高三数学上学期10月月考试题 理(扫描版)
- 格式:doc
- 大小:759.00 KB
- 文档页数:9
高三年级10月考数学参考答案一、单项选择题 二、多项选择题 1 2 3 4 5 6 7 8 B C C D A A DA 三、填空题12.0 13.π 14. 4+四、解答题15.(本小题满分13分)解:(1)由223n S n n =+得当1n =时,115a S ==,当2n ≥时,22123[2(1)3(1)]41n n n a S S n n n n n -=-=+--+-=+所以41n a n =+由34log 141n n a b n =+=+,所以3nn b =(2)由(1)知(41)3n n n a b n =+125393(41)3nn T n =⨯+⨯+++ ①23135393(43)3(41)3n n n T n n +=⨯+⨯++-++ ② ①-②得212154343(41)3n n n T n +-=+⨯++⨯-+⨯ 119(132154(41)313n n n T n -+--=+-+⨯-),所以131(2322n n T n +=--⨯.16.(本小题满分15分)解:(1)由正弦定理得222sin C sin sin sinA B A B =+222a b c ⇒+-=, 由余弦定理得222cos 2a b c C ab +-==,因为(0)C π∈,,所以4C π=, 因为sin B C =所以sin B =,因为(02B π∈,,所以3B π=(2)512A B C ππ=--=,sin sin()A B C =+=由正弦定理sin sin sin a b c A B C ==得a==,b =由21sin 12ABC S ab C ===+△, 得2c =. 17. (本小题满分15分) 解:(1)因为()ln f x x x =-,所以()()ln a a g x f x x x x x =-=--,0x >,,2221()1a x x a g x x x x -++'=-+=,令2211()(24m x x x a x a =-++=--++ ①当14a -≤时,()0g x '≤恒成立,此时()g x 在(0)+∞,上单调递减; ②当104a -<<时,()0m x >x<<所以()g x 在(0上单调递减,在上单调递增,在)+∞上单调递减; ③当0a >时,()0m x >0x<<< 所以()g x 在(0上单调递增,在)+∞上单调递减; 9 10 11AD ABD BC综上所述: 当14a -≤时,()g x 的单调递减区间为(0)+∞,,无单调递增区间; 当104a -<<时, ()g x的单调递减区间为(0和)+∞单调递增区间为;当0a >时,()g x的单调递增区间为(0,单调递减区间为)+∞;(2)由()ln f x x x =-,1()xf x x -'=,由()0f x '>得01x <<,()0f x '<得1x >所以()f x 在(01),上单调递增,在(1)+∞,上单调递减,所以max ()(1)1f x f ==-,所以min |()|1f x =,设ln 1()2x g x x =+,则21ln ()xg x x -'=由()0g x '>得0e x <<,由()0g x '<得e x >,所以()g x 在(0e),上单调递增, 在(e )+∞,上单调递减,所以max ()g x =(e)g 111e 2=+<所以max min ()|()|g x f x <,所以ln 1|()|2x f x x >+对任意的(0)+∞,恒成立.18. (本小题满分17分)解:(1)(0)1()e (0)1x g g x g ''==-=,所以()g x 在(0(0))g ,处的切线方程为:(11y x =+(1)1h b c =+-,2()1(1)1bh x h b x ''=-=-,,所以()h x 在(1(1))h ,处切线方程为:(1)2y b x b c =-+-所以2111b c b -=-=-,即1(1)c a =-≥; 所以c 的最小值为1(2)()e x g x =,则()e x g x '= 所以ln (02a x ∈,时ln ()0()2a g x x '<∈+∞,,时()0g x '> 所以()g x 在ln (02a ,上单调递减,在ln ()2a +∞,上单调递增,故min ln ln ()(22a a g x g ==- ()b h x x c x =+-,则()h x在(0上单调递减,在)+∞上单调递增 令()0h x =,即20x cx b -+=,24c b ∆=- 1.0∆>即c >(0+∞,)上()h x 的两个零点为12x x ,,同时它们恰好为()g x 的零点. 12()0()0ln 102g x g x a ⎧⎪=⎪∴=⎨⎪⎪-<⎩即12122e e e x x a ⎧=⎪⎪=⎨⎪>⎪⎩又1212x x c x x b +==,,则2e 1e c ab a ⎧=>⎪⎨>⎪⎩,此时 1ln ln e e e a a a b a a a b a -++--=>,令1ln y a a a =-+,则21110y a a '=--<,y ∴递减且a →+∞时y →-∞,则2212e e e (0e )y -+∈,,故2212e e e e a b a -+->. 2.0∆≤即0c <≤在(0)+∞,上()0h x ≥,此时只需min ()0g x ≥即21e a ≤≤即可. 此时,e e e b a b a a a -⋅=,令()e a a k a =,则10e a a k -'=≤,即k 在2[1e ],递减,22e 1[e e k -∴∈,而e 1b >,故22e e e a b a -->. 综上所述,e a b a -的取值范围为22e (e )-+∞, 19.(本小题满分17分) (1)设{}n a 的公差为d ,32318S a ==所以26a =,323a a d -==,3n a n =; 由214b b q ==,313(1)141bq T q -==-,所以22520q q -+=,2q =或12q =(舍)所以2n n b =. 1132a b ==,所以1223c c ==,;2264a b ==,所以3446c c ==,3398a b ==,所以5689c c ==,;441216a b ==,所以7812c c =,16=.3574812c c c +=+==,所以1k =.(2)221233(363)(222)222nn n n n n n M S T n ++=+=+++++++=+- 231nn M b =-,即2133223212n n n n +++-=⋅-所以233222n n n +=⋅+,当1n =时符合,令233222n n r n n =+-⋅-1234081826r r r r ====,,,,524r =,64r =-16622n n n r r n +-=+-⋅当4n ≥时,10n n r r +-<所以123456r r r r r r <<<>>> 所以有且只有1n =符合.(3)由2122122(36)(1)n n n n n n n n a b d c c c c -+++=-得 1(96)2(1)(3)2(33)2n nn n n n d n n ++=-+111(1)(32(33)2n n n n n +=-++ 22221111()(32(313)2(313)2(323)2n n E +=-+++⨯⨯+⨯+⨯+) 22111()3(2)23(21)2n n n n +-+++ 21116(63)2n n +=-++16>-. .试题参考答案一.单选题1.【解析】选B.{|2}{|12}U A x x A B x x ==< ≤,≤ð,故选B.2. 【解析】选C.0a <且0b <⇒0a b +<且0ab >,反之也成立,故选C.3. 【解析】选C.12(43i)(i)=(4-3)+(4+3)i z z a a a ⋅=++为实数,所以430a +=所以43a =-,故选C. 4. 【解析】选D.因为|||2|-=+ab a b 平方得,21||2⋅=-a b b ,a 在b 方向上的投影向量为1||||2⋅⋅=-a b b b b b ,故选D. 5. 【解析】选A.53357S a a =⇒=,453623a a a a +=+=,所以616a =,所以63363a a d -==-,故选A.6. 【解析】选A.由2sin cos αα+=两边平方得2254sin 4sin cos cos 2αααα++=,所以4sin cos αα233cos 2α-=-所以2332sin 2(2cos 1)cos 222ααα=-=所以3tan 24α=.故选A. 7. 【解析】选D.因为ln()ln ln ln ln 3333xy x y x y +==⋅故选D.8. 【解析】选A.设零点为(01]t ∈,,则ln 0at b t ++=,()a b ,在直线ln 0xt y t ++=上, 22a b +的几何意义为点()a b ,到原点距离的平方,其最小值为原点到直线ln 0xt y t ++=的距离d 的平方,222ln 1t d t =+, 设22ln ()1t g t t =+,22222ln (12ln )()0(1)t t t t g t t t +-'=<+所以()g t 在(01],单调递减,所以min ()(1)0g t g ==.故选A.二.多选题9.【解析】选AD.|||2i ||2|z z y y -==知A 对C 错,222222i z x xy y x y =+-≠+,故B 错,||||||z x y =+成立,故选AD.10. 【解析】选ABD.由21((0)22n d d S n a n d =+-≠及二次函数的性质知A B ,为真,对D 知100a d <<,从而{}n S 是递减数列,对C :1258--- ,,,,满足{}n S 是递减数列,但0n S <不恒成立,故选ABD .11. 【解析】选BC.对A :(0)1()1(0)2f f f π===,A 错,对B ,令sin x t =,21()sin sin 1f x x x =-++,210t t -++=则sin [02]t x x π==∈,,,有两个实根.B 对.对C :232()sin cos f x x x =+,22()2sin cos 3cos sin f x x x x x '=-,令2()0f x '=即2cos sin 203x x ==,,2cos 3x =的两个根为123(0)(2)22x x πππ∈∈,,,,sin 20x =的根为30222ππππ,,,,,所以2()f x 的极小值点为12x x π,,,C 对.对D :22(2)()f x f x π+=,所以2()f x 为周期函数,但232()sin cos f x x x =+,232()sin cos f x x x π+=-,22()()f x f x π≠+,D 错.三.填空题12.【解析】0.()()f x f x -=特值()()f a f a -=即cos cos |2|a a a =-所以0a =.13.【解析】π.21cos 2cos 2x x +=与cos(2)4x π-的最小正周期相同,14.【解析】4+解1:设|+a b |x =,||-a b y θ=<,,a b >=,254cos [13]x x θ=+∈,,,254cos [13]y y θ=-∈,,且2210x y +=,设x y ϕϕ==,,其中sin ϕ,则)4x y πϕ+=+,当4πϕ=,x y ==时x y +取得最大值当cos sin ϕϕ==即3x =,1y =时x y +取得最小值4,所以最大值与最小值之和为4+.解2:换元后,利用平行直线系和圆弧的位置关系四.解答题15.解:(1)由223n S n n =+得当1n =时,115a S ==,…………………………… …1分当2n ≥时,22123[2(1)3(1)]41n n n a S S n n n n n -=-=+--+-=+……3分所以41n a n =+…………………………………………………………… ……4分由34log 141n n a b n =+=+,所以3n n b =………………………………6分(2)由(1)知(41)3n n n a b n =+ …………………………………………………7分125393(41)3n n T n =⨯+⨯+++ ①23135393(43)3(41)3n n n T n n +=⨯+⨯++-++ ② ……………9分 ①-②得212154343(41)3n n n T n +-=+⨯++⨯-+⨯ ……………………10分 119(132154(41)313n n n T n -+--=+-+⨯-), 所以131(2322n n T n +=--⨯. …………………………………………13分16.解:(1)因为222sin C sin sin sin A B A B =+222a b c ⇒+-=,…2分由余弦定理得222cos 2a b c C ab +-==, (0)C π∈,,所以4C π=, …4分因为sin B C =所以sin B =, ………………………………………6分 因为(0)2B π∈,,所以3B π= …………………………………………………7分(2)512A B C ππ=--= ……………………………………………………………8分sin sin()A B C =+=…………………………………………………10分sin sin sin a b c A B C ==得a ==,b = ………12分由21sin 12ABC S ab C ===+△, …………………………14分得2c =. ……………………………………………………………………15分 (17) 解:(1)因为()ln f x x x =-,所以()()ln a a g x f x x x x x=-=--,0x >,2221()1a x x a g x x x x -++'=-+=, ………………………………………………………2分 令2211()(24m x x x a x a =-++=--++①当14a -≤时,()0g x '≤恒成立,此时()g x 在(0)+∞,上单调递减;②当104a -<<时,()0m x >x <<所以()g x 在(0上单调递减,在上单调递增,在)+∞上单调递减;③当0a >时,()0m x >0x <<<所以()g x 在(0上单调递增,在)+∞上单调递减;……5分 综上所述: 当14a -≤时,()g x 的单调递减区间为(0)+∞,,无单调递增区间;当104a -<<时, ()g x 的单调递减区间为(0和)+∞单调递增区间为;当0a >时,()g x 的单调递增区间为(0,单调递减区间为)+∞;……………………………………………………………………7分 (2)由()ln f x x x =-,1()x f x x-'=,由()0f x '>得01x <<,()0f x '<得1x > 所以()f x 在(01),上单调递增,在(1)+∞,上单调递减, 所以max ()(1)1f x f ==-,所以min |()|1f x =,………………………………………10分 设ln 1()2x g x x =+,则21ln ()x g x x-'= 由()0g x '>得0e x <<,由()0g x '<得e x >,所以()g x 在(0e),上单调递增, 在(e )+∞,上单调递减,所以max ()g x =(e)g 111e 2=+< 所以max min ()|()|g x f x <,…………………………………………………………………14分 所以ln 1|()|2x f x x >+对任意的(0)+∞,恒成立. ……………………………………15分18. 