当前位置:文档之家› 共形天线及共形天线阵综述

共形天线及共形天线阵综述

共形天线及共形天线阵综述
共形天线及共形天线阵综述

天线极化综述

天线极化综述 班级:09电子(1)班 姓名:周绕 学号:0905072024 完成时间:2011年11月15日

目录 一、天线的极化概念描述 0 二、天线的极化分类 0 1、线极化 0 (1)、线极化描述 0 (2)、线极化的数学分析 0 2、天线的馈源系统 (1) 3、极化波 (2) (1)、极化波的简介与分类 (2) (2)、极化波的应用 (2) 4、圆极化 (2) (1)、圆极化的描述 (2) 5、椭圆极化 (4) 三、总结 (5)

一、天线的极化概念描述 天线的极化特性是以天线辐射的电磁波在最大辐射方向上电场强度矢量的空间取向来定义的,是描述天线辐射电磁波矢量空间指向的参数。由于电场与磁场有恒定的关系,故一般都以电场矢量的空间指向作为天线辐射电磁波的极化方向。 二、天线的极化分类 天线的极化分为线极化、圆极化和椭圆极化。线极化又分为水平极化和垂直极化;圆极化又分为左旋圆极化和右旋圆极化。 1、线极化 (1)、线极化描述 电场矢量在空间的取向固定不变的电磁波叫线极化。有时以地面为参数,电场矢量方向与地面平行的叫水平极化,与地面垂直的叫垂直极化。电场矢量与传播方向构成的平面叫极化平面。垂直极化波的极化平面与地面垂直;水平极化波的极化平面则垂直于入射线、反射线和入射点地面的法线构成的入射平面。 (2)、线极化的数学分析

(a)垂直极化 (b) 水平极化 在三维空间,沿Z轴方向传播的电磁波,其瞬时电场可写为: = + 。 若=ExmCOS(wt+θx),=EymCOS(wt+θy) ,且与的相位差为nπ(n=1,2,3,…) ,则合成矢量的模为: 这是一个随时间变化而变化的量,合成矢量的相位θ为: 合成矢量的相位为常数。可见合成矢量的端点的轨迹为一条直线。 与传播方向构成的平面称为极化面,当极化面与地面平行时,为水平极化,如图(a);当极化面与地面垂直时,为垂直极化波,如图(b)。 2、天线的馈源系统 馈源是天线的心脏,它用作高增益聚集天线的初级辐射器,为抛物面天线提供有效的照射。 (1)有合适的方向图。馈源初级方向图不能太窄,否则抛物面不能被全部照射;但也不能太宽,以免功率泄漏过多。另外,初级方向图应接近于旋转对称,最好没有旁瓣和尾瓣。 (2)有理想的波前。圆抛物面天线要求馈源的波前为球面,以确保该相位中心与焦点重合时抛物面口径场的相位均匀分布。否则,会引起天线方向图畸变、增益下降、旁瓣升高。 (3)无交叉极化。即无干扰主极化的交叉分量,要求馈源辐射场的交叉化分量尽可能小。 (4)阻抗变化平稳。要求在工作频段内,馈源的输入阻抗不应变化过大,以保证和馈线匹配。 (5)尺寸尽量小。完整的馈源系统主要由馈源喇叭、90°移相器和圆矩变换器几部分组成。馈源按使用的方式可分为前馈馈源和后馈馈源。按卫星频段可分为C频段馈源和Ku频段馈源;目前已开发出C和Ku频段的共用馈源。前馈馈源一般应用于普通的抛物面天线,后馈馈源一般应用于卡塞格伦天线。 抛物面天线常用馈源形式有角锥喇叭、圆锥喇叭、开口波导和波纹喇叭等。前馈馈源中使用最多的是波纹槽馈源;再有一种叫带扼流槽的同轴波导馈源。后馈馈源喇叭常用的是介质加载型喇叭,它是在普通圆锥喇叭里面加上一段聚四氟乙烯衬套构成的。偏馈天线要选用偏馈馈源,偏馈馈源盘的波纹呈漏斗状,而正馈馈源的波纹盘为水平状。

智能天线波束赋形GOB算法与EBB算法比较

目前比较常用的波束赋形算法有2种:GOB算法和EBB算法。GOB算法是一种固定波束扫描的方法,对于固定位置的用户,其波束指向是固定的,波束宽度也随天 线阵元数目而确定。当用户在小区中移动时,它通过测向确定用户信号DOA,然后根据信号DOA选取预先设定的波束赋形系数进行加权,将方向图的主瓣指向用户方向,从而提高用户的信噪比。EBB算法是一种自适应的波束赋形算法,方向图没有固定的形状,随着信号及干扰而变化。其原则是使期望用户接收功率最大 的同时,还要满足对其他用户干扰最小。 实际设备中采用了EBB算法,需要说明的一点是,仅下行有波束赋形技术,上行方向,手机天线无法进行波束赋形,基站多个天线此时主要用于分集接收。 简单来说就是一个天线阵的运用,上行信号到达每个天线的时间是不一致的,但天线之间的相差是可以预知的,只要将每个天线上的上行信号做一个加权处理,所得信号将是同相信号,将天线阵上的信号相加,即可增加10logN*N db(此处应为10logN db——本人注)的信噪比;同理下行时,首先根据上行信号估计 空间特性,然后在天线阵上发送具有相差的信号,使各个天线下行信号到达接受机的信号同相。上下行中相位的加权运算就是波束赋形。 注解:波束赋形工作由基站完成 GOB 与EBB算法的区别 目前智能天线的赋形算法主要有以下两种: 一、GOB(Grid Of Beam)算法(又称波束扫描法):它是基于参数模型(利用信道的空域参数)的算法,使基站实现下行指向性发射。 GOB算法的基本思路如下: 将整个空间分为L个区域,并为每个区域设置一个初始角度。以各个区域的初始角度的方向向量为加权系数,计算接收信号功率,然后找到最大功率对应的区域,再将该区域的初始角度当作估计的到达角。利用上下行信道对称的特点,确定赋形角度。 二、EBB(Eigenvalue Based Beamforming)算法(即特征向量法):通过对空间

