2+40n -72.获取纯利润就是要求f (n )>0,故有-2n 2+40n -72>0,解得2<n <18. 又n ∈N +,知从第三年开始获利.14.(选做题)某林场为了保护生态环境,制定了植树造林的两个五年计划,第一年植树16a 亩,以后每年植树面积都比上一年增加50%,但从第六年开始,每年植树面积都比上一年减少a 亩.(1)求该林场第六年植树的面积;(2)设前n (1≤n ≤10且n ∈N +)年林场植树的总面积为S n 亩,求S n 的表达式.解:(1)该林场前五年的植树面积分别为16a ,24a ,36a ,54a ,81a .所以该林场第六年植树面积为80a 亩.(2)设第n 年林场植树的面积为a n 亩, 则a n =⎩⎪⎨⎪⎧⎝⎛⎭⎫32n -1×16a ,1≤n ≤5,n ∈N +,(86-n )a ,6≤n ≤10,n ∈N +.所以当1≤n ≤5时,S n =16a +24a +…+⎝⎛⎭⎫32n -1×16a=16a ⎣⎡⎦⎤1-⎝⎛⎭⎫32n1-32=32a ⎣⎡⎦⎤⎝⎛⎭⎫32n-1.当6≤n ≤10时,S n =16a +24a +36a +54a +81a +80a +…+(86-n )a =211a +80a +…+(86-n )a =211a +[80a +(86-n )a ](n -5)2=211a +(166a -na )(n -5)2.所以所求S n 的表达式为S n =⎩⎨⎧⎣⎡⎦⎤⎝⎛⎭⎫32n-1×32a ,1≤n ≤5,n ∈N +,211a +(166a -na )(n -5)2,6≤n ≤10,n ∈N +.。
数列及有关概念导学与精析一、知识结构二、知识点归纳与精析(1)数列的概念的理解① 定义角度:按照一定的顺序排成的一列数称为数列。
数列中的每一个数叫做这个数列的项。
数列的一般形式可以写成 123,,,,,,n a a a a ⋅⋅⋅⋅⋅⋅可记为{}n a 。
数列与数集是不一样的,数列中的数是按一定的次序排的,而数集中的数是没有一定的次序的;数列中的数可以重复出现,而数集中的数是不能重复出现的。
②从函数的观点看,数列可以看成以正整数集N *(或它的有限子集{1,2,3,,,}n ⋅⋅⋅⋅⋅⋅)为定义域的函数()n a f n =,当自变量按照从小到大的顺序依次取值时,所对应的一列函数值。
反过来,对于函数()y f x =,如果()(1,2,3,,,)f i i n =⋅⋅⋅⋅⋅⋅有意义,那么我们可以得到一个数列(1),(2),(3),,(),f f f f n ⋅⋅⋅⋅⋅⋅这样的数列可以用图象来表示,其图象是由一系列孤立的点(,())n f n 所组成的图形。
数列是函数,但函数不一定是数列.下表列出了函数与数列的一些异同点:(2)数列的通项公式:数列通项公式代表数列中的任何一项,因为只要用序号代替公式中的n ,就可以求出数列各项,同时用数列通项公式还可以判断某数是否为数列中的项,如果是的话,是第几项.①一个数列如果有通项公式,那么它是一个函数式,这个函数的定义域是正整数集*N .②并非所有的数列都有通项公式,如数列0.1,0.10,0.101,0.1010,…,就没有通项公式.③有的数列的通项公式在形式上并不唯一,如数列1,0,1,0,1,…的通项公式可以写成:a n =⎩⎨⎧为偶数为奇数n n .0,1或 a n =2)1(11--+n . (3)数列的通项公式与递推公式的联系与区别(4)数列的表示法数列的表示法有如下三种,但实际应用中以解析法为主。
①解析法:解析法可分为通项公式法和递推法两种;②列表法:数列可以看作是用列表法给出的函数关系(定义域为正整数集N *),自变量省略,只列出函数值;③图象法:数列可以用图象(一群孤立的点)来表示。