解:(1)(0)1()e (0)1x g g x g ''==-=-,所以()g x 在(0(0))g ,处的切线方程为:(11y x =+………………………………………………………………2分(1)1h b c =+-,2()1(1)1b h x h b x ''=-=-,,所以()h x 在(1(1))h ,处切线方程为:(1)2y b x b c =-+-所以21b c -=,11b -=6分即1(1)c a =-≥所以c 的最小值为1. …………………………………………7分(2)()e x g x =-,则()e x g x '=- 当ln (0)2a x ∈,时ln ()0()2a g x x '<∈+∞,,时()0g x '> 所以()g x 在ln (0)2a ,上单调递减,在ln ()2a +∞,上单调递增,故min ln ln ()(22a a g x g ==- ………………………………………………………9分()b h x x c x =+-,则()h x 在(0上单调递减,在)+∞上单调递增 令()0h x =,即20x cx b -+=,24c b ∆=-1.0∆>即c >(0+∞,)上()h x 的两个零点为12x x ,,同时它们恰好为()g x 的零点.12()0()0ln 102g x g x a ⎧⎪=⎪∴=⎨⎪⎪-<⎩即12122e e e x x a ⎧=⎪⎪=⎨⎪>⎪⎩又1212x x c x x b +==,,则2e 1e c ab a ⎧=>⎪⎨>⎪⎩,此时 …11分 1ln ln e e e a a a b a a a b a-++--=>,令1ln y a a a =-+,则21110y a a'=--<,y ∴递减且a →+∞时y →-∞,则2212e e e (0e )y -+∈,,故2212e e e e a b a -+->.…………………………………14分2.0∆≤即0c <≤时,在(0)+∞,上()0h x ≥,此时只需min ()0g x ≥即21e a ≤≤即可. 此时,e e e b a ba aa -⋅=,令()e a a k a =,则10e a a k -'=≤,即k 在2[1e ],递减,22e 1[e]e k -∴∈,而e 1b >,故22e e e a b a-->.……………………………………………………………………16分 综上所述,e a b a-的取值范围为22e (e )-+∞,………………………………………………17分(19)解:(1)设{}n a 的公差为d ,32318S a ==所以26a =,323a a d -==,3n a n =; ……………………………2分由214b b q ==,313(1)141b q T q-==-,所以22520q q -+=,2q =或12q =(舍)所以2nn b =. ……………………………………………………………………4分 1132a b ==,所以1223c c ==,;2264a b ==,所以3446c c ==, 3398a b ==,所以5689c c ==,;441216a b ==,所以7812c c =,16=. 3574812c c c +=+==,所以1k =. ………………………………………5分(2)221233(363)(222)222n n nn n n n M S T n ++=+=+++++++=+- …7分231n n M b =-,即2133223212n n n n +++-=⋅-所以233222n n n +=⋅+,当1n =时符合, …………………………………………………8分 令233222nn r n n =+-⋅- 1234081826r r r r ====,,,,524r =,64r =-16622n n n r r n +-=+-⋅当4n ≥,10n n r r +-<所以123456r r r r r r <<<>>>所以有且只有1n =符合. …………………………………………………………11分(3)由2122122(36)(1)n n n n n n n n a b d c c c c -+++=-得 1(96)2(1)(3)2(33)2n nn n n n d n n ++=-+111(1)(32(33)2n n n n n +=-++ ………………13分 22231111((32(313)2(313)2(323)2n E =-+++⨯⨯+⨯+⨯+) 22111()3(2)23(21)2n n n n +-+++ ……………………………………15分 21116(63)2n n +=-++16>-.………………………………………………17分。
卜人入州八九几市潮王学校HY 中2021届高三数学上学期10月月考试题理〔含解析〕一、选择题〔本大题一一共12个小题,每一小题5分,一共60分〕1ii+的虚部是〔〕 A.i - B.1-C.1D.i【答案】B 【解析】 试题分析:,虚部为-1.考点:复数的概念和运算. 2.R 是实数集,22{|1},{|1}=<==-M x N y y x x,那么()R C M N =〔〕A.()1,2- B.[]1,2-C.(0)2, D.[]0,2【答案】D 【解析】 【分析】由分式不等式解法和二次函数值域可求得集合M 和集合N ,根据补集和交集的定义可求得结果.【详解】由21x<得:0x <或者2x >,即()(),02,M =-∞+∞[]0,2R C M ∴=21y x =-的值域为[)1,-+∞,即[)1,N =-+∞()[]0,2R C M N ∴=此题正确选项:D【点睛】此题考察集合运算中的补集和交集混合运算,属于根底题.()1,2a =,()1,0b =,()3,4c =,假设λ为实数,()//a b c λ+,那么λ=〔〕A.2B.1C.12D.2-【答案】C 【解析】 【分析】根据向量坐标运算可求得()1,2a bλλ+=+;由向量一共线坐标表示可构造方程求得结果.【详解】()()()1,2,01,2a bλλλ+=+=+()//a b c λ+()4123λ∴+=⨯,解得:12λ= 此题正确选项:C【点睛】此题考察根据向量一共线求解参数值的问题,关键是可以纯熟掌握向量的坐标运算.∈〔-4π,0〕且sin2α=-2425,那么sinα+cosα=〔〕 A.15 B.-15C.-75D.75【答案】A 【解析】24sin 22sin cos 25ααα==-,又α∈〔-4π,0〕,所以sin 0,cos 0αα<>,且sin cos 0αα+>,222241sin cos 2sin cos (sin cos )12525αααααα++=+=-=,所以 1sin cos 5αα+=,选A. ΔABC 中,a x =,2,45b B ==︒,假设ΔABC 有两解,那么x 的取值范围是〔〕A.(2,B.(0,2)C.(2,)+∞D.2)【答案】A 【解析】【详解】因为ΔABC 有两解,所以2sin 45bb a a <<∴<<︒A .12y =与曲线2sin cos 22⎛⎫⎛⎫=+- ⎪ ⎪⎝⎭⎝⎭y x x ππ在y 轴右侧的交点自左向右依次记为M 1,M 2,M 3,…,那么113||M M 等于〔〕A.6πB.7πC.12πD.13π【答案】A 【解析】 【分析】利用诱导公式和二倍角公式可将函数化为sin 2y x =,结合正弦函数图象可得12y =与函数sin 2y x =在y 轴右侧的交点坐标,求得113,M M 坐标后,根据向量模长的求解方法可求得结果.【详解】2sin cos 2cos sin sin 222y x x x x x ππ⎛⎫⎛⎫=+-== ⎪ ⎪⎝⎭⎝⎭11,122M π⎛⎫∴ ⎪⎝⎭,13731,122M π⎛⎫⎪⎝⎭()1136,0M M π∴=1136M M π∴=此题正确选项:A【点睛】此题考察直线与正弦型函数交点的问题,关键是可以将函数化为正弦型函数,结合正弦函数的图象求解交点坐标.()3sin()6f x x πω=-(0)ω>和()3cos(2)g x x ϕ=+的图象的对称中心完全一样,假设[0,]2x π∈,那么()f x 的取值范围是〔〕A.3[,3]2-B.[3,3]-C.1[,22-D.[0,]2【答案】A 【解析】考点:由y=Asin 〔ωx+φ〕的局部图象确定其解析式;正弦函数的定义域和值域. 专题:计算题.解答:解:函数f(x)=3sin(ωx -π6)〔ω>0〕和g 〔x 〕=3cos 〔2x+φ〕的图象的对称中心完全一样,所以ω=2,f(x)=3sin(2x-π6),因为x∈[0,π2]所以2x-π6∈[-π6,5π6],所以3sin(2x-π6)∈[-32,3]; 应选A点评:此题是根底题,考察三角函数的根本知识,根本性质的应用,周期的应用,考察计算才能. 8.在ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,()()32sin B A sin B A sin A -++=,且c =3C π=,那么ABC 的面积是()A.4B.6C.3D.4或者【答案】D 【解析】分析:由题意得3sinBcosA sinAcosA =,分0cosA =和0cosA ≠两种情况求解,然后结合三角形面积公式可得结果. 详解:∵()()32sinB A sin B A sin A -++=,∴3sinBcosA sinAcosA =. ①当0cosA =时,ABC 为直角三角形,且2A π=.∵7c=,3C π=,∴72133b tanπ==.∴11217372236ABCSbc ==⨯⨯=. ②当0cosA ≠时,那么有3sinB sinA =, 由正弦定理得3b a =. 由余弦定理得2222c a b abcosC =+-,即()()22173232aa a a =+-⋅⋅, 解得1a =.∴1133132234ABCSabsinC sin π==⨯⨯⨯=.综上可得ABC 的面积是334或者736.应选D .点睛:在判断三角形的形状时,对于形如3sinBcosA sinAcosA =的式子,当需要在等式的两边约去cosA 时,必需要考虑cosA 是否为0,否那么会丢掉一种情况.是的重心,a ,b ,c 分别是角的对边,假设3G G GC 03a b c A +B +=,那么角〔〕A.90B.60C.45D.30【答案】D【解析】 试题分析:由于是的重心,,,代入得,整理得,,因此,故答案为D.考点:1、平面向量根本定理;2、余弦定理的应用. 10.在平面直角坐标平面上,(1,4),(3,1)OA OB ==-,且O A 与OB 在直线l 上的射影长度相等,直线l 的倾斜角为锐角,那么l 的斜率为〔〕A.43B.52C.25D.34【答案】C 【解析】【详解】设直线l 的斜率为k ,那么直线l 的方向向量为(1,)m k =,由且O A 与OB 在直线l 上的射影长度相等,得OA m OB m mm⋅⋅=,即143k k+=-+,解之得25k =或者43k =-〔舍〕,应选C . 考点:向量投影定义及运算.R 的函数()f x 满足()()24+=f x f x ,当[)0,2x ∈时,22,[0,1)()1),[1,2)x x x f x x x ⎧-∈⎪=⎨+∈⎪⎩,假设)2[0∈-,x 时,对任意的 )2[1∈,t 都有2()168t af x t≥-成立,那么实数a 的取值范围是〔〕A.(]2-∞,B.[)2+∞,C.(]6-∞,D.[)6+∞,【答案】D 【解析】 【分析】由()()24+=f x f x 可求解出[)2,1x ∈--和[)1,0-时,()f x 的解析式,从而得到()f x 在[)2,0-上的最小值,从而将不等式转化为2116816t a t -≤-对[)1,2t ∈恒成立,利用别离变量法可将问题转化为322a t t ≥+,利用导数可求得32t t +在[)1,2上的最大值,从而得到212a ≥,进而求得结果.【详解】当[)2,1x ∈--时,[)20,1x +∈[)2,1x ∴∈--时,()min 31216f x f ⎛⎫=-=- ⎪⎝⎭当[)1,0x ∈-时,[)21,2x +∈()())112344f x f x x ∴=+=+[)1,0x ∴∈-时,()()min 112f x f =-= [)2,0x ∴∈-时,()min116f x =-,即2116816t a t -≤-对[)1,2t ∈恒成立即:322a t t ≥+对[)1,2t ∈恒成立令()32gt t t =+,[)1,2t ∈,那么()232g t t t '=+当[)1,2t ∈时,()0g t '>,那么()g t 在[)1,2上单调递增()()212g t g ∴<=212a ∴≥,解得:[)6,a ∈+∞此题正确选项:D【点睛】此题考察恒成立问题的求解,涉及到利用函数性质求解出未知区间内函数的解析式,关键是可以将问题转化为所求变量与函数最值之间的大小关系的比较问题.32()(0)g x ax bx cx d a =+++≠的导函数为()f x ,且230a b c ++=,(0)(1)0,f f >设12,x x 是方程()0f x =的两根,那么12x x -的取值范围是〔〕A.2[0,)3 B.4[0,)9C.12(,)33D.14(,)99【答案】A 【解析】 试题分析:因为2()32f x ax bx c=++,所以(0)(1)(32)(22)0,01c f f c a b c c a c a=++=-><<,又12312[0,).333a c c x x a a --====-∈考点:二次方程根与系数关系二、填空题〔本大题一一共4小题,每一小题5分,一共20分〕 ①函数()cos sin f x x x =的最大值为1;②“假设22am bm <,那么a b <③假设ABC ∆为锐角三角形,那么有sin sin sin cos cos cos A B C A B C ++>++;④“0a ≤〞是“函数()2f x x ax=-在区间()0,∞+内单调递增〞的充分必要条件.【答案】③④ 【解析】 【分析】利用二倍角公式化简函数,可得()1sin 22f x x =20m =【详解】①()1cos sin sin 22f x x x x ==()max 12f x ∴=,①错误②“假设22am bm <,那么a b <a b <,那么22am bm <〞假设20m =,可知22am bm =③ABC∆为锐角三角形0,2A π⎛⎫∴∈ ⎪⎝⎭,0,2B π⎛⎫∈ ⎪⎝⎭,2A B π+> 2A B π∴>-且0,22B ππ⎛⎫-∈ ⎪⎝⎭sin sin cos 2A B B π⎛⎫∴>-= ⎪⎝⎭同理可得:sin cos B C >,sin cos C A >sin sin sin cos cos cos A B C A B C ∴++>++,③正确④令20x ax -=,解得:10x =,2x a =当0a ≤时,20x ax ->对()0,x ∈+∞恒成立()2f x x ax ∴=-()f x 对称轴为02ax =≤()f x ∴在()0,∞+上单调递增,充分条件成立 当0a>时,()22,0,ax x x a f x x ax x a⎧-<<=⎨-≥⎩,此时()f x 在,2a a ⎛⎫ ⎪⎝⎭上单调递减,不满足题意∴“0a ≤〞是“()2f x x ax=-在区间()0,∞+内单调递增〞的充分必要条件,④正确此题正确结果:③④ .(sin ,cos )P αα在直线2y x =-上,那么tan()4πα+=___________. 【答案】13【解析】 【分析】根据点在直线上可代入求得tan α,利用两角和差正切公式可求得结果.【详解】()sin ,cos P αα在直线2y x =-上cos 2sin αα∴=-1tan 2α∴=-此题正确结果:13【点睛】此题考察两角和差正切公式的应用,属于根底题.,a b满足20a b =≠,且函数在()()321132f x x a x a b x =++⋅在R 上有极值,那么向量,a b的夹角的取值范围是_______________.【答案】,3ππ⎛⎤⎥⎝⎦【解析】 【分析】根据函数有极值可知导函数有变号零点,由()f x '为二次函数可知>0∆,从而得到214a b a ⋅<,根据向量夹角公式可求得cos ,a b <>的范围,根据向量夹角的范围和余弦函数图象可确定夹角的取值范围.【详解】由题意得:()()2f x x a x a b '=++⋅()f x 在R 上有极值()240a a b ∴∆=-⋅>,即214a b a ⋅<此题正确结果:,3ππ⎛⎤⎥⎝⎦【点睛】此题考察向量夹角取值范围的求解,涉及到导数与极值之间的关系、向量夹角公式的应用等知识;关键是可以根据函数有极值确定导函数有变号零点,从而利用二次函数的性质得到向量数量积和模长之间的关系.()f x 定义在(,0)(0,)ππ-上,其导函数为()f x ',且()02f π=,当0πx <<时,()sin ()cos 0f x x f x x '-<,那么关于x 的不等式()2()sin 6f x f x π<的解集为.【答案】(,0)(,)66πππ- 【解析】 【详解】设()()sin f x g x x =,∴2()sin ()cos ()sin f x x f x xg x x'='-, ∵()f x 是定义在(,0)(0,)ππ-上的奇函数,∴()()()()sin()sin f x f x g x g x x x--===-,∴()g x 是定义在(,0)(0,)ππ-上的偶函数,∵当0πx <<时,()sin ()cos 0f x x f x x '-<,∴()0g x '<,∴()g x 在(0,)π上单调递减,()g x 在(,0)π-上单调递增,∵()02f π=,∴()2()02sin 2f g πππ==, ∵()2()sin 6f x f x π<,∴()()6g x g π<,(0,)x π∈,或者,(,0)x π∈-,∴6x ππ<<或者06x π-<<. ∴关于x 的不等式()2()sin 6f x f x π<的解集为(,0)(,)66πππ-.考点:利用导数研究函数的单调性.三、解答题〔本大题一一共6小题,一共70分〕 〔Ⅰ〕当a43=时,求()f x 的极值点; 〔Ⅱ〕假设()f x 为R 上的单调函数,求a 的取值范围。