矩形微带天线设计与分析

矩形微带天线设计与分析 万聪,沈诚诚, 王一平 2011级通信2、4班 沈诚诚:主要负责资料准备与整理 王一平:主要负责论文的格式与后期资料扩充 万聪:主要负责设计模型 三人共同学习hfss软件设计模型,共同参与讨论编写论文,发扬团结合作的精神,克服所遇到问题,完成好老师布置的作业。 摘要:微带天线以其体积小、重量轻、低剖面等独特的优点引起了相关领域的广泛重视,已经被广泛应用在1OOMHz—1OOGHz的宽广频域上的大量的无线电设备中。本文介绍了一种谐振频率为2.45GHz,天线输入阻抗为50Ω的使用同轴线馈电的矩形微带天线。本论文给出了详细的设计流程:根据理论经验公式初步计算出矩形微带天线的尺寸,然后在HFSS里建模仿真,根据仿真结果反复调整天线的尺寸,直到仿真结果中天线的中心频率不再偏离2.44GHz为止。微带天线固有的缺陷是窄带性,它的窄带性主要是受尺寸的影响,在不改变天线中心频率的前提下,通过理论经验公式与仿真软件的结合,给出了微带天线比较合理的尺寸。通过HFSS 13.0软件对该天线进行仿真、优化,最终得到最佳性能。 关键词:微带天线、谐振频率、HFSS

Abstract: the microstrip antenna has attracted wide attention from related fields with the advantages of small volume, light weight, low profile, unique, a lot of radio equipment has been widely applied in broad frequency range 1OOMHz - 1OOGHz of the. This paper introduces a 2.45GHz resonant frequency, input impedance of the antenna for the rectangular microstrip antenna using a 50 ohm coaxial feed. This paper gives a detailed design process: according to the theory of empirical formula calculated the size of rectangular microstrip antenna, then modeling and Simulation in HFSS, repeated adjustment according to the simulation results of the antenna size, until the simulation results in the center frequency antenna can not depart from the 2.44GHz to stop. The inherent defects of microstrip antenna is narrow, narrow band it is mainly affected by the size, in the premise of not changing the antenna center frequency, through a combination of theoretical formula and simulation software, the reasonable size of microstrip antenna. The antenna is simulated by HFSS 13 software, optimization, and ultimately get the best performance. Keywords: microstrip antenna, resonant frequency, HFSS

机载天线综述

直升机平台机载天线研究综述 李雪健 摘要:直升机作为一种快速灵活的机动装备,近几年在城市反恐处突及应急灾害救援等场合作用明显。机载天线作为通信系统的重要一环,它的性能好坏对直升机通信效果影响极大。本文介绍了机载天线的分类及特点,综述国内外当前对机载天线的主要研究方向和研究进展。介绍了以FEKO和HFSS软件为基础的直升机平台天线研究方法。 关键词:直升机平台;机载天线;研究现状 0、引言 自1907年法国人保罗·科尔尼发明直升机以来,直升机就作为人造飞行器中重要一支在人类历史上扮演着重要角色。机动灵活和起落条件要求低等特点使直升机在现代社会得到广泛应用。 机载天线是飞机系统与其它系统进行电磁能量交换的转换设备,是飞机感知系统的一部分[1]。从广义角度而言,以载机为工作平台的天线均可称为机载天线。机载天线在现代飞行器上应用十分广泛,如飞机上的通信、导航、敌我识别、电子战、雷达等。机载天线的好坏决定着整个系统通信的质量,研究机载天线有着重要的意义[2]。 关于机载天线的研究的文献众多,从事相关研究的专家学者和科研院所也非常之多。但大部分研究都是基于固定翼飞机作为平台研究的,专门以直升机作为平台研究机载天线的文章较少。但固定翼飞机与直升机所处的通信环境及对天线的要求相似,可以进行类比研究。本文以机载天线的主要研究方向及发展情况为主结合直升机平台特点进行综述。 一、机载天线研究背景 1.1机载天线的国内外研究现状 近一个世纪以来,无线电通信技术发展迅速,天线作为无线电波的入口与出口,是一切无线系统中必不可少的组成部分。天线性能的好坏直接影响整个无线系统的性能。飞机作为一种高新科技集成的载体,飞机上通信设备的数量和种类都达到了前所未有的程度,并且现代社会对各种载人、载物飞行器的功能的要求越来越高。并且随着新一代飞机的飞行速度高度等的提高以及现代社会电磁环境的日益复杂,实现飞机通信的顺畅难度变大。这就对机载天线的性能提出来更高的要求。 飞机上有很多天线,如:各式各样的导航通信系统、着陆系统、测高雷达等系统的天线。机载天线按照工作频段分类,可以分为机载中波天线、机载短波天线、机载超短波(VHF/UHF)通信天线、飞机导航天线,还有机载共形微带天线及飞机通信用的自适应阵天线等。如图1.1所示,是一个典型军用飞机上具有多达70多副天线[3]。