绵阳中学高2022级高三上期第一学月月考数学试题一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知全集,集合和的关系的韦恩(Venn )图如图所示,则阴影部分所示的集合的元素共有( )A.3个B.2个C.1个D.无穷多个2.围棋是中国传统棋种,蕴含着中华文化丰富内涵,围棋棋盘横竖各有19条线,共有个落子点.每个落子点都有落白子、落黑子和空白三种可能,因此围棋空间复杂度的上限.科学家们研究发现,可观测宇宙中普通物质的原子总数.则下列各数中与最接近的是( )(参考数据:)A. B. C. D.3.的定义域为( )A. B.C. D.4.设,,,则( )A. B. C. D.5.设函数,则不等式的解集是( )A. B. C. D.6.下列选项可以使得成立的一个充分不必要条件的是( )A. B. C. D.R U ={}2230M x x x =--≤{}21,Z N x x k k ==-∈1919361⨯=3613M ≈8010N ≈MNlg 30.48≈9310831073105310lg(tan 1)y x =-ππππ,Z 24xk x k k ⎧⎫⎨⎬⎩⎭+>>+∈πππ,π,Z 42x x k x k k ⎭>+≠+⎧⎫⎨⎬⎩∈ππ,Z 4x x k k ⎧⎫⎨⎬⎩⎭>+∈ππ,Z 42k x x k ⎧⎫⎨⎬⎩⎭>+∈0.30.2a =0.20.3b =0.2log 2c =c b a>>c a b >>b a c >>a b c>>3()f x x x =()()332log 3log 0f x f x +-<1,2727⎛⎫⎪⎝⎭10,27⎛⎫ ⎪⎝⎭()0,27()27,+∞1144xy -≤≤221x y +=2241x y +=1x y +=1y x=7.函数的导函数,若函数仅在有极值,则的取值范围是( )A. B.或 C.或 D.8.存在三个实数,,使其分别满足下述两个等式:(1);(2)其中表示三个实数,,中的最小值,则( )A.的最小值是 B.的最大值是 C.的最小值是 D.的最大值是二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.)9.已知定义在R 上的奇函数,其周期为4,当时,,则( )A. B.的值域为C.在上单调递增D.在上有9个零点10.已知函数,下列说法正确的是( )A.关于对称B.的值域为R ,当且仅当或C.的最大值为1,当且仅当D.有极值,当且仅当11.关于函数,下列说法中正确的是( )A.图象关于直线对称 B.为偶函数C.为的周期D.三、填空题(本题共3小题,每小题5分,共15分.把答案填在题中的横线上.)12.已知顶点在坐标原点,始边与轴非负半轴重合,其终边上一点P 的坐标为,则的值为________13.甲说:在上单调递减乙说:存在实数使得在成立若甲、乙两人至少有一人说的话是对的,则的取值范围是________()f x ()(1)(ln 1)f x x x ax '=-+-()f x 1x =a 21e a ≤-21ea <-1a =21ea ≤-1a =1a =1a 2a 3a 1232a a a =-1230a a a ++=M 1a 2a 3a M 2-M 2-M M -()f x (0,2)x ∈()22xf x =-(2024)0f =()f x (2,2)-()f x (2,2)-()f x [4,4]-()214()log 21f x x ax =-+()f x x a =()f x 1a ≥1a ≤-()f x a =()f x 1a <()cos sin 2f x x x =π4x =()f x 2π()f x αx 11,23⎛⎫⎪⎝⎭sin(2)α()2ln 23y x ax =-+(,1]-∞x 2210x ax -+>1,22⎡⎤⎢⎥⎣⎦a14.已知不等式对任意的实数恒成立,则的最大值为________四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.(13分)已知函数.(1)若,求函数的极值;(2)讨论函数的单调性.16.(15分)已知函数,将函数的图象向右平移个单位长度,再将所得函数图象上各点的横坐标缩短到原来的,纵坐标不变,得到函数的图象.(1)求的解析式;(2)若关于的方程在区间上有且只有两个实数解,求实数的取值范围.17.(15分)已知,,,(1)求的值(2)求角的值.18.(17分)已知函数.(1)证明:曲线是中心对称图形;(2)若,求实数m 的取值范围.19.(17分)已知函数.(1)函数与的图像关于对称,求的解析式;(2)在定义域内恒成立,求的值;(3)求证:,.112x aeax b -+-≥x ba3212()232a f x x x ax +=-+1a =()f x ()f x π()sin 26f x x ⎛⎫=++ ⎪⎝⎭()f x π212()y g x =()g x x ()g x k =-π5π,186⎡⎤-⎢⎥⎣⎦k ππ42α≤≤3ππ2β≤≤4sin 25α=cos()αβ+=225sin 8sincos11cos 82222πsin 2ααααα++-⎛⎫- ⎪⎝⎭βα-3()ln2(1)2xf x x x x=++--()y f x =(21)()40f m f m -+-<()2ln(1)cos(2)g x x x =--+--()f x ()g x 1x =-()f x ()1f x ax -≤a 2111ln 42nk n f k =+⎛⎫-< ⎪⎝⎭∑*N n ∈绵阳中学高2022级高三上期第一学月月考数学试题参考答案题号1234567891011答案AAACBBABABDABCCD12.13. 14.8.【详解】由已知得,,,中必有2个正数,1个负数,设,,,则,因为,所以,所以,即,所以,由得,,即,所以,故选:B.10.【详解】A.令,有,由于,所以,所以关于对称,故A 正确;B.当函数的值域为R ,则能取到的所有值,所以解得:或,故B 正确;C.若函数的最大值为1,则,故C 正确;D.若有极值,则在定义域内不单调,所以,则,故D 错误.故选:ABC 11.【详解】对于A ,,故A 错误;对于B ,,故B 错误对于C ,,故是的周期,故C 正确;对于D ,,令故,,利用导数求得,故D 正确.故选:CD 12132a <22ln 2-1a 2a 3a 30a <10a >20a >3M a =1230a a a ++=312a a a -=+312a a a -=+≥23124a a a ≤331234a a a a ≥1232a a a =-3324a ≤-338a ≤-32a ≤-2()21g x x ax =-+()(2)g x g a x =-14()log ()f x g x =1144(2)log (2)log ()()f a x g a x g x f x -=-==()f x x a =2()21g x x ax =-+(0,)+∞2440a ∆=-≥1a ≥1a ≤-()f x min 11()()44g x g a a =⇒=⇒=()f x 2()21g x x ax =-+2440a ∆=-<11a -<<ππcos sin(π2)sin sin 2()22f x x x x x f x ⎛⎫⎛⎫-=--=≠⎪ ⎪⎝⎭⎝⎭()cos()sin(2)()f x x x f x -=--=-(2π)cos(2π)sin(24π)cos sin 2()f x x x x x f x +=++==2π()f x ()22()cos sin 22cos sin 21sin sin f x x x x x x x ===-sin x t =()2()21f x t t =-[1,1]t ∈-()f x13.甲对,则有在上单调递减,且大于零,所以有且,则.若乙对,则,,若甲、乙两人至少有一人说的话是对的其对立面为甲乙说的均不对,此时或与求交集为,取其补集后的取值范围,所以14.可转化为图像恒在上方,所以必然有,现考虑刚好相切时的情况,设切点为,则,消元得到带得到,所以图像恒在上方,只需要,所以,令,所以15.【详解】(1),,所以或时,,时,,则在上递减,在递增,所以的极小值为,极大值为.(2),当时,,所以在上递增,当时,或时,;时,,所以在上递增,在上递减,当时,或时,;时,,所以在上递增;在上递减.16.【详解】(1)将的图象向右平移个单位长度后,得到的图象,2210x ax -+>(,1]-∞1a ≥420a ->12a ≤<1,22x ⎡⎤∃∈⎢⎥⎣⎦max 115522224x a x a a a x x ⎛⎫+>⇒+>⇒>⇒< ⎪⎝⎭{1a a <}2a ≥54a a ⎧≥⎫⎨⎬⎩⎭{}2a a ≥a {}2a a <{}2a a <11x ay e-=2y ax b =+0a >0110,x ax e-+⎛⎫ ⎪⎝⎭001111022x a x a e ae ax b-+-+⎧=⎪⎨⎪=+⎩022a b x a -=0112x a e a -+=121212ln 22422ln 22a b a ab e a a b a a a a a--+=⇒=--⇒=--11x ay e -+=2y ax b =+422ln 2b a a a ≤--242ln 2b a a a ≤--222(1)42ln 2()()a a h a h a a a-'--=⇒=max ()(1)22ln 2h a h ==-321323()2x x x f x =-+(1)(2)()x x f x =--'1x <2x >()0f x '>12x <<()0f x '<()f x (1,2)(,1),(2,)-∞+∞()f x 2(2)3f =5(1)6f =()()(2)f x x a x '=--2a =()0f x '≥()f x (,)-∞+∞2a >2x <x a >()0f x '>2x a <<()0f x '<()f x (,2),(,)a -∞+∞(2,)a 2a <x a <2x >()0f x '>2a x <<()0f x '<()f x (,),(2,)a -∞+∞(,2)a ()f x π2πππsin 2sin 2263y x x ⎡⎤⎛⎫⎛⎫=-++=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦再将所得函数图象上所有点的横坐标缩短到原来的,纵坐标不变,得到的图象,所以.(2)因为,所以.,即在区间上有且只有两个实数解,于是函数与的图象在区间上有且只有两个交点,,,,所以.画出在区间上的图象如图所示,所以,所以,.所以实数的取值范围是.17.(1)由12πsin 223y x ⎛⎫=-+ ⎪⎝⎭π()sin 223g x x ⎛⎫=-+ ⎪⎝⎭π5π186x-≤≤4ππ4π2933x-≤-≤()g x k =-πsin 223x k ⎛⎫-=-- ⎪⎝⎭π5π,186⎡⎤-⎢⎥⎣⎦πsin 23y x ⎛⎫=-⎪⎝⎭2y k =--π5π,186⎡⎤-⎢⎥⎣⎦44πsin sin 99π⎛⎫-=- ⎪⎝⎭4πππ3πsin sin πsin sin 3339⎛⎫=+=-=-= ⎪⎝⎭3π4ππ0992<<<4π4πsin sin93⎛⎫-< ⎪⎝⎭πsin 23y x ⎛⎫=-⎪⎝⎭π5π,186⎡⎤-⎢⎥⎣⎦21k ≤--<23k +≤-<32k -<≤k 3,2⎛--+ ⎝222225sin 5cos 4sin 6cos 85sin 8sin cos 11cos 82222222πcos sin 2αααααααααα⎛⎫+++-++- ⎪⎝⎭=-⎛⎫- ⎪⎝⎭2254sin 6cos 84sin 6cos 34sin 3cos 22(4tan 3)cos cos cos αααααααααα++-+-+====-+---又因为,所以,可得,解得或,由于,所以.原式.(2)又由知,因则,由,又因,故.18.【详解】(1)函数,定义域为,所以曲线关于点对称.(2),因为,,所以,所以在定义域上单调递增;又关于点对称,,由(1)得恒成立,所以,所以所以,解得19.【详解】(1)依题意,设图像上任意一点坐标为,则其关于对称的点在图像上,4sin 25α=2sin cos 5αα=222sin cos tan 2sin cos 1tan 5αααααα==++tan 2α=1tan 2α=ππ42α≤≤tan 2α=∴11=-3ππ2β≤≤5π2π4αβ≤+≤cos()αβ+=sin()αβ+===sin()sin[()2]sin()cos 2cos()sin 2βααβααβααβα-=+-=+-+3455⎛⎛⎫=--⨯= ⎪ ⎝⎭⎝π5π24βα≤-≤3π4βα-=3()ln 2(1)2xf x x x x=++--(0,2)332()(2)ln 2(1)ln 2(2)(1)2x xf x f x x x x x x x-+-=++-++-+--332ln [22(2)](1)(1)04042x x x x x x x x-⎡⎤=⋅++-+-+-=++=⎣⎦-()y f x =(1,2)22112()23(1)23(1)2(2)f x x x x x x x '=+++-=++---(0,2)x ∈20(2)x x >-22()23(1)0(2)f x x x x '=++->-()f x (0,2)()f x (1,2)(21)()4f m f m -+<()(2)4f x f x +-=()(2)4f m f m +-=(21)()4()(2)f m f m f m f m -+<=+-212021202022m mm m m -<-⎧⎪<-<⎪⎨<<⎪⎪<-<⎩112m <<()f x ()00,x y 1x =-()002,x y --()g x则,则,故,;(2)令,则在在恒成立,又,且在上是连续函数,则为的一个极大值点,,.下证当时,在恒成立,令,,当,,在上单调递增,当,,在上单调递减,故,在上恒成立,又,则时,恒成立,综上,.(3)由(2)可知:,则,即,则,又由(2)可知:在上恒成立,则在上恒成立且当且仅当时取等,令,,则,即,则,综上,,即证.()()0002y f x g x ==--()()()000022ln 1cos f x g x x x =--=++()01x >-()2ln(1)cos f x x x =++(1)x >-()()12ln(1)cos 1h x f x ax x x ax =--=++--(1)x >-()0h x ≤(1,)x ∈-+∞(0)0h =()h x (1,)x ∈-+∞0x =()h x 2()sin 1h x x a x '=--+(0)202h a a '=-=⇒=2a =()0h x ≤(1,)x ∈-+∞()ln(1)x x x ϕ=+-1()111xx x x ϕ'=-=-++(1,0)x ∈-()0x ϕ'>()x ϕ(1,0)-(0,)x ∈+∞()0x ϕ'<()x ϕ(0,)+∞()(0)0x ϕϕ≤=ln(1)x x +≤(1,)-+∞cos 1x ≤2a =()()12[ln(1)](cos 1)0h x f x ax x x x =--=+-+-≤2a =()12f x x -≤11111222f k k ⎛⎫⎛⎫--≤- ⎪ ⎪⎝⎭⎝⎭1122f k k ⎛⎫-≤ ⎪⎝⎭211111122122nk n f k n n n =+⎛⎫⎛⎫-≤+++ ⎪ ⎪++⎝⎭⎝⎭∑ ln(1)x x +≤(1,)-+∞ln 1x x ≤-(0,)+∞1x =(0,1)1n x n =∈+*N n ∈1ln 1111n n n n n -<-=+++11ln ln ln(1)ln 11n n n n n n n +<-==+-++111ln(1)ln ln(2)ln(1)ln(2)ln(21)122n n n n n n n n n+++<+-++-+++--++ ln(2)ln ln 2n n =-=21112ln 2ln 42nk n f k =+⎛⎫-<= ⎪⎝⎭∑。
一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符2024-2025学年湖北省襄阳市高三上学期10月月考数学检测试题合题目要求的.1. 已知集合31A x x ⎧⎫=∈∈⎨⎬-⎩⎭Z Z ,则用列举法表示A =( )A. {}2,0,1,2,4- B. {}2,0,2,4- C. {}0,2,4 D. {}2,4【答案】B 【解析】【分析】由题意可得1x -可为1±、3±,计算即可得.【详解】由题意可得1x -可为1±、3±,即x 可为0,2,2,4-,即{}2,0,2,4A =-.故选:B.2. 设3i,ia a z +∈=R ,其中i 为虚数单位.则“1a <-”是“z >”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件 D. 既不充分也不必要条件【答案】A 【解析】【分析】首先根据复数代数形式的除法运算化简z ,再求出z,令z >a 的取值范围,最后根据充分条件、必要条件的定义判断即可.【详解】因为23i 3i 3i i ia az a +-===-,所以z =令z >>1a >或1a <-,所以1a <-推得出z >,故充分性成立;由z >推不出1a <-,故必要性不成立;所以“1a <-”是“z >的充分不必要条件.故选:A3. 已知向量a ,b 不共线,且c a b λ=+ ,()21d a b λ=++ ,若c 与d 同向共线,则实数λ的值为( )A. 1B.12C. 1或12-D. 1-或12【答案】B 【解析】【分析】先根据向量平行求参数λ,再根据向量同向进行取舍.【详解】因为c与d 共线,所以()2110λλ+-=,解得1λ=-或12λ=.若1λ=-,则c a b =-+,d a b =- ,所以d c =- ,所以c 与d 方向相反,故舍去;若12λ=,则12c a b =+ ,2d a b =+ ,所以2d c = ,所以c与d 方向相同,故12λ=为所求.故选:B4. 已知3322x y x y ---<-,则下列结论中正确的是( )A. ()ln 10y x -+> B. ln0yx> C. ln 0y x +> D. ln 0y x ->【答案】A 【解析】【分析】构造函数()32xf x x -=-,利用()f x 的单调性可得x y <,进而可得.【详解】由3322x y x y ---<-得3322x y x y ---<-,设()32xf x x -=-,因函数3y x =与2x y -=-都是R 上的增函数,故()f x 为R 上的增函数,又因3322x y x y ---<-,故x y <,()ln 1ln10y x -+>=, 故A 正确,因y x,y x +,y x -与1的大小都不确定,故B ,C ,D 错误,故选:A5. 从0,1,2,3,4,5,6这7个数中任选5个组成一个没有重复数字的“五位凹数12345a a a a a ”(满足12345a a a a a >><<),则这样的“五位凹数”的个数为( )A. 126个 B. 112个 C. 98个 D. 84个【答案】A 【解析】【分析】利用分步乘法计数原理可得.【详解】第一步,从0,1,2,3,4,5,6这7个数中任选5个共有57C 种方法,第二步,选出的5个数中,最小的为3a ,从剩下的4个数中选出2个分给12,a a ,由题意可知,选出后1245,,,a a a a 就确定了,共有24C 种方法,故满足条件的“五位凹数”5274C C 126=个,故选:A6. 若数列{}n a 满足11a =,21a =,12n n n a a a --=+(3n ≥,n 为正整数),则称数列{}n a 为斐波那契数列,又称黄金分割数列.在现代物理、准晶体结构、化学等领域,斐波那契数列都有直接的应用.设n S 是数列{}n a 的前n 项和,则下列结论成立的是( )A. 78a = B. 135********a a a a a +++⋅⋅⋅+=C. 754S = D. 24620202021a a a a a +++⋅⋅⋅+=【答案】B 【解析】【分析】按照斐波那契数列的概念,找出规律,得出数列的性质后逐个验证即可.【详解】解析:按照规律有11a =,21a =,32a =,43a =,55a =,68a =,713a =,733S =,故A 、C 错;21112123341n n n n n n n n n n n n n n a a a a a a a a a a a a a S ++--------=+=+++=+++++==+ ,则202020181220183520191352019111a S a a a a a a a a a a =+=++++=++++=++++ ,故B 对;24620202234520182019a a a a a a a a a a a ++++=+++++++ 1234520182019201920211a a a a a a a S a =+++++++==- ,故D 错.故选:B .7. 已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的左,右焦点,A ,B 是椭圆C 上的两点.若122F A F B = ,且12π4AF F ∠=,则椭圆C 的离心率为( )A13B.C.D.23【答案】B 【解析】【分析】设1AF =,结合题意可得2AF,根据椭圆定义整理可得22b c m -=,根据向量关系可得1F A ∥2F B,且2BF =2b c m+=,进而可求离心率.【详解】由题意可知:()()12,0,,0F c F c -,设1,0AF m =>,因为12π4AF F ∠=,则()2,2A c m m -+,可得2AF =由椭圆定义可知:122AF AF a+=,即2a +=,整理可得22b c m-=;又因为122F A F B = ,则1F A ∥2F B,且2112BF AF ==,则(),B c m m +,可得1BF =由椭圆定义可知:|BF 1|+|BF 2|=2a2a =,.2bcm+=;即2c c-=+3c=,所以椭圆C的离心率cea==.故选:B.【点睛】方法点睛:椭圆的离心率(离心率范围)的求法求椭圆的离心率或离心率的范围,关键是根据已知条件确定a,b,c的等量关系或不等关系,然后把b用a,c代换,求e的值.8. 圆锥的表面积为1S,其内切球的表面积为2S,则12SS的取值范围是()A. [)1,+∞ B. [)2,+∞C. )∞⎡+⎣ D.[)4,+∞【答案】B【解析】【分析】选择OBC∠(角θ)与内切球半径R为变量,可表示出圆锥底面半径r和母线l,由圆锥和球的表面积公式可得()122212tan1tanSSθθ=-,再由2tan(0,1)tθ=∈换元,转化为求解二次函数值域,进而得12SS的取值范围.【详解】设圆锥的底面半径为r,母线长为l,圆锥内切球半径为R,如图作出圆锥的轴截面,其中设O为外接圆圆心,,D E为切点,,AB AC为圆锥母线,连接,,,OB OD OA OE.设OBCθ∠=,tanRrθ=,0tan1θ<<tanRrθ∴=.OD AB⊥,OE BC⊥,πDBE DOE∴∠+∠=,又πAOD DOE∠+∠=,2AOD DBE θ∴∠=∠=,tan 2AD R θ∴=,22tan 2tan Rl r AD BD r AD r R θθ∴+=++=+=+,则圆锥表面积()21πππS r rl r l r =+=+,圆锥内切球表面积224πS R =,所求比值为()212222π2tan 21tan 1tan tan 4π2tan 1tan R R R S S R θθθθθθ⎛⎫+ ⎪-⎝⎭==-,令2tan 0t θ=>,则()2211()2122222g t t t t t t ⎛⎫=-=-+=--+ ⎪⎝⎭,则10()2g t <≤,且当12t =时,()g t 取得最大值12,故122S S ≥,即12S S 的取值范围是[)2,+∞.故选:B.【点睛】关键点点睛:求解立体几何中的最值问题一般方法有两类,一是设变量(可以是坐标,也可以是关键线段或关键角)将动态问题转化为代数问题,利用代数方法求目标函数的最值;二是几何法,利用图形的几何性质,将空间问题平面化,将三维问题转化为二维问题来研究,以平面几何中的公理、定义、定理为依据,以几何直观为主要手段直接推理出最值状态何时取到,再加以求解.二、多选题:本题共3小题,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 设A ,B 为随机事件,且()P A ,()P B 是A ,B 发生的概率. ()P A ,()()0,1P B ∈,则下列说法正确的是( )A. 若A ,B 互斥,则()()()P A B P A P B ⋃=+B. 若()()()P AB P A P B =,则A ,B 相互独立C 若A ,B 互斥,则A ,B 相互独立D. 若A ,B 独立,则()(|)P B A P B =【答案】ABD 【解析】【分析】利用互斥事件的概率公式可判断A 选项;由相互独立事件的概念可判断B 选项;由互斥事件和相互独立事件的概念可判断C 选项;由相互独立事件的概念,可判断D 选项.【详解】对于选项A ,若,A B 互斥,根据互斥事件的概率公式,则()()()P A B P A P B ⋃=+,所以选项A 正确,.对于选项B ,由相互独立事件概念知,若()()()P AB P A P B =,则事件,A B 是相互独立事件,所以选项B 正确,对于选项C ,若,A B 互斥,则,A B 不一定相互独立,例:抛掷一枚硬币的试验中,事件A :“正面朝上”,事件B :“反面朝上”,事件A 与事件B 互斥,但()0P AB =,1()()2P A P B ==,不满足相互独立事件的定义,所以选项C 错误,对于选项D ,由相互独立事件的定义知,若A ,B 独立,则()(|)P B A P B =,所以选项D 正确,故选:ABD.10. 已知函数()sin sin cos 2f x x x x =-,则( )A. ()f x 的图象关于点(π,0)对称B. ()f x 的值域为[1,2]-C. 若方程1()4f x =-在(0,)m 上有6个不同的实根,则实数m 的取值范围是17π10π,63⎛⎤⎥⎝⎦D. 若方程[]22()2()1(R)f x af x a a -+=∈在(0,2π)上有6个不同的实根(1,2,,6)i x i = ,则61i i ax =∑的取值范围是(0,5π)【答案】BCD 【解析】【分析】根据(2π)()f f x =-是否成立判断A ,利用分段函数判断BC ,根据正弦函数的单调性画出分段函数()f x 的图象,求出的取值范围,再利用对称性判断D.【详解】因为()sin sin cos 2f x x x x =-,所以(2π)sin(2π)sin(2π)cos 2(2π)sin sin cos 2()f x x x x x x x f x -=----=--≠-,所以()f x 的图象不关于点(π,0)对称,故A 错误;当sin 0x ≥时,()222()sin 12sin 3sin 1f x x x x =--=-,由[]sin 0,1x ∈可得[]()1,2f x ∈-,当sin 0x <时,()222()sin 12sin sin 1f x x x x =---=-,由[)sin 1,0x ∈-可得(]()1,0f x ∈-,的综上[]()1,2f x ∈-,故B 正确:当sin 0x ≥时,由21()3sin 14f x x =-=-解得1sin 2x =,当sin 0x <时,由21()sin 14f x x =-=-解得sin x =,所以方程1()4f x =-在(0,)+∞上的前7个实根分别为π6,5π6,4π3,5π3,13π6,17π6,10π3,所以17π10π63m <≤,故C 正确;由[]22()2()1f x af x a -+=解得()1f x a =-或()1f x a =+,又因为()223sin 1,sin 0sin 1,sin 0x x f x x x ⎧-≥=⎨-<⎩,所以根据正弦函数的单调性可得()f x 图象如图所示,所以()1f x a =-有4个不同的实根,()1f x a =+有2个不同的实根,所以110012a a -<-<⎧⎨<+<⎩,解得01a <<,设123456x x x x x x <<<<<,则1423πx x x x +=+=,563πx x +=,所以615πii x==∑,所以61i i a x =∑的取值范围是(0,5π),故D 正确.故选:BCD.11. 在平面直角坐标系中,定义(){}1212,max ,d A B x x y y =--为两点()11,A x y 、()22,B x y 的“切比雪夫距离”,又设点P 及l 上任意一点Q ,称(),d P Q 的最小值为点P 到直线l 的“切比雪夫距离”,记作(),d P l ,给出下列四个命题,正确的是( )A 对任意三点,,ABC ,都有()()(),,,d C A d C B d A B +≥;B. 已知点()2,1P 和直线:220l x y --=,则()83d P l =,;C. 到定点M 的距离和到M 的“切比雪夫距离”相等的点的轨迹是正方形.D. 定点()1,0F c -、()2,0F c ,动点(),P x y 满足()()()12,,2220d P F d P F a c a =>>-,则点P 的轨迹.与直线y k =(k 为常数)有且仅有2个公共点.【答案】AD 【解析】【分析】对于选项A ,根据新定义,利用绝对值不等性即可判断;对于选项B ,设点Q 是直线21y x =-上一点,且(,21)Q x x -,可得()1,max 2,22d P Q x x ⎧⎫=--⎨⎬⎩⎭,讨论|2|x -,1|2|2x -的大小,可得距离d ,再由函数的性质,可得最小值;对于选项C ,运用新定义,求得点的轨迹方程,即可判断;对于选项D ,根据定义得{}{}max ,max ,2x c y x c y a +--=,再根据对称性进行讨论,求得轨迹方程,即可判断.