螺旋天线综述

螺旋天线综述 1 引言 螺旋天线(helical antenna)是用导电性良好的的金属做成的具有螺旋形状的天线。螺旋天线具有圆极化,波束宽度宽的优点,因此被广泛在卫星通讯,个人移动通信中。 同轴线馈电是螺旋天线的常用馈电方式,可以采用底馈或者顶馈,此时同轴线的内导线和螺旋线的一端相连接,外导线则和接地板(金属圆盘或矩形板状等)相接,螺旋线的另一端是处于自由状态。 螺旋天线既可用做反射镜或透镜的辐射器,也可用做单独的天线(由一个或几个螺旋线组成)。 2 螺旋天线的发展 螺旋天线的辐射能力是美国科学家 JohnD.Kraus于1947年在实验中发现的,自此之后,螺旋天线以其在宽频带上具有近乎一致的电阻性输入阻抗和在同样的频带上按“超增益”端射阵的波瓣图工作特点很快在各领域得到了广泛的应用。许多学者对螺旋天线的辐射特性进行了研究,给出了螺旋天线辐射设计多经验公式。 20世纪70年代,苏联科学家尤尔采夫和鲁诺夫对各种形式的螺旋天线进行了比较系统的理论分析和设计研究。此后各国学者进行了这方面的研究,延伸出了很多变种,尤其是四臂螺旋天线因其高增益,方向性好,圆极化的特点,得到了深入的发展和实际应用,如图1所示。 2008年弗吉尼亚大学的Warren Stutzman教授制成了一种六臂螺旋天线,如图2所示。天线实现了几乎最优化的UWB性能,通过采用围绕一个金属中心核而卷绕的臂来维持与臂之间相对不变的距离,几乎完整的利用了天线罩内的整个三维空间。该天线具有10:1的瞬间带宽,它可以被用于频域、多带宽、多信道应用以及时域或脉冲应用。在低成本的应用中,该设计可以被蚀刻在天线罩的内部,或由曲线或曲管构建。

波束赋形

TD-LTE双流波束赋形天线技术 双流波束赋形技术是TD-LTE的多天线增强型技术,是TD-LTE建网的主流技术,结合了智能天线波束赋形技术与MIMO空间复用技术,是中国移动和大唐移动共同创新的成果,也是中国通信产业技术能力的体现。 一、8天线双流波束赋形技术引入需求分析 多天线技术是天线技术发展趋势,现有TD-SCDMA已经引入了8天线,TD- LTE也引入了8发2收的天线配置,到LTE-A则将引入8发8收的天线配置。 考虑到提升覆盖能力和降低引入TD-LTE的CAPEX,TD-LTE系统中引入了8天线方案。另外,引入8天线还可以使TD-SCDMA平滑演进到TD-LTE,同时继续沿用并充分发挥TDD 系统在赋形方面的优势。 1.系统平滑演进需求 目前,TD-SCDMA网络正在全国迅速铺开。与此同时,TD-SCDMA演进技术TD-LTE也被提上了未来移动通信网络建设发展的日程。如何在进行TD-SCDMA网络建设的同时保证能够向TD-LTE实现平滑演进已经成为了运营商和设备供应商共同关注的焦点问题。 出于系统平滑演进的考虑,大唐移动提出了产品设备共平台设计的解决方案,有效的保护网络建设现有投资,保证网络升级的快速便捷。在主设备实现平滑演进的同时,从节约建网成本、降低建站难度等角度出发,需要尽可能保持TD-SCDMA网络已部署的天线系统不变,且可以在TD-LTE中继续使用。为实现天线系统的平滑演进,TD-SCDMA网络中进行宏覆盖主要采用的8天线,需要在TD- LTE网络中继续使用。 2.技术演进需求 波束赋形技术是一种基于小间距天线阵列的线性预处理技术,能够根据用户的信道特性进行波束赋形,具有扩大覆盖、提高系统容量、降低干扰的能力。作为TD-SCDMA的核心技术,波束赋形技术已在中国移动3G网络中广泛使用。 在LTE技术规范Release 8版本中,引入了单流波束赋形技术,对于提高小区平均吞吐量及边缘吞吐量、降低小区间干扰有着重要作用。但是,面对LTE Release 9以及LTE-Advanced系统的更高速率需求,有必要对波束赋形技术加以扩展。以LTE定义的最大发天线数8天线为例,由多天线理论可知,8×2天线系统的单用户MIMO至多可以同时传输两个数据流,这就意味着LTE Release 8规范中的单流波束赋形技术并没有充分开发信道容量。根据信道容量相关理论可知,信道容量为信噪比的对数函数,随着信噪比提升,容量增加趋势越来越缓;在高信噪比情况下,将某个数据流的功率降低一半并不会导致该数据流容量大幅降低,此种情况利用另一半功率来发送一个新的数据流将会极大地提升传输容量。 为满足TD-LTE系统中使用8天线以及扩展波束赋形技术以提升容量的需求,中国移动和大唐移动共同推出了采用8天线配置的双流波束赋形技术。 二、双流波束赋形技术介绍 双流波束赋形技术应用于信号散射体比较充分的条件下,是智能天线波束赋形技术(即单流波束赋形技术)和MIMO空间复用技术的有效结合,在TD-LTE系统中,利用TDD信道的对称性,同时传输两个赋形数据流来实现空间复用,并且能够保持传统单流波束赋形技术广覆盖、提高小区容量和减少干扰的特性,既可以提高边缘用户的可靠性,同时可有效提升小区中心用户的吞吐量。 根据多天线理论可知,接收天线数不能小于空间复用的数据流数。8天线双流波束赋形技术的使用,接收端至少需要有2根天线。 根据调度用户的情况不同,双流波束赋形技术可以分为单用户双流波束赋形技术和多用户双