【详解】A 选项,设()()(),,,,,A A B B C C A x y B x y C x y ,由题意可得:()(){}{},,max ,max ,,A C A CBC B C A C B C A B d C A d C B x x y y x x y y x x x x x x +=--+--≥-+-≥-同理可得:()(),,A B d C A d C B y y +≥-,则:()(){}(),,max ,,A B A B d C A d C B x x y y d A B +≥--=,则对任意的三点A ,B ,C ,都有()()(),,,d C A d C B d A B +≥;故A 正确;B 选项,设点Q 是直线220x y --=上一点,且1,12Q x x ⎛⎫- ⎪⎝⎭,可得()1,max 2,22d P Q x x ⎧⎫=--⎨⎬⎩⎭,由1222x x -≥-,解得0x ≤或83x ≥,即有(),2d P Q x =-,当83x =时,取得最小值23;由1222x x -<-,解得803x <<,即有()1,22d P Q x =-,(),d P Q 的范围是2,23⎛⎫⎪⎝⎭,无最值,综上可得,P ,Q 两点的“切比雪夫距离”的最小值为23,故B 错误;C 选项,设(),M ab {}max ,x a y b =--,若y b x a -≥-,则y b =-,两边平方整理得x a =;此时所求轨迹为x a=(y b ≥或)y b ≤-若y b x a -<-,则x a =-,两边平方整理得y b =;此时所求轨迹为y b=(x a ≥或)x a ≤-,故没法说所求轨迹是正方形,故C 错误;D 选项,定点()1,0F c -、()2,0F c ,动点(),P x y 满足()()12,,2d P F d P F a -=(220c a >>),则:{}{}max ,max ,2x c y x c y a +--=,显然上述方程所表示的曲线关于原点对称,故不妨设x ≥0,y ≥0.(1)当x c yx c y ⎧+≥⎪⎨-≥⎪⎩时,有2x c x c a +--=,得:0x a y a c =⎧⎨≤≤-⎩;(2)当x c y x c y ⎧+≤⎪⎨-≤⎪⎩时,有02a =,此时无解;(3)当x c y x c y⎧+>⎪⎨-<⎪⎩时,有2,x c y a a x +-=<;则点P 的轨迹是如图所示的以原点为中心的两支折线.结合图像可知,点P 的轨迹与直线y k =(k 为常数)有且仅有2个公共点,故D 正确.故选:AD.【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.对于此题中的新概念,对阅读理解能力有一定的要求.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.三、填空题:本题共3小题,每小题5分,共15分.12. 若)nax的展开式的二项式系数和为32,且2x -的系数为80,则实数a 的值为________.【答案】―2【解析】【分析】由二项式系数和先求n ,再利用通项53215C ()r r rr T a x -+=-得到2x -的指数确定r 值,由2x -的系数为80,建立关于a 的方程求解可得.【详解】因为)na x-的展开式的二项式系数和为32,所以012C C C C 232nnn n n n ++++== ,解得5n =.所以二项式展开式的通项公式为5352155C ()C ()rr rr r rr a T a x x--+=-=-,由5322r-=-,解得3r =,所以2x -的系数为3335C ()1080a a -=-=,解得2a =-.故答案为:2-.13. 已知函数()()()2f x x a x x =--在x a =处取得极小值,则a =__________.【答案】1【解析】【分析】求得()()()221f x x x x a x =-+--',根据()0f a ¢=,求得a 的值,结合实数a 的值,利用函数的单调性与极值点的概念,即可求解.【详解】由函数()()()2f x x a x x =--,可得()()()221f x x x x a x =-+--',因为x a =处函数()f x 极小值,可得()20f a a a =-=',解得0a =或1a =,若0a =时,可得()(32)f x x x '=-,当0x <时,()0f x '>;当203x <<时,()0f x '<;当23x >时,()0f x '>,此时函数()f x 在2(,0),(,)3-∞+∞单调递增,在2(0,)3上单调递减,所以,当0x =时,函数()f x 取得极大值,不符合题意,(舍去);若1a =时,可得()(1)(31)f x x x '=--,当13x <时,()0f x '>;当113x <<时,()0f x '<;当1x >时,()0f x '>,此时函数()f x 在1(,),(1,)3-∞+∞单调递增,在(0,1)上单调递减,所以,当1x =时,函数()f x 取得极小值,符合题意,综上可得,实数a 的值为1.故答案为:1.14. 数学老师在黑板上写上一个实数0x ,然后老师抛掷一枚质地均匀的硬币,如果正面向上,就将黑板上的数0x 乘以2-再加上3得到1x ,并将0x 擦掉后将1x 写在黑板上;如果反面向上,就将黑板上的数0x 除以2-再减去3得到1x ,也将0x 擦掉后将1x 写在黑板上.然后老师再抛掷一次硬币重复刚才的操作得到黑板上的数为2x .现已知20x x >的概率为0.5,则实数0x 的取值范围是__________.【答案】()(),21,-∞-+∞ 【解析】【分析】构造函数()23f x x =-+,()32xg x =--,由两次复合列出不等式求解即可.【详解】由题意构造()23f x x =-+,()32xg x =--,则有()()43f f x x =-,()()9f g x x =+,()()92g f x x =-,()()342x g g x =-.因为()()f g x x >,()()g f x x <恒成立,又20x x >的概率为0.5,所以必有43,3,42x x x x ->⎧⎪⎨-≤⎪⎩或者43,3,42x x x x -≤⎧⎪⎨->⎪⎩解得()(),21,x ∈-∞-⋃+∞.故答案为:()(),21,-∞-+∞ 四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15. 在ABC V 中,角,,A B C 所对的边分别为,,a b c ,已知()()()sin sin sin b c B C a c A +-=-.(1)求B ;(2)若ABC,且2AD DC = ,求BD 的最小值.【答案】(1)π3(2.【解析】【分析】(1)利用正弦定理可得()()()b c b c a c a +-=-,再结合余弦定理得2221cos 22a cb B ac +-==,从而可求解.(2)结合ABC V 的面积可求得3ac =,再由112333BD BC CA BA BC =+=+ ,平方后得,()222142993BD c a =++ ,再结合基本不等式即可求解.【小问1详解】由正弦定理得()()()b c b c a c a +-=-,即222a c b ac +-=,由余弦定理可得2221cos 222a cb ac B ac ac +-===,因为()0,πB ∈,所以π3B =.【小问2详解】因为ABC V π3B =,所以1sin 2ac B =,所以3ac =.因为()11123333BD BC CA BC BA BC BA BC =+=+-=+,所以()()()()22222221421441422cos 999999993BD BA BC BA BC c a ac B c a =++⋅⋅=++=++ ,所以2214212222993333c a c a ++≥⋅⋅+=,当且仅当a c ==时取等号,所以BD .16. 已知抛物线2:2(0)E y px p =>与双曲线22134x y -=的渐近线在第一象限的交点为Q ,且Q 点的横坐标为3.(1)求抛物线E 的方程;(2)过点(3,0)M -的直线l 与抛物线E 相交于,A B 两点,B 关于x 轴的对称点为B ',求证:直线AB '必过定点.【答案】(1)24y x = (2)证明见解析【解析】【分析】(1)由双曲线求其渐近线方程,求出点Q 的坐标,由此可求抛物线方程;(2)联立直线AB 的方程与抛物线方程可得关于x 的一元二次方程,设A (x 1,y 1),B (x 2,y 2),()22,B x y '-,根据韦达定理求出12124,12y y m y y +==,求出直线AB '的方程并令0y =,求出x 并逐步化简可得3x =,则直线AB '过定点(3,0).【小问1详解】设点Q 的坐标为()03,y ,因为点Q 在第一象限,所以00y >,双曲线22134x y -=的渐近线方程为y x =,因为点Q在双曲线的渐近线上,所以0y =,所以点Q的坐标为(3,,又点(3,Q 在抛物线22y px =上,所以1223p =⨯,所以2p =,故抛物线E 的标准方程为:24y x =;【小问2详解】设直线AB 的方程为3x my =-,联立243y xx my ⎧=⎨=-⎩,消x 得,24120y my -+=,方程24120y my -+=的判别式216480m ∆=->,即230m ->,设A (x 1,y 1),B (x 2,y 2),则12124,12y y m y y +==,因为点A 、B 在第一象限,所以121240,120y y m y y +=>=>,故0m >,设B 关于x 轴的对称点为()22,B x y '-, 则直线AB '的方程为212221()y y y y x x x x ---+=-,令0y =得:212221x x x y x y y -=+-⨯-122121x y x y y y +=+()()12211233y my y my y y -+-=+()21121223my y y y y y -+=+241212344m m mm m-===.直线AB '过定点(3,0).【点睛】方法点睛:联立直线AB 的方程与抛物线方程可得关于x 的一元二次方程,设A (x 1,y 1),B (x 2,y 2),()22,B x y '-,根据韦达定理求出12124,12y y m y y +==,求出直线AB '的方程并令0y =,求出x 并逐步化简可得3x =,则直线AB '过定点(3,0).17. 如图,已知正方形ABCD 的边长为4,,E F 分别为,AD BC 的中点,沿EF 将四边形EFCD 折起,使二面角A EF C --的大小为60°,点M 在线段AB 上.(1)若M 为AB 的中点,且直线MF 与直线EA 的交点为O ,求OA 的长,并证明直线OD //平面EMC ;(2)在线段AB 上是否存在点M ,使得直线DE 与平面EMC 所成的角为60°;若存在,求此时二面角M EC F --的余弦值,若不存在,说明理由.【答案】(1)2OA =;证明见解析.(2)存在点M ,使得直线DE 与平面EMC 所成的角为60°;此时二面角M EC F --的余弦值为14.【解析】【分析】(1)根据中位线性质可求得OA ,由//MN OD ,结合线面平行判定定理可证得结论;(2)由二面角平面角定义可知60DEA ∠=︒,取AE ,BF 中点O ,P ,由线面垂直的判定和勾股定理可知OD ,OA ,OP 两两互相垂直,则以O 为坐标原点建立空间直角坐标系;设()1,,0M m ()04m ≤≤,利用线面角的向量求法可求得m ;利用二面角的向量求法可求得结果.【小问1详解】,E F 分别为,AD BC 中点,////EF AB CD ∴,且2AE FB ==,又M 为AB 中点,且,AB OE AB BF ⊥⊥,易得OAM FBM ≅ ,2OA FB AE ∴===,连接,CE DF ,交于点N ,连接MN ,由题设,易知四边形CDEF 为平行四边形,N Q 为DF 中点,//,AM EF A 是OE 的中点,M ∴为OF 中点,//MN OD ∴,又MN ⊂平面EMC ,OD ⊄平面EMC ,//OD ∴平面EMC ;【小问2详解】////EF AB CD ,EF DE ⊥ ,EF AE ⊥,又DE ⊂平面CEF ,AE ⊂平面AEF ,DEA ∴∠即为二面角A EF C --的平面角,60DEA ∴=︒∠;取,AE BF 中点,O P ,连接,OD OP ,如图,60DEA ∠=︒ ,112OE DE ==,2414cos 603OD ∴=+-︒=,222OD OE DE +=,OD AE ∴⊥,//OP EF ,OP DE ⊥,OP AE ⊥,又,AE DE ⊂平面AED ,AE DE E = ,OP ∴⊥平面AED ,,OD AE ⊂ 平面AED ,,OD OP AE OP ∴⊥⊥,则以O 为坐标原点,,,OA OP OD方向为,,x y z 轴正方向建立空间直角坐标系如下图所示,则(D ,()1,0,0E -,()1,4,0F -,(0,C ,设()()1,,004M m m ≤≤,则(1,0,DE =-,()2,,0EM m =,(1,EC = ,设平面EMC 的法向量n 1=(x 1,y 1,z 1),则1111111·20·40EM n x my EC n x y ⎧=+=⎪⎨=++=⎪⎩,令12y =,则1x m =-,1z =1,m m ⎛∴=- ⎝,∵直线DE 与平面EMC 所成的角为60o ,·sin 60cos ,·DE n DE n DE n ∴︒==111==1m =或3m =,存在点M ,当1AM =或3AM =时,使得直线DE 与平面EMC 所成的角为60o ;设平面CEF 的法向量()2222,,n x y z=,又(1,EC = ,(FC =,2222222·40·0EC n x y FC n x ⎧=++=⎪∴⎨==⎪⎩,令21z =,则2x =,20y =,()2m ∴=;当1m =时,11,2,n ⎛=- ⎝,121212·1cos ,4·n n n n n n ∴=== ;当3m =时,23,2,n ⎛=- ⎝,121212·1cos ,4·n n n n n n ∴=== ;综上所述:二面角M EC F --的余弦值为14.【点睛】关键点点睛:本题第二步的关键在于证明三线互相垂直,建立空间直角坐标系,设出动点M 的坐标,熟练利用空间向量的坐标运算,求法向量,求二面角、线面角是解题的关键.18. 已知函数()12ex xf x x λ-=-.(1)当1λ=时,求()f x 图象在点(1,f (1))处的切线方程;(2)若1x ≥时,()0f x ≤,求λ的取值范围;(3)求证:()1111111232124e 2e*n n n n nnn ++++-+++->∈N .【答案】(1)0y = (2)[)1,+∞ (3)证明见详解【解析】【分析】(1)利用导数的几何意义求解即可;(2)根据题意,由条件式恒成立分离参数,转化为212ln x x xλ≥+,求出函数()212ln xg x x x =+的最大值得解;(3)先构造函数()12ln x x x x ϕ=-+,利用导数证明11ln 2x x x ⎛⎫<- ⎪⎝⎭,1x >,令11x n=+,可得()111ln 1ln 21n n n n ⎛⎫+-<+ ⎪+⎝⎭,迭代累加可证得结果.【小问1详解】当1λ=时,()12ex xf x x -=-,f (1)=0,的则()12121e x x f x x x -⎛⎫=-+ ⎪⎝'⎭,则()0122e 0f =-=',所以()f x 在点(1,f (1))处的切线方程为0y =.【小问2详解】由1x ≥时,()0f x ≤,即12e0x xx λ--≤,整理得212ln x x xλ≥+,对1x ≥恒成立,令()212ln x g x x x =+,则()()42321ln 222ln x x x x x g x x x x---=-+'=,令()1ln h x x x x =--,1x ≥,所以()ln 0h x x '=-≤,即函数ℎ(x )在1x ≥上单调递减,所以()()10h x h ≤=,即()0g x '≤,所以函数()g x 在1x ≥上单调递减,则()()11g x g ≤=,1λ∴≥.【小问3详解】设()12ln x x x xϕ=-+,1x >,则()()222221212110x x x x x x x xϕ---+-='=--=<,所以φ(x )在(1,+∞)上单调递减,则()()10x ϕϕ<=,即12ln 0x x x-+<,11ln 2x x x ⎛⎫∴<- ⎪⎝⎭,1x >,令11x n=+,*N n ∈,可得1111111ln 1112211n n n n n ⎛⎫⎪⎛⎫⎛⎫+<+-=+ ⎪ ⎪ ⎪+⎝⎭⎝⎭ ⎪+⎝⎭,所以()111ln 1ln 21n n n n ⎛⎫+-<+ ⎪+⎝⎭,()()111ln 2ln 1212n n n n ⎛⎫+-+<+ ⎪++⎝⎭,()()111ln 3ln 2223n n n n ⎛⎫+-+<+ ⎪++⎝⎭,…()()111ln 2ln 212212n n n n ⎛⎫--<+ ⎪-⎝⎭,以上式子相加得()112221ln 2ln 212212n n n n n n n ⎛⎫-<+++++ ⎪++-⎝⎭,整理得,11111ln 2412212n n n n n-<++++++-L ,两边取指数得,11111ln 2412212e e n n n n n -++++++-<L ,即得111114122122e e n n n n n -++++-<L ,()*Nn ∈得证.【点睛】关键点点睛:本题第三问解题的关键是先构造函数()12ln x x x xϕ=-+,利用导数证明11ln 2x x x ⎛⎫<- ⎪⎝⎭,1x >,令11x n=+,得到()111ln 1ln 21n n n n ⎛⎫+-<+ ⎪+⎝⎭.19. 已知整数4n …,数列{}n a 是递增的整数数列,即12,,,n a a a ∈Z 且12n a a a <<<.数列{}n b 满足11b a =,n n b a =.若对于{}2,3,,1i n ∈- ,恒有1i i b a --等于同一个常数k ,则称数列{}n b 为{}n a 的“左k 型间隔数列”;若对于{}2,3,,1i n ∈- ,恒有1i i a b +-等于同一个常数k ,则称数列{}n b 为{}n a 的“右k 型间隔数列”;若对于{}2,3,,1i n ∈- ,恒有1i i a b k +-=或者1i i b a k --=,则称数列{}n b 为{}n a 的“左右k 型间隔数列”.(1)写出数列{}:1,3,5,7,9n a 的所有递增的“左右1型间隔数列”;(2)已知数列{}n a 满足()81n a n n =-,数列{}n b 是{}n a 的“左k 型间隔数列”,数列{}n c 是{}n a 的“右k 型间隔数列”,若10n =,且有1212n n b b b c c c +++=+++ ,求k 的值;(3)数列{}n a 是递增的整数数列,且10a =,27a =.若存在{}n a 的一个递增的“右4型间隔数列{}n b ”,使得对于任意的{},2,3,,1i j n ∈- ,都有i j i j a b b a +≠+,求n a 的关于n 的最小值(即关于n的最小值函数()f n ).【答案】(1)1,2,4,6,9或1,2,4,8,9或1,2,6,8,9或1,4,6,8,9. (2)80k =(3)()()382n n f n -=+【解析】【分析】(1)由“左右k 型间隔数列”的定义,求数列{}:1,3,5,7,9n a 的所有递增的“左右1型间隔数列”;(2)根据“左k 型间隔数列”和“右k 型间隔数列”的定义,由1212n n b b b c c c +++=+++ ,则有1291016a a k a a ++=+,代入通项计算即可;(3)由“右4型间隔数列”的定义,有144i i i b a a +=->-,可知{}3i i b a nn -∈≥-∣,则有()()()232431n n n a a a a a a a a -=+-+-++- ()()()()413216n n ≥-+-+-+-++- ,化简即可.【小问1详解】数列{}:1,3,5,7,9n a 的“左右1型间隔数列”为1,2,4,6,9或1,2,4,8,9或1,2,6,8,9或1,4,6,8,9.【小问2详解】由12101210b b b c c c +++=+++ ,可得239239b b b c c c +++=+++ ,即128341088a a a k a a a k ++++=+++- ,即1291016a a k a a ++=+,即16168988109k +=⨯⨯+⨯⨯,所以80k =.【小问3详解】当{}2,3,,1i n ∈- 时,由144i i i b a a +=->-,可知{}3i i b a nn -∈≥-∣.又因为对任意{},2,3,,1i j n ∈- ,都有i j i j a b b a +≠+,即当{}2,3,,1i n ∈- 时,i i b a -两两不相等.因为()()()232431n n n a a a a a a a a -=+-+-++- ()()()2233117444n n b a b a b a --=++-++-+++- ()()()()223311742n n n b a b a b a --=+-+-+-++- ()()()()413216n n ≥-+-+-+-++- ()382n n -=+.所以n a 的最小值函数()()382n n f n -=+.另外,当数列{a n }的通项()0,1,38,2,2i i a i i i n =⎧⎪=⎨-+≤≤⎪⎩间隔数列{b n }的通项(),1,13,21,2i i a i i n b i i i n ==⎧⎪=⎨-+≤≤-⎪⎩或时也符合题意.【点睛】方法点睛:在实际解决“新定义”问题时,关键是正确提取新定义中的新概念、新公式、新性质、新模式等信息,确定新定义的名称或符号、概念、法则等,并进行信息再加工,寻求相近知识点,明确它们的共同点和不同点,探求解决方法,在此基础上进行知识转换,有效输出,合理归纳,结合相关的数学技巧与方法来分析与解决!。
2019高三数学10月月考(理科)一选择题 :(本大题共12小题,每小题5分,共60分. 在每小题所给的四个答案中有且只有一个答案是正确的.把正确选项涂在答题卡的相应位置上.) 1.设集合,,则下列结论正确的是( ) A .B .C .D .2.已知复数z 满足()()51i 1i z --=+,则复数z 的共轭复数为( )A. 5i +B. 5i -C. 5i -+D. 5i -- 3.函数()xf x xe-=的图象可能是( )A. B.C. D.4.已知1a =r , 2b =r ,且()a ab ⊥-r r r ,则向量a r 在b r 方向上的投影为( )A. 1B. 2C.12 D. 25.《孙子算经》中有一道题:“今有木不知长短,引绳度之,余绳四尺五寸;屈绳[开始度之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余尺;将绳子对折再量木条,木条剩余尺,问木条长多少尺?解决本题的程序框图如图所示,则输出的( )A .B .C .D .6.已知0a >且1a ≠,函数()()()2360{(0)xa x a x f x a x -+-≤=>,满足对任意实数()1212,x x x x ≠,都有()()()12120x x f x f x ⎡⎤-->⎣⎦成立,则实数a 的取值范围是( )A. ()2,3B. (]2,3 C. 72,3⎛⎫ ⎪⎝⎭ D. 72,3⎛⎤ ⎥⎝⎦7.命题若为第一象限角,则; 命题 函数有两个零点,则( )A . 为真命题B . 为真命题C .为真命题 D .为真命题8.等差数列{}n a 和等比数列{}n b 的首项均为1,公差与公比均为3,则123b b b a a a ++=( )A. 64B. 32C. 38D. 339.ABC ∆的内角A , B , C 的对边分别为a , b , c ,若cos cos sin a B b A c C +=,则ABC ∆的形状为( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形10.已知函数,若,则实数的取值范围是 A .B .C .D .11.已知函数()sin 3cos f x a x x =-的一条对称轴为6x π=-,且()()124f x f x ⋅=-,则12x x +的最小值为( )A.3π B. 23π C. 2π D. 34π 12.已知可导函数的定义域为,其导函数满足,则不等式的解集为A. B . C .D .二、填空题13.已知{}n a 为等差数列, n S 为其前n 项和,若1356,0a a a =+=,当n S 取最大值时,n =__________。
合肥一六八中学2025届高三10月段考试卷数学考生注意:1.试卷分值:150分,考试时间:120分钟.2.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答案区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.3.所有答案均要答在答题卡上,否则无效.考试结束后只交答题卡.一、单选题(本大题共8小题,每小题5分,共40分)1.已知集合,,则( )A .B .C .D .2.设,均为单位向量,则“”是“”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.已知数列满足,若,则( )A .2B .-2C .-1D .4.已知实数a ,b ,c 满足,则下列不等式中成立的是( )A .B .C .D .5.已知,,则( )A.B .C .D .6.10名环卫工人在一段直线公路一侧植树,每人植一棵,相邻两棵树相距15米,开始时需将树苗集中放置在某一树坑旁边,现将树坑从(1)到(10)依次编号,为使每名环卫工人从各自树坑前来领取树苗所走的路程总和最小,树苗可以放置的两个最佳坑位的编号为( )A .(1)和(10)B .(4)和(5)C .(5)和(6)D .(4)和(6)7.设,,,则( )A .B .C .D .{A x x =<1ln 3B x x ⎧⎫=<⎨⎬⎩⎭A B = {x x <{x x <{0x x <<{0x x <<a b 55a b a b -=+a b ⊥ {}n a ()111n n a a +-=11a =-10a =120a b c <<<11a b b a+>+22a b aa b b+<+a b b c a c<--ac bc>a ∈R 2sin cos αα+=tan 2α=433443-34-0.1e1a =-111b =ln1.1c =b c a<<c b a<<a b c<<a c b<<8.定义在R 上的奇函数,且对任意实数x 都有,.若,则不等式的解集是( )A .B .C .D .二、多选题(本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对得部分分,有选错的得0分)9.已知O 为坐标原点,点,,,,则()A .B .C .D .10.三次函数叙述正确的是( )A .当时,函数无极值点B .函数的图象关于点中心对称C .过点的切线有两条D .当a <-3时,函数有3个零点11.已知,对任意的,都存在,使得成立,则下列选项中,可能的值是( )A .B .C .D .三、填空题(本大题共3小题,每小题5分,共15分)12.已知复数与3i 在复平面内用向量和表示(其中i 是虚数单位,O 为坐标原点),则与夹角为______.13.函数在上的最大值为4,则m 的取值范围是______.14.设a 、b 、,则______.四、解答题(本大题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤)15.(13分)已知中,角A ,B ,C 的对边分别为a ,b ,c ,.(1)求角A ;(2)已知,从下列三个条件中选择一个作为已知,使得存在,并求出的面积.()f x ()302f x f x ⎛⎫--+=⎪⎝⎭()12024e f =()()0f x f x '+->()11ex f x +>()3,+∞(),3-∞()1,+∞(),1-∞()1cos1,sin1P ()2cos 2,sin 2P -()3cos3,sin 3P ()1,0Q 12OP OP = 12QP QP =312OQ OP OP OP ⋅=⋅ 123OQ OP OP OP ⋅=⋅ ()32f x x ax =++1a =()f x ()f x ()0,2()0,2()f x ()2sin 2f x x =+π0,2x ⎡⎤∈⎢⎥⎣⎦2π0,2x ⎡⎤∈⎢⎥⎣⎦()()123f x f x α=+α3π44π76π78π71+OA OB OAOB2x y m m =-+(],2-∞[]0,1c ∈M ABC △cos sin 0a C C b c --=8b =ABC △ABC △条件①:;条件②:;条件③:AC.(注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.)16.(15分)某地区上年度天然气价格为2.8元/,年用气量为.本年度计划将天然气单价下调到2.55元/至2.75元/之间.经调查测算,用户期望天然气单价为2.4元/,下调单价后新增用气量和实际单价与用户的期望单价的差成反比(比例系数为k ).已知天然气的成本价为2.3元/.(1)写出本年度天然气价格下调后燃气公司的收益y (单位:元)关于实际单价x (单位:元/)的函数解析式;(收益=实际用气量×(实际单价-成本价))(2)设,当天然气单价最低定为多少时,仍可保证燃气公司的收益比上年度至少增加20%?17.(15分)已知函数(a 为常数,且,),且是奇函数.(1)求a 的值;(2)若,都有成立,求实数m 的取值范围.18.(17分)已知函数(1)讨论函数的单调性;(2)求函数在处切线方程;(3)若有两解,,且,求证:.19.(17分)(1)若干个正整数之和等于20,求这些正整数乘积的最大值.(2)①已知,都是正数,求证:;②若干个正实数之和等于20,求这些正实数乘积的最大值.2cos 3B =-7a =3m 3m a 3m 3m 3m 3m 3m 0.2k a =()824x x xa f x a +⋅=⋅0a ≠a ∈R ()f x []1,2x ∀∈()()20f x mf x -≥()()2ln f x x x =-()f x ()f x ()()22e ,ef ()f x m =1x 2x 12x x <2122e e x x <+<12,,,n a a a ⋅⋅⋅12n a a a n++⋅⋅⋅+≥合肥一六八中学2025届高三10月段考试卷·数学参考答案、提示及评分细则题号1234567891011答案DCCBBCACACABDAC一、单选题(本大题共8小题,每小题5分,共40分)1.【答案】D【解析】,∵,∴.故选D .2.【答案】C【解析】∵“”,∴平方得,即,则,即,反之也成立.故选C .3.【答案】C 【解析】因为,,所以,,,所以数列的周期为3,所以.故选C .4.【答案】B【解析】对于A ,因为,所以,所以,故A 错误;对于B ,因为,所以,故B 正确;对于C ,当,,时,,,,故C 错误;对于D ,因为,,所以,故D 错误.故选B .5.【答案】B【解析】,则,即,可得,解得或.那么.故选B .6.【答案】C【解析】设树苗可以放置的两个最佳坑位的编号为x ,则各位同学从各自树坑前来领取树苗所走的路程总和为:.131ln 0e 3x x <⇒<<23e 2<661132e 2⎛⎫⎛⎫<⇒< ⎪ ⎪⎝⎭⎝⎭55a b a b -=+ 222225102510a b a b a b a b +-⋅=++⋅200a b ⋅= 0a b ⋅= a b ⊥111n na a +=-11a =-212a =32a =41a =-{}n a 101a =-0a b <<11a b >11a b b a+<+0a b <<()()()()222220222a b b a a b a b a b a a b b a b b a b b+-++--==<+++2a =-1b =-1c =13b a c =-1a b c =-b aa cb c<--a b <0c >ac bc <2sin cos αα+=()252sin cos 2αα+=2254sin 4sin cos cos 2αααα++=224tan 4tan 15tan 12ααα++=+tan 3α=-1322tan 3tan 21tan 4ααα==-1152151015S x x x =-⨯+-⨯+⋅⋅⋅+-⨯若S 取最小值,则函数也取最小值,由二次函数的性质,可得函数的对称轴为,又∵x 为正整数,故或6.故选C 7.【答案】A【解析】构造函数,,则,,当时,,时,,单调递减;时,,单调递增.∴在处取最小值,∴,(且),∴,∴;构造函数,,,∵,,,∴,在上递增,∴,∴,即,∴.故选A .8.