手机双频天线设计论文综述

通信工程专业实训 题目:手机内置天线的设计 专业:通信2班 学号:1167119226 姓名:李盼 指导老师:杜永兴 分数:_________________

目录 摘要: 关键字: 第一章:背景介绍 第二章:实训过程记录第三章:实训结论 第四章:实训总结 第五章:参考文献

摘要:现在的电子通讯技术飞速发展,随着技术可经济的推进,人们对手机的要求越来越高,然而手机的基本功能就是打电话,而对手机的内置天线要求就更高难度更大,小型化,并且能工作在不同的频段下,文中主要研究双频手机PIFA天线。采用了开槽的的设计方法实现了天线的双频,工作性能良好,易于实现,现在大多数手机都使用这种天线。 关键字:PIFA天线,双频,GSM,DCS,HFSS 第一章:背景介绍 1.1 移动通信对手机天线的要求 天线最主要的功能在于转换两种不同传播介质中的电磁波能量。在能量转换的过程中,会出现收发信机与天线及天线与传播介质之间的不连续接口。在无线通讯系统中,天线必须依照这两个接口的特性来做适当的设计,以使得收发信机、天线以及传播介质之间形成一个连续的能量传输路径。 移动通信手机对天线的要求: 外在要求: 天线尺寸小,重量轻,剖面低,携带方便,机械强度好 电性能要求: 水平面要求有全向辐射方向图,频带宽,效率高,增益高,受周围环境影响小,对人体辐射伤害小 1.2 手机天线的指标意义 天线输入阻抗: 天线的输入阻抗是以收发机与天线间的接口往天线端看入所得到的阻抗值。这一数值对天线的辐射效率,天线的带内增益波动,天线前端的功率容量有很大的影响。手机天线是一种驻波天线,,天线的阻抗不匹配,将导致大量的信号反射,使天线的辐射效率降低,同时由于反射的影响使得天线在宽频带内的增益有抖动,如果天线的驻波为6,手机前端的击穿电压将降为原来的1/6,而功率容量就会下降。 手机天线驻波对天线效率的影响不可不慎。 天线的驻波要求,我们目前统一要求为小于3。

矩形微带贴片天线设计及仿真

《现代电子电路》课程设计题目矩形微带天线的设计与仿真 单位(院、系):信息工程学院 学科专业: 电子与通信工程 学号:416114410159 姓名:曾永安 时间:2011.4.25

矩形微带天线的设计与仿真 学科专业:电子与通信工程学号:416114410159 姓名:曾永安指导老师:吴毅强 摘要:本文介绍了一种谢振频率为2.45GHz,天线输入阻抗为50Ω的使用同轴线馈电的矩形微带天线。通过HFSS V10软件对该天线进行仿真、优化,最终得到最佳性能。 关键词:HFSS,微带线,天线

Design and Simulation of Rectangular Microstrip Antenna Abstract:This paper introduces a rectangular microstrip antenna which works at resonance frequency of 2.45GHz and antenna input impedance of 50Ω and is fed by coaxial cable. The model of the antenna is set up a nd simulated by ANSOFT HFSS V10 ,and the optimal parameters of the microstrip antenna are obtained as well. Key words:HFSS,Microstrip,Antenna

1.引言 微带天线的概念首先是由Deschamps于1953年提出来的,经过20多年的发展,Munson和Howell于20世纪70年代初期制造了实际的微带天线。微带天线结构简单,体积小,能与载体共形, 能和有源器件、电路等集成为统一的整体,已被大量应用于100MHz~100GHz宽频域上的无线电设备中, 特别是在飞行器和地面便携式设备中得到了广泛应用。微带天线的特征是: 比通常的微波天线有更多的物理参数, 可以有任意的几何形状和尺寸;能够提供50Ω输入阻抗,不需要匹配电路或变换器;比较容易精确制造, 可重复性较好;可通过耦合馈电, 天线和RF电路不需要物理连接;较易将发射和接收信号频段分开;辐射方向图具有各向同性。本文设计的矩形微带天线工作于ISM频段,其中心频率为2.45GHz;无线局域网、蓝牙、ZigBee等无线网络均可工作在该频段上。选用的介质板材为Rogers R04003,其相对介电常数εr=3.38,厚度h=5mm;天线使用同轴线馈电。 2.微带贴片天线理论分析 图1是一个简单的微带贴片天线的结构,由辐射元、介质层和参考地三部分组成。与天线性能相关的参数包括辐射元的长度L、辐射元的宽度W、介质层的厚度h、介质的相对介电常数 r和损耗角正切tanδ、介质层的长度LG和宽度WG。图1所示的微带贴片天线采用微带线馈电,本文将要设计的矩形微带天线采用的是同轴线馈电,也就是将同轴线街头的内芯线穿过参考点和介质层与辐射元相连接。 图1 微带天线的结构

阵列天线波束赋形技术研究与应用

阵列天线波束赋形技术研究与应用 ⑧ 论文作者签名: 指导教师签名:皇直江本 论文评阅人1: 评阅人2: 评阅人3: 评阅人4: 评阅人5: 答辩委员会主席: 委员l: 委员2: 委员3: 委员4: 委员5: 答辩日期:2014年3月9日 浙江大学研究生学位论文独创性声明 本人声明所呈交的学位论文是本人在导师指导下进行的研究工作及取得的研究成果。除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得浙江大学或其他教育机构的学位或证书而使用过的材料。与我一同工作的

同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示谢意。学位敝作者签名:惕扶%签字日期:沙、f年_;月∽学位论文版权使用授权书 本学位论文作者完全了解浙江大学有权保留并向国家有关部门或机构送交本论文的复印件和磁盘,允许论文被查阅和借阅。本人授权浙江大学可以将学位论文的全部或部分内容编入有关数据库进行检索和传播,可以采用影印、缩印或扫描等复制手段保存、汇编学位论文。 (保密的学位论文在解密后适用本授权书) 学位论文作者签名:伤双巧}导师签名:重甫姐;寿 签字日期:签字日期:训lf年弓月I3日)移f今年弓月l驴日 致谢 时光飞逝,又到了毕业季。在浙江大学本科四年以及研究生两年半的求学生涯中,我不仅学到了专业知识,还领悟到了很多做人的道理。浙大“求是,创新”的校训一直陪伴我的成长,在我毕业之后,“求是,创新”也将一直作为我为人处事的准则。两年半的硕士研究生生活即将结束,回首过往,自己在学习、生活上都得到了很大的提升,这离不开来自家人、老师、同学及朋友的帮助。在此,衷心感谢那些帮助过我的人。 首先感谢我的导师皇甫江涛老师和冉立新老师对我学业上的帮助,感谢他们为我指点未来的科研之路,帮助我选择毕业之后出国深

TD-LTE双流波束赋形天线技术创新

TD-LTE双流波束赋形天线技术创新 双流波束赋形技术是TD-LTE的多天线增强型技术,是TD-LTE建网的主流技术,结合了智能天线波束赋形技术与MIMO空间复用技术,是中国移动和大唐移动共同创新的成果,也是中国通信产业技术能力的体现。 一、8天线双流波束赋形技术引入需求分析 多天线技术是天线技术发展趋势,现有TD-SCDMA已经引入了8天线,TD- LTE也引入了8发2收的天线配置,到LTE-A则将引入8发8收的天线配置。 考虑到提升覆盖能力和降低引入TD-LTE的CAPEX,TD-LTE 系统中引入了8天线方案。另外,引入8天线还可以使TD-SCDMA 平滑演进到TD-LTE,同时继续沿用并充分发挥TDD系统在赋形方面的优势。 1.系统平滑演进需求 目前,TD-SCDMA网络正在全国迅速铺开。与此同时, TD-SCDMA演进技术TD-LTE也被提上了未来移动通信网络建设发展的日程。如何在进行TD-SCDMA网络建设的同时保证能够向 TD-LTE实现平滑演进已经成为了运营商和设备供应商共同关注的焦点问题。 出于系统平滑演进的考虑,大唐移动提出了产品设备共平台设计

的解决方案,有效的保护网络建设现有投资,保证网络升级的快速便捷。在主设备实现平滑演进的同时,从节约建网成本、降低建站难度等角度出发,需要尽可能保持TD-SCDMA网络已部署的天线系统不变,且可以在TD-LTE中继续使用。为实现天线系统的平滑演进,TD-SCDMA网络中进行宏覆盖主要采用的8天线,需要在TD- LTE 网络中继续使用。 2.技术演进需求 波束赋形技术是一种基于小间距天线阵列的线性预处理技术,能够根据用户的信道特性进行波束赋形,具有扩大覆盖、提高系统容量、降低干扰的能力。作为TD-SCDMA的核心技术,波束赋形技术已在中国移动3G网络中广泛使用。 在LTE技术规范Release 8版本中,引入了单流波束赋形技术,对于提高小区平均吞吐量及边缘吞吐量、降低小区间干扰有着重要作用。但是,面对LTE Release 9以及LTE-Advanced系统的更高速率需求,有必要对波束赋形技术加以扩展。以LTE定义的最大发天线数8天线为例,由多天线理论可知,8×2天线系统的单用户MIMO至多可以同时传输两个数据流,这就意味着LTE Release 8规范中的单流波束赋形技术并没有充分开发信道容量。根据信道容量相关理论可知,信道容量为信噪比的对数函数,随着信噪比提升,容量增加趋势越来越缓;在高信噪比情况下,将某个数据流的功率降低一半并不会导致该数据流容量大幅降低,此种情况利用另一半功率来发送一个新

一种高性能的微带全向天线设计与分析

在移动通信领域中,全向高增益天线有着广泛的应用。微带交叉阵子天线作为一种全向高增益天线,以其结构简单,匹配容易,便于批量生产以及造价低廉等优点受到重视。一般的微带交叉阵子天线如图1所示,这种结构在仿真和实测中,方向图畸变比较严重,天线的电压驻波比也比较差。文献给出了一种改进的方案,将微带天线的地面做成梯形结构,如图2所示。这在一定程度上改善了天线性能。文中给出了该结构天线的仿真和实物测试结果,以便与本文提出的微带全向天线作比较。文中所提出的微带全向天线如图3所示。该天线除了采用微带渐变结构和电感匹配器外,还在天线的顶端加载了λg/4短路匹配枝节。仿真和测试表明,该天线同文献中提出的天线相比较,具有更好的电压驻波比和更高的增益,是一种高性能的微带全向天线。 图1 微带交叉阵子天线示意图 1 微带交叉阵子天线的基本原理 微带交叉阵子天线的基本结构如图1所示。将每段微带传输线的地面看成同轴线的外导体,导带看作同轴线的内导体,其与传统的COCO天线具有相似的结构。同样,微带交叉阵子天线也是由多个λg/2的微带单元级联而成,天线的地面和导带在介质基片的两侧交替放置,从而利用交叉连接来实现倒相。由于交叉连接点的不连续性形成辐射,使得这种结构存在两种模式,即传输模和辐射模。对于传输模,由于波沿导带和接地板的内表面传输,而且微带传输线是均匀的,