【答案】C【解析】因为是奇函数,所以是偶函数,因为,所以,令,,在R 上单调递增.又因为且是奇函数,所以的周期为3,,则,所以,则不等式,因为在R 上单调递增,所以,即.故选C .二、多选题(本大题共3小题,每小题6分,共18分)9.【答案】AC()()()()22222221210101101210y x x x x x =-+-+⋅⋅⋅+-=-+++⋅⋅⋅+()2222101101210y x x =-+++⋅⋅⋅+ 5.5x =5x =()1ln f x x x =+0x >()211f x x x'=-0x >()0f x '=1x =01x <<()0f x '<()f x 1x >()0f x '>()f x ()f x 1x =()11f =1ln 1x x>-0x >1x ≠101ln1.111111>-=c b >()1e 1ln x g x x -=--1x >()11ex g x x-'=-1x >1e1x ->11x<()0g x '>()g x ()1,+∞()()10g x g >= 1.11e 1ln1.1-->0.1e 1ln1.1->a c >()f x ()f x '()()0f x f x '+->()()0f x f x '+>()()e xg x f x =()()()e 0xg x f x f x ''=+>⎡⎤⎣⎦()g x ()302f x f x ⎛⎫--+=⎪⎝⎭()f x ()f x ()12024e f =()12ef =()212e e e g =⨯=()()()()111e 1e 12ex x f x f x g x g ++>⇒+>⇒+>()g x 12x +>1x >【解析】∵,,,,∴,,,,,,易知,故A 正确;∵,,∴,故B 错误;,,∴,故C 正确;,,故D 错误.故选AC .10.【答案】ABD【解析】对于A :,,,单调递增,无极值点,故A 正确;对于B :因为,所以函数的图象关于点中心对称,故B 正确;对于C :设切点,则切线方程为,因为过点,所以,,解得,即只有一个切点,即只有一条切线,故C 错误;对于D :,当时,,,当时,,单调递增,当时,,单调递减,当时,,单调递增,有极大值为,所以若函数有3个零点,有极小值为,得到,故D 正确.故选ABD .11.【答案】AC【解析】∵,∴,∴,∵对任意的,都存在,使得成立,()1cos1,sin1P ()2cos 2,sin 2P -()()()3cos 12,sin 12P ++()1,0Q ()1cos1,sin1OP = ()2cos 2,sin 2OP =- ()()()3cos 12,sin 12OP =++ ()1,0OQ = ()1cos11,sin1QP =- ()2cos 21,sin 2QP =-- 121OP OP ==1QP= 2QP = 12QP QP ≠ ()3cos 12cos1cos 2sin1sin 2OQ OP ⋅=+=- 12cos1cos 2sin1sin 2OP OP ⋅=- 312OQ OP OP OP ⋅=⋅1cos1OQ OP ⋅= 23cos 2cos3sin 2sin 3cos5cos1OP OP ⋅=-=≠1a =()32fx x x =++()2310f x x '=+>()f x ()()4f x f x +-=()f x()0,2()()1,x f x ()()()111y f x f x x x '-=-()0,2()()()112f x f x x '-=-331111223x ax x ax ---=--10x =()23f x x a '=+3a <-()0f x '=x =,x ⎛∈-∞ ⎝()0f x '>()f x x ⎛∈ ⎝()0f x '<()f x x ⎫∈+∞⎪⎪⎭()0f x '>()f x ()f x 20f ⎛=> ⎝()f x ()f x 20f =+<3a <-π0,2x ⎡⎤∈⎢⎥⎣⎦[]1sin 0,1x ∈()[]12,4f x ∈1π0,2x ⎡⎤∈⎢⎥⎣⎦2π0,2x ⎡⎤∈⎢⎥⎣⎦()()123f x f x a =+∴,,∴,∴,,在上单调递减.在上单调递增.当时,,,,故A 正确,当时,,,故B 错误,当时,,,,故C 正确,当时,,.故错误.故选AC .三、填空题(本大题共3小题,每小题5分,共15分)12.【答案】【解析】由题知,,.故本题答案为.13.【答案】【解析】当时,函数的图象是由向上平移个单位后,再向下平移个单位,函数图象还是的图象,满足题意,当时,函数图象是由向下平移m 个单位后,再把x 轴下方的图象对称到上方,再向上平移m 个单位,根据图象可知满足题意,时不合题意.()2min 23f x α+≤()2max 43f x α+≥()2sin 2f x x =+()2min 2sin 3x α+≤-()2max 1sin 3x α+≥-sin y x =π3π,22⎡⎤⎢⎥⎣⎦3π,2π2⎡⎤⎢⎥⎣⎦3π4α=23π5π,44x α⎡⎤+∈⎢⎥⎣⎦()2max 3π1sin sin 043x α+=>>-()2min5πsin sin 4x α+==23<-4π7α=24π15π,714x α⎡⎤+∈⎢⎥⎣⎦()2max 15π7π12sin sin sin 14623x α+=>=->-6π7α=26π19π,714x α⎡⎤+∈⎢⎥⎣⎦()2max 6π1sin sin 073x α+=>>-()2min 19πsin sin 14x α+=<4π2sin33=<-8π7α=28π23π,714x α⎡⎤+∈⎢⎥⎣⎦()2max 8π9π1sin sin sin 783x α+=<=<-π6(OA = ()0,3OB = cos ,OA OB OA OB OA OB⋅==⋅π6AOB ∠=π6(],2-∞0m ≤2x y m m =-+2xy =m m 2xy =02m <≤2x y m m =-+2xy =02m <≤2m >故本题答案为.14.【解析】不妨设,则,∴,当且仅当,,,即,,时,等号成立..四、解答题(本大题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤)15.【解析】(1)因为,由正弦定理得.即:,,即,因为,所以,得;(2)选条件②:.在中,由余弦定理得:,即.整理得,解得或.当时,的面积为:,当c=5时,的面积为:,(],2-∞301a b c ≤≤≤≤M=≤=33M =+≤+≤b a c b -=-0a =1c =0a =12b =1c =3+cos sin 0a C C b c +--=sin cos sin sin sin 0A C A C B C +--=()sin cos sin sin sin 0A C A C A C C +-+-=()sin cos sin sin 0sin 0A C A C C C --=>cos 1A A -=π1sin 62A ⎛⎫-= ⎪⎝⎭0πA <<ππ66A -=π3A =7a =ABC △2222cos a b c bc A =+-222π7816cos3c c =+-⋅28150c c -+=3c =5c =3c =ABC △1sin 2ABC S bc A ==△ABC △1sin 2ABC S bc A ==△选条件③:AC,设AC 边中点为M ,连接BM ,则,,在中,由余弦定理得,即.整理得,解得或(舍).所以的面积为.16.【解析】(1),;(2)由题意可知要同时满足以下条件:,∴,即单价最低定为2.6元/.17.【解析】(1),因为是奇函数,所以,所以,所以,所以,;(2)因为,,所以,所以,,令,,,由于在单调递增,所以.18.【解析】(1)的定义域为,,当时,,当时,BM =4AM =ABM △2222cos BM AB AM AB AM A =+-⋅⋅2π21168cos3AB AB =+-⋅2450AB AB --=5AB =1AB =-ABC △1sin 2ABC S AB AC A =⋅⋅=△()2.32.4k y a x x ⎛⎫=+-⎪-⎝⎭[]2.55,2.75x ∈()()[]0.2 2.3 1.2 2.8 2.32.42.55,2.75a a x a x x ⎧⎛⎫+-≥-⎪⎪-⎝⎭⎨⎪∈⎩2.6 2.75x ≤≤3m ()1122x x f x a =⨯+()f x ()()f x f x -=-11112222x x x x a a⎛⎫⨯+=-⨯+ ⎪⎝⎭111202x xa ⎛⎫⎛⎫++=⎪⎪⎝⎭⎝⎭110a +=1a =-()122x x f x =-[]1,2x ∈22112222x x xx m ⎛⎫-≥- ⎪⎝⎭122x x m ≥+[]1,2x ∈2xt =[]1,2x ∈[]2,4t ∈1y t t=+[]2,4117444m ≥+=()f x ()0,+∞()1ln f x x '=-()0f x '=e x =()0,e x ∈,当时,,故在区间内为增函数,在区间为减函数;(2),,所以处切线方程为:,即;(3)先证,由(1)可知:,要证,也就是要证:,令,,则,所以在区间内单调递增,,即,再证,由(2)可知曲线在点处的切线方程为,令,,∴在处取得极大值为0,故当时,,,则,即,又,,∴.19.【解析】(1)将20分成正整数之和,即,假定乘积已经最大.若,则将与合并为一个数,其和不变,乘积由增加到,说明原来的p 不是最大,不满足假设,故,同理.将每个大于2的拆成2,之和,和不变,乘积.故所有的只能取2,3,4之一,而,所以将取2和3即可.如果2的个数≥3,将3个2换成两个3,这时和不变,乘积则由8变成9,故在p 中2的个数不超过2个.那只能是,最大乘积为;(2)①证明:先证:.令,则,,且,()0f x '>()e,x ∈+∞()0f x '<()f x ()0,e ()e,+∞()2e 0f =()22e 1ln e 1f '=-=-()()22e ,ef ()()201e y x -=--2e 0x y +-=122e x x +>2120e e x x <<<<12212e 2e x x x x +>⇔>-()()()()21112e 2ef x f x f x f x <-⇔<-()()()2eg x f x f x =--()0,e x ∈()()()2ln 2e 2ln e 2e e 0g x x x '=--≥--=()g x ()0,e ()()e 0g x g <=122e x x +>212e x x +<()f x ()2e ,0()2e x x ϕ=-()()()()()222ln e 3ln e m x f x x x x x x x x ϕ=-=---+=--()2ln m x x '=-()m x e x =()0,e x ∈()()f x x ϕ<()()12m f x f x ==()()2222e m f x x x ϕ=<=-22e m x +<10e x <<()()111111112ln 1ln m f x x x x x x x x ==-=+->2122e x x m x +<+<1,,n x x ⋅⋅⋅120n x x =+⋅⋅⋅+1n p x x =⋅⋅⋅11x =1x 2x 1221x x x +=+122x x x =21x +2i x ≥()21,2,,i x i n ≥=⋅⋅⋅22i i x x =+-2i x -()224i i i x x x -≤⇒≤i x 42222=⨯=+i x 202333333=++++++6321458⨯=1ex x -≥()1e x f x x -=-()1e 1x f x -'=-()10f '=()()10f x f ≥=,,,∴②让n 固定,设n 个正实数之和为20,,,要是最大,最大即可,令,其中,,∴时,单调递增,时,单调递减,而,所以这些正实数乘积的最大值为.1-≥1,2,,i n =⋅⋅⋅1111--≥=1n ≥0n ≥12n a a a n ++⋅⋅⋅+≥1,,n x x ⋅⋅⋅120n x x n n +⋅⋅⋅+≤=1220nn p x x x n ⎛⎫=⋅⋅⋅≤ ⎪⎝⎭20nn ⎛⎫ ⎪⎝⎭20ln nn ⎛⎫⎪⎝⎭()()20ln ln 20ln tg t t t t ⎛⎫==- ⎪⎝⎭*t ∈N ()20ln ln e g t t '=-7t ≤()g t 8t ≥()g t ()()()()87787ln 207ln 78ln 208ln 8ln 8ln 7200g g -=---=-⨯>7207⎛⎫⎪⎝⎭。
2024-2025学年度高三上期数学10月阶段性测试(考试时间:120分钟;满分150分)第Ⅰ卷(选择题,共58分)一、单项选择题:本题共8小题,每小题5分,共40分.1.已知集合,则( )A .B .C .D .2.已知复数满足,则( )A .B .C .D .3.已知向量满足,且,则( )A .B .C .D .4.如图为函数在上的图象,则的解析式只可能是( )A .B .C .D .5.已知为奇函数,则曲线在点处的切线方程为( )A .B .C .D .6.在体积为12的三棱锥中,,平面平面,若点都在球的表面上,则球的表面积为( )A .B .C .D .7.若,则的最大值为( )ABCD8.设,则( ){{},21x A x y B y y ====+A B = (]0,1(]1,2[]1,2[]0,2z 23i z z +=+3iz+=12i+12i-2i+2i-,a b 222a b a b -=-= 1b = a b ⋅=1414-1212-()y f x =[]6,6-()f x ())ln cos f x x x=+())lnsin f x x x=+())ln cos f x x x=-())ln sin f x x x=-()()cos f x x a x =+()y f x =()()π,πf ππ0x y +-=ππ0x y -+=π0x y -+=0x y +=A BCD -,AC AD BC BD ⊥⊥ACD ⊥ππ,,34BCD ACD BCD ∠=∠=,,,A B C D O O 12π16π32π48π()()sin cos2sin αβααβ+=-()tan αβ+202420230.2024log 2023,log 2022,log 0.2023a b c ===A .B .C .D .二、多项选择题:本题共3小题,每小题6分,共18分.9.设等比数列的公比为,其前项和为,前项积为,并满足条件:,下列结论正确的是( )A .B .C .是数列中的最大值D .数列无最大值10.透明的盒子中装有大小和质地都相同的编号分别为的4个小球,从中任意摸出两个球.设事件“摸出的两个球的编号之和小于5”,事件“摸出的两个球的编号都大于2”,事件“摸出的两个球中有编号为3的球”,则( )A .事件与事件是互斥事件B .事件与事件是对立事件C .事件与事件是相互独立事件D .事件与事件是互斥事件11.已知,其中,则的取值可以是( )A .eB .C .D .第Ⅱ卷(非选择题,共92分)三、填空题:本题共3小题,每小题5分,共15分,第14题第一个空3分,第二个空2分.12.若,则______.13.设是数列的前n 项和,点在直线上,则数列的前项和为______.14.已知点是轴上的动点,且满足的外心在轴上的射影为,则点的轨迹方程为______,的最小值为______.四、解答题:本题共5小题,共77分.15.(13分)设的内角的对边分别为,且,边上的两条中线相交于点.c a b <<b c a <<b a c <<a b c<<{}n a q n n S n n T 2024120242025202511,1,01a a a a a ->><-20242025S S <202420261a a <2024T {}n T {}n T 1,2,3,41A =2A =3A =1A 2A 1A 3A 1A 3A 23A A 13A A 6ln ,6e n m m a n a =+=+e nm ≠e nm +2e23e24e1sin 3α=-()cos π2α-=n S {}n a ()()*,n n a n ∈N 2y x =1n S ⎧⎫⎨⎬⎩⎭n ()()2,0,1,4,A B M N 、y 4,MN AMN =△P y Q P PQ PB +ABC △,,A B C ,,a b c ()()()sin sin sin sin b a ABC BAC c ABC C +∠-∠=∠-,BC AC ,AD BE P(1)求;(2)若,求的面积.16.