所以在分析时不考虑空间的辐射。而辐射模,则是由于各接地板的交替处电压源激励起的辐射电流存在于接地板的内外表面,从而形成辐射。同COCO天线一样,微带交叉阵子天线也是一个阵列天线。由阵列天线的基本理论可知,对于远场区,天线的归一化方向性函数为 天线的增益为 其中,η为天线的辐射效率;D为天线的方向性系数。 2 微带交叉阵子天线的设计与分析 基本的微带交叉阵子天线如图1所示,实验证明,该结构天线的方向图畸变比较严重,而且带内电压驻波比也不理想。为了改善天线的性能,将天线地板设计成梯形结构,并在每个微带单元导带的中间加载一个矩形贴片,用于对天线进行调谐,此时的天线结构如图2所示,这在一定程度上改善了天线的阻抗特性。加载的矩形贴片相当于1个电感器。假设该电感器的长为l,宽为w,那么其等效电路的电感L如式(3)所示。 其中,h为介质板厚度;t是导体的厚度;Kg为校正因子,其经验公式为

FPC类天线设计要求(天珑资料)

F P C类天线设计要求 综述:FPC类天线最主要的问题是:1.起翘问题2.成本问题3.生产操作问题4.断裂问题 §1FPC类天线主要的结构组装方式 一.FPC+支架 FPC直接粘贴在支架表面,金手指一般设计到支架底面,在PCB板上SMT小弹片,小弹片的弹脚连接到天线金手指,天线(支架加FPC)固定在PCB上,或者PCB固定在下图右图的支架中间。 二.FPC+机壳 FPC直接粘贴在机壳表面,金手指部分穿过机壳预留的间隙,延伸到机壳另一面,PCB板上SMT小弹片,小弹片的弹脚连接到天线金手指。 此类天线特殊要求: a所有的转角都至少金手指所粘贴部位不能有顶针. c不能打脱模剂,做好不使用自带脱模剂的材料. 2.如果机壳表面有喷油工艺,则FPC的粘胶面尽量远离喷油面的边缘,喷油区常有飞油导致FPC粘帖不良. §2FPC类天线塑胶部件设计技术要求 一.贴FPC的塑胶件表面要设计得尽量平缓,避免R值1mm--4mm之间的小圆弧面,大于5mm的圆弧尽量改为斜平面组合模拟大圆弧,其中每个斜平面的宽度尽量大于等于4mm。 二.在塑胶件表面的合适位置设计加一些定位柱或热熔柱,以帮忙FPC粘贴时的定位和预防FPC的起翘,每个平面上的定位柱不得超过2个。柱子为直径高。如设计为热熔柱,则柱子为直径,高。 三.塑胶件开模时要求在贴FPC的表面顶针印痕和和其他印痕,断差应控制在以内,以免表面起台阶和披峰导致FPC起翘起皱,同时表面抛光处理或DVI-27或花纹,以便FPC跟塑胶件粘贴更牢固. 四.金手指部位所贴的面为一个平面,并且不准在此平面设置顶针,尽量为光面或细火花纹,必须 实心,不准为中空的结构. 五.FPC所要贴到的面都要求有圆角,一般以上(不超过,特殊部位以上(不超过,不能为尖角. 如下图紫色位置是准备贴FPC的部位,红色位置是要求到圆角的位置。 六.机壳上的缝隙设计要求其长度和宽度要能穿过相应FPC金手指的长度和宽度(根据金手指尺寸而定,两者相差单边以上). 七.塑胶件在注塑生产时,要求不能打脱模剂,同时在图纸中注明. 八.塑胶件(支架和机壳)生产可选用ABS和普通PC或是PC+ABS等原材料,但避免选用PC141R和PC241R等型号原材料,因为此类带”R”型号的原材料本身带脱模剂. §3FPC的设计技术要求和选材参考 一.普通FPC的结构 普通的单面板FPC由以下5层材料构成: 背胶+基材+AD+铺铜+油墨 背胶厚度一般为, 基材厚度(普通Pi和PET基材为,Pi半对半基材为 AD厚度一般为. 铜箔的厚度一般为. 油墨的厚度一般为和. 所以普通的单面板FPC的总厚度在左右. 二、FPC基材的选材 基材: 这种基材耐高温,可焊接,能制作双面板或是多面板的FPC,可用于须制作双面板或多面板的FPC天线项目中,也可以用于FPC金手指需要焊接的项目中. 根据Pi基材的厚度可分为Pi半对半基材(T=和Pi一对半基材(T=25um)等, Pi半对半基材是目前较薄且较柔软的一种基材,这种基材贴服性好,可用于弯折面多,圆弧面陡峭的天线项目中.背胶基层胶层AD铜箔油墨镀镍层镀金层基材.

智能天线广播波束赋形应用探讨

智能天线广播波束赋形应用探讨 摘要:TD-SCDMA的难点在于覆盖与自干扰。解决的办法有很多,本文提供了调整广播波束赋形宽度这种便捷有效的方法,可以根据不同的无线场景,设置最为合理的波束宽度,即达到预期的覆盖效果,又能减少公共信道的干扰,提升系统性能。 关键词:波束宽度场景 1.引言 智能天线是TD-SCDMA的关键技术之一。该技术的运用大大降低了TD-SCDMA系统内部的干扰,提高了系统容量。然而这只适用于用户在通话过程中,智能能天线对每个用户的上行信号均采用赋形波束,使天线主波束对准用户信号到达方向DOA,旁瓣或零陷对准干扰信号到达方向,达到抑制干扰信号的目的,提高系统性能是非常直接的。但在用户没有发射,仅处于接收状态下,基站是不可能知道该用户所处的方位,只能使用全向波束进行发射,所以优化广播信道及下行导频信道波束,不仅可以减少公共信道的干扰,提升系统性能,而且还能根据场景之需,因地制宜,达到良好覆盖效果。 2.广播波束赋形的介绍 天线的垂直波瓣宽度和下倾角决定基站覆盖的距离,而天线的水平波瓣宽度和方位角度决定覆盖的范围。广播波束是在广播时隙形成,实现对整个小区的广播。TD系统中,在帧结构中为广播信道设置了专门的时隙。 图 1 TD帧结构图 波瓣宽度的大小反映了天线的能量辐射集中程度,波瓣宽度越窄天线主瓣(3dB角内)能量越集中,旁瓣对周边小区干扰也越小。对于广播信道全向赋形,全向天线的水平波瓣宽度均为360度;定向天线的常见水平波瓣宽度有30度、65度、90度、120度等多种。 对使用普通天线的无线基站,其小区的覆盖完全由天线的辐射方向图形确定。当然,天线的辐射方向图形是可能根据需要而设计的。但在现场安装后除非更换天线,其辐射方向图形是不可能改变和很难调整的。但智能天线的辐射图形则完全可以用软件控制,在网络覆盖需要调整或由于新的建筑物等原因使原覆盖改变等情况下,均可能非常简单地通过软件来优化,如图2。所以在TD系统中,广播波束赋形已经成为日常优化的一种参数方法。有了它,网优人员就可能轻松地根据实际环境之需,根据周边站点的间距、疏密程度来调整使用广播信道的波束赋形宽度,达到预期的效果。

微带天线设计

微带天线设计 天线大体可分为线天线和口径天线两类。 移动通信用的VHF 、UHF 天线,大多是以对称振 子为基础而发展的各种型式的线天线,卫星地面站接收卫星信号大多用抛物面天线(口径 天线)。 天线的特征与天线的形状、大小及构成材料有关。天线的大小一般以天线发射或接收电磁波的波长l 来计量。因为工作于波长l = 2m 的长为1m 的偶极子天线的辐射特性与工作于波长l = 2cm 的长为1cm 的偶极子天线是相同的。 与天线方向性有关参数:方向性函数或方向图 离开天线一定距离处,描述天线辐射的电磁场强度在空间的相对分布的数学表达式,称为天线的方向性函数; 把方向性函数用图形表示出来,就是方向图。 最大辐射波束通常称为方向图的主瓣。主瓣旁边的几个小的波束叫旁瓣。 为了方便对各种天线的方向图进行比较,就需要规定一些表示方向图特性的参数,这些参数有: 1.天线增益G (或方向性GD )、波束宽度(或主瓣宽度)、旁瓣电平等。 2.天线效率 3.极化特性 4.频带宽度 5.输入阻抗

天线增益是在波阵面某一给定方向天线辐射强度的量度。它是被研究天线在最大辐射方向的辐射强度与被研究天线具有同等输入功率的各向同性天线在同一点所产生的最大辐射强度之比。 天线方向性GD与天线增益G类似但与天线增益定义略有不同。 因为天线总有损耗,天线辐射功率比馈入功率总要小一些,所以天线增益总要比天线方向性小一些。 理想天线能把全部馈入天线的功率限制在某一立体角ΩB内辐射出去,且在ΩB立体角内均匀分布。这种情况下天线增益与天线方向性相等。 理想的天线辐射波束立体角ΩB及波束宽度θB 实际天线的辐射功率有时并不限制在一个波束中,在一个波束内也非均匀分布。在波束中心辐射强度最大,偏离波束中心,辐射强度减小。辐射强度减小到3db时的立体角即定义为ΩB。波束宽度θB与立体角ΩB关系为 旁瓣电平

天线近场测量的综述

天线近场测量的综述

内部☆ 天线近场测量的综述 An OutIine of Near Field Antenna Measurement 一引言 天线工程一问世.天线测量就是人们一直关注的重要课题之一,方法的精确与否直接关系到与之配套系统的实用与否。随着通讯设备不断更新,对天线的要求愈来愈高,常规远场测量天线的方法由于实施中存在着许多困难,有时甚至无能为力,于是人们就渴望通过测量天线的源场而计算出其辐射场的方法。然而由于探头不够理想和计算公式的过多近似,致使这种方法未能赋于实用。为了减小探头与被测天线间的相互影响,Barrett等人在50年代采用了离开天线口面几个波长来测量其波前的幅相特性,实验结果令人大为振奋,由此掀开了近场测量研究的序幕,这一技术的出现,解决了天线工程急待解决而未能解决的许多问题,从而使天线测量手段以新的面目出现在世人的面前。 四十多年过去了,近场测量技术已由理论研究进入了应用研究阶段,并由频域延拓到了时域,它不仅能够测量天线的辐射特性,而且能够诊断天线口径分布,为设计提供可靠、准确设计依据;与此同时,人们利用它进行了目标散射特性的研究,即隐身技术和反隐身技术的研究,从而使该技术的研究有了新的研究手段,进而使此项研究进入了用近场测量的方法对目标成像技术的探索阶段。 二、近场测量技术发展的过程 近场测量的技术研究从五十年代发展至今,其研究方向大致经历四个阶段,如表1所示。 表1 近场测量技术所经历的时间

各个时期的研究内容可概述为以下几个方面 1.理论研究 在Barrett等人的实验之后,Richnlond等人用空气和介质填充的开口波导分别测量了微波天线的近场,并把由近场测量所计算得到的方向图与直接远场法测得的结果相比较,其方向图在主瓣和第一副瓣吻合较好,远副瓣和远场法相差较大。于是人们就分析其原因,最终归结为探头是非理想起点源所致,因此,出现了各种方法的探头修正理论。直到1963年Karns等人提出了平面波分析理论才从理论上严格地解决了非点源探头修正的问题。与此同时,Paris和Leach等人用罗仑兹互易定理也推出了含有探头修正的平面波与柱面波展开表达式[1,2]。Joy 等人也给出了含有探头修正下的球面波展开式及其应用[3 ]。至此,频域近场测量模式展开理论已完全成熟,因此研究者的目光投向了应用领域。在随后的十年里,美国标准局(NBS)等研究机构进行大量的实验证明此方法的准确性[4],其中取样间隔、探头型式的选择以及误差分析是研究者们关心的热门问题。 2.取样间隔及取样间距 由于模式展开理论是建立在付里叶变换的基础上,根据付里叶变换中抽样定理[5],对带宽有限的函数。用求和代替积分,用增量代替积分元不引人计算误差,而平面、柱面、球面的模式展开式对辐射场而言都是带宽有限的函数,忽略探头与被测天线间的电抗耦合(取样间距选取的准则),取样间隔与取样间距按表2所示的准则进行选取(参看图1坐标系)。 表2 取样间隔与取样问距的准则 表中:λ—工作波长;d—探头距被测天线口径面的距离;a—完全包围教测天

智能天线综述

文章编号:1006-7043(2000)06-0051-06 智能天线综述 肖炜丹,楼 吉吉,张 曙 (哈尔滨工程大学电子工程系,黑龙江哈尔滨150001) 摘 要:智能天线技术作为ITM -2000(International Mobile Telephone -2000,2000年全球移动电话)的核心技术之一,受到国内外移动通信业的高度重视.本文对智能天线的基本概念、基本原理和国内外研究现状等进行了综合论述,并讨论了其相关技术及应用和发展前景,最后对智能天线技术研究中的难点和应注意的问题发表了看法.① 关 键 词:智能天线;软件无线电;移动通信;ITM -2000;第二代移动通信系统;第三代移动通信系统中图分类号:TN911.25 文献标识码:A Summ arization of Sm art Antennas XIAO Wei-dan ,LOU Zhe ,ZAN G Shu (Dept.of Electronic Eng.,Harbin Engineering University ,Harbin 150001,China ) Abstract :Great attention is paid to the application of smart antennas by mobile communication trade both here and abroad as one of the key techniques for ITM -2000(International Mobile Telephone -2000).The paper presented basic concepts and principles of the smart antennas ,including its research situation at home and abroad ,and then discussed correlated technologies and potential applications.Finally ,the authors ’opinions were presented about the difficulties and the problems that should be considered in the research of smart antennas. K ey w ords :smart antenna ;software radio ;mobile communication ;ITM -2000;2G;3G 近年来全球通信事业飞速发展,通信业务的需求量越来越大,特别是第三代移动通信等新概念的出现,对通信技术提出了更高的要求.第三代移动通信系统的理想目标是有极大的通信容量,有极好的通信质量,有极高的频带利用率.在复杂的移动通信环境和频带资源受限的条件下达到这一目标,主要受3个因素的限制:1)多径衰落;2)时延扩展;3)多址干扰.为克服这些限制,仅仅采用目前的数字通信技术是远远不够的.近几年开始研究的移动通信的智能技术,即智能移动通信技术,包括智能天线、智能传输、智能接收和智能 化通信协议等,为克服和减轻这些限制,达到或接近第三代移动通信系统的理想目的,提供了最有力的技术支持,已成为第三代移动通信系统最重要的技术保证.而其中的智能天线技术以其独特的抗多址干扰和扩容能力,不仅是目前解决个人通信多址干扰、容量限制等问题的最有效的手段,也被公认为是未来移动通信的一种发展趋势,成为第三代移动通信系统的核心技术.为便于广大通信爱好者能够对智能天线技术有所了解,本文将从智能天线的概念、原理、相关技术及其应用做一简要介绍. ①收稿日期:2000-06-01;修订日期:2000-11-15 作者简介:肖炜丹(1975-),男,黑龙江哈尔滨人,哈尔滨工程大学电子工程系硕士研究生,主要研究方向:通信与信息系统. 第21卷第6期 哈 尔 滨 工 程 大 学 学 报 Vol.21,№.62000年12月 Journal of Harbin Engineering University Dec.,2000

相关主题
文本预览
相关文档 最新文档