(15分)如图,在三棱锥中,是以为斜边的等腰直角三角形,是边长为2的正三角形,为的中点,为上一点,且平面平面.(1)求证:平面;(2)若平面平面,求平面与平面夹角的余弦值.17.(15分)为研究“眼睛近视是否与长时间看电子产品有关”的问题,对某班同学的近视情况和看电子产品的时间进行了统计,得到如下的列联表:每天看电子产品的时间近视情况超过一小时一小时内合计近视10人5人15人不近视10人25人35人合计20人30人50人附表:0.10.050.010.0050.0012.7063.8416.6357.87910.828.(1)根据小概率值的独立性检验,判断眼睛近视是否与长时间看电子产品有关;(2)在该班近视的同学中随机抽取3人,则至少有两人每天看电子产品超过一小时的概率是多少?(3)以频率估计概率,在该班所在学校随机抽取2人,记其中近视的人数为,每天看电子产品超过一小时的人数为,求的值.BAC ∠2,cos AD BE DPE ==∠=ABC △D ABC -ABC △AB ABD △E AD F DC BEF ⊥ABD AD ⊥BEF ABC ⊥ABD BEF BCD αx α()()()()22()n ad bc a b c d a c b d χ-=++++0.05α=2χX Y ()P X Y =18.(17分)已知函数.(1)求曲线在处的切线方程;(2)讨论函数的单调性;(3)设函数.证明:存在实数,使得曲线关于直线对称.19.(17分)已知椭圆的对称中心在坐标原点,以坐标轴为对称轴,且经过点和.(1)求椭圆的标准方程;(2)过点作不与坐标轴平行的直线交曲线于两点,过点分别向轴作垂线,垂足分别为点,,直线与直线相交于点.①求证:点在定直线上;②求面积的最大值.2024-2025学年度高三上期数学10月阶段性测试(参考答案)一、单项选择题:BAACDDDC8.【解】由对数函数的性质知,,所以;当时,,所以,取,则,所以,即,综上,.二、多项选择题:ABC ACD CD .11.【解】令,则,()()ln 1f x x =+()y f x =3x =()()()F x ax f x a =-∈R ()()1111g x x f f x x ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭m ()y g x =x m =C )⎛- ⎝C ()2,0M l C ,A B ,A B xDE AE BD P P PAB △0.20240.2024log 0.2023log 0.20241c =>=2024202420242023202320230log 1log 2023log 20241,0log 1log 2022log 20231=<<==<<=1,01,01c a b ><<<<2n >()()ln 1ln ln 10n n n +>>->()()()()222ln 1ln 1ln 1ln 1(ln )(ln )2n n n n n n ++-⎡⎤+⋅--<-⎢⎥⎣⎦()()()2222222222ln 1ln 11ln (ln )(ln )(ln )(ln )(ln )0222n n n n n n n n n ⎡⎤-+-⎡⎤⎛⎫=-=-<-=-=⎢⎥ ⎪⎢⎢⎥⎝⎭⎣⎦⎣⎦2023n =2lg2022lg2024(lg2023)0⋅-<220232024lg2022lg2023lg2022lg2024(lg2023)log 2022log 20230lg2023lg2024lg2023lg2024b a ⋅--=-=-=<⋅b a <b ac <<()6ln f x x x =-()661xf x x x-=-='故当时,单调递增,当时,单调递减,,又,不妨设,解法一:记,设,则在上恒成立,所以在上单调递减,所以,则,又因为,且在上单调递减,所以,则,所以.解法二:由,两式相减,可得,令,则;令,则,令,则在上恒成立,所以在上单调递增,因为在上恒成立,所以在上单调递增,则,即,所以.解法三:,两式相减得,,可得,三、填空题: ;3()0,6x ∈()()0,f x f x '>()6,x ∈+∞()()0,f x f x '<()()6ln ,66lne e ,e n n n m m a n a f m f =+==+∴= e n m ≠06e n m <<<12,e nx m x ==()()()()12,0,6g x f x f x x =--∈()()()()2662(6)1201212x x x g x f x f x x x x x ---=---=-=<--'''()0,6()g x ()0,6()()()()()1260,0,6g x f x f x g x =-->=∈()()()11212f x f x f x ->=()1212,6,x x -∈+∞()f x ()6,+∞1212x x -<1212x x +>e 12n m +>6ln ,66lne e nnm m a n a =+==+e 6ln e n nm m =-e (1)n t t m=>()()61ln 6ln 6ln 6ln 1,,e ,e 111n n t t t t tt m t m mt m t t t +=-===∴+=---()()()1ln 21,1g t t t t t =+-->()11ln 2ln 1t g t t t t t+=+-=+-'1ln 1(1)y t t t =+->221110t y t t t-=-=>'()1,+∞()g t '()1,+∞()()10g t g ''>=()1,+∞()g t ()1,+∞()()10g t g >=()1ln 21t t t +>-()61ln e 121n t tm t ++=>-6ln ,66lne e nnm m a n a =+==+ e 6lne ln n n mm-=-212121ln ln 2x x x xx x -+<<-e 12n m +>79-1n n +24y x =14.【解】设点,则根据点是的外心,,而,则,所以从而得到点的轨迹为,焦点为由抛物线的定义可知,因为,即,当点在线段上时等号成立.四、解答题:15.【解】(1)因为,所以由正弦定理得,由余弦定理得,又,所以.(2)因为是边上的两条中线与的交点,所以点是的重心.又,所以在中,由余弦定理,所以,又,所以,所以,所以的面积为.()0,M t ()0,4)N t -P AMN V (),2P x t -22||PM PA =2224(2)(2)x x t +=-+-2(2),24t x y t -==-P 24y x =()1,0F 1PF PQ =+4,14PF PB BF PF PB PQ PB +≥=+=++≥3PQ PB +≥P BF ()()()sin sin sin sin b a ABC BAC c ABC C +∠-∠=∠-222b c a bc +-=2221cos 22b c a BAC bc +-∠==0πBAC <∠<π3BAC ∠=P ,BC AC AD BE P ABC △2,AD BE APB DPE ==∠=∠ABP △22222cos c AB PA PB PA PB APB==+-⋅∠22442433⎛⎫=+-⨯= ⎪⎝⎭2c =π2,3BE BAC =∠=2AE BE ==24b AE ==ABC △1π42sin 23⨯⨯⨯=16.【解】(1)是边长为的正三角形,为的中点,则.且平面平面,平面平面平面,则平面.(2)由于底面为等腰直角三角形,是边长为2正三角形,可取中点,连接,则.且平面平面,且平面平面,则平面.因此两两垂直,可以建立空间直角坐标系.是边长为2的正三角形,则可求得高.底面为等腰直角三角形,求得.可以得到关键点的坐标由第(1)问知道平面的法向量可取.设平面的法向量为,且,则,则,解得.则.则平面与平面17.【解】(1)零假设为:学生患近视与长时间使用电子产品无关.计算可得,,根据小概率值的独立性检验,推断不成立,即患近视与长时间使用电子产品的习惯有关.(2)每天看电子产品超过一小时的人数为,ABD △2E AD BE AD ⊥BEF ⊥ABD BEF ,ABD BE AD =⊂ABD AD ⊥BEF ABC △ABD △AB O OD ,OD AB OC AB ⊥⊥ABC ⊥ABD ABC ABD AB =OD ⊥ABC ,,OC OA OD O xyz -ABD △OD =ABC △1OC OA OB ===()()()(0,1,0,0,1,0,1,0,0,A B C D -BEF (0,AD =-BCD (),,m x y z = ()(1,1,0,BC CD ==- 0m BC m CD ⎧⋅=⎪⎨⋅=⎪⎩x y x +=⎧⎪⎨-+=⎪⎩)m = cos ,m AD m AD m AD ⋅〈〉===⋅ BEF BCD 0H 220.0550(1025105)4006.349 3.8411535203063x χ⨯⨯-⨯==≈>=⨯⨯⨯0.05α=2χ0H ξ则,所以在该班近视的同学中随机抽取3人,则至少有两人每天看电子产品超过一小时的概率是.(3)依题意,,事件包含两种情况:①其中一人每天看电子产品超过一小时且近视,另一人既不近视,每天看电子产品也没超过一小时;②其中一人每天看电子产品超过一小时且不近视,另一人近视且每天看电子产品没超过一小时,于是,所以.18.【解】(1)切点为.因为,所以切线的斜率为,所以曲线在处的切线方程为,化简得;(2)由题意可知,则的定义域为,当时,,则在上单调递减;当时,令,即,解得,若;若,则在上单调递减,在上单调递增.综上所述,当时,在上单调递减;当时,在上单调递减,在上单调递增;()()()21310510331515C C C 45512069223C C 45591P P P ξξξ⨯+≥==+==+==6991()()1111110,22245525P X Y P X Y ===⨯====⨯=1X Y ==()1122111161C C 2551025P X Y ===⨯⨯+⨯⨯=()()()()1165301242525100P X Y P X Y P X Y P X Y ====+==+===++=()3,ln4()11f x x '=+()134k f ='=()y f x =3x =()1ln434y x -=-48ln230x y -+-=()()ln 1F x ax x =-+()F x ()1,-+∞()()11,1,,11ax a F x a x x x +-=-=∈-'+∞++0a ≤()101F x a x '=-<+()F x ()1,-+∞0a >()0F x '=10ax a +-=11x a=-()11111,01a ax a x F x a a x '-+--<≤=-=≤+()111,01ax a x F x a x +--'>=>+()F x 11,1a ⎛⎤-- ⎥⎝⎦11,a ⎛⎫-+∞ ⎪⎝⎭0a ≤()F x ()1,-+∞0a >()F x 11,1a ⎛⎤-- ⎥⎝⎦11,a ⎛⎫-+∞ ⎪⎝⎭(3)证明:函数,函数的定义域为.若存在,使得曲线关于直线对称,则关于直线对称,所以由.可知曲线关于直线对称.19.【解】(1)设椭圆的方程为,代入已知点的坐标,得:,解得,所以椭圆的标准方程为.(2)如图:①设直线的方程为,并记点,由消去,得,易知,则.由条件,,直线的方程为,直线的方程为()()111ln 1ln 2g x x x x ⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭()g x ()(),10,-∞-+∞ m ()y g x =x m =()(),10,-∞-+∞ x m =12m =-()()111ln 1ln 211g x x x x ⎛⎫⎛⎫--=-+-+ ⎪ ⎪----⎝⎭⎝⎭21121lnln ln ln 111x x x x x x x x x x +++=--=-+++()()()11211211lnln ln 1ln ln 1x x x x x x x g x x x x x x+++++=+--=+-=+()y g x =12x =-C 221(0,0,)mx ny m n m n +=>>≠312413m n m n +=⎧⎪⎨+=⎪⎩1612m n ⎧=⎪⎪⎨⎪=⎪⎩C 22162x y +=l ()20x my m =+≠()()()112200,,,,,A x y B x y P x y 222,162x my x y =+⎧⎪⎨+=⎪⎩x ()223420m y my ++-=()()222Δ16832410m m m =++=+>12122242,33m y y y y m m --+==++()()12,0,,0D x E x AE ()1212y y x x x x =--BD,联立解得,所以点在定直线上.②,而,所以,则令,则,所以,当且仅当时,等号成立,所以.()2121y y x x x x =--()()2112211212012121222223my y my y x y x y my y x y y y y y y ++++====++++P 3x =0212121121111312222PAB S AD x x y x y my y my y =⋅-=⋅-=⋅-=-△121212my y y y =+()121212my y y y =+1211211224PABy y S y y y +=-=-==△t =1t >2122PAB t S t t t==≤=++△t =PAB △。
2024-2025学年陕西省西安市高三上学期10月月考数学检测试题1、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则(){}(){}2210,1=-=-A x x B x log x x ………A B ⋂=A.B.C.D.{}10x x -……{}10x x -<…{}10x x -<…{}10x x -<<2. “”是“函数在上单调递增”的( )01a <<()log (2)a f x a x =-(,1)-∞A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3. 函数在区间的大致图像为( )()()2sin x x f x x e e x-=-+-[]2.8,2.8-A.B.C. D.4. 已知,,,则( )5log 2a =2log b a =1()2bc =A. B. C. D. c b a >>c a b >>a b c>>b c a>>5. 已知定义在R 上的函数满足,且,则( )()f x3(2)()f x f x +=(2)1f =-(100)f =A. 3 B. 1C. D. 1-3-6.已知函数,若关于x 的方程有2个不相等的1,0,()()12,0,x e x f x g x kx x x ⎧-⎪==-⎨<⎪⎩…()()f x g x =实数解,则实数k 的取值范围是( )A. B. C. D.{}e [,)e +∞1(,0){}8e -⋃1(,){}8e -∞-⋃7. 已知函数,则( )3()1f x x x =-+A. 有三个极值点 B. 有三个零点()f x()f xC. 直线是曲线的切线D.点是曲线的对称中心2y x =()y f x =(0,1)()y f x =8. 已知函数,,若方程有且仅有5个不相24,0(),0x x f x xlog x x ⎧+>⎪=⎨⎪<⎩2()g x x ax b =++()0g f x =⎡⎤⎣⎦等的整数解,则其中最大整数解和最小整数解的和等于( )A. B. 28C. D. 1428-14-二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列导数运算正确的是( )A. B. C.D.211(xx '=-()xxe e'--=21(tan )x cos x '=1(ln ||)x x'=10.甲乙丙等5人的身高互不相同,站成一排进行列队训练,则( )A. 甲乙不相邻的不同排法有48种B. 甲乙中间恰排一个人的不同排法有36种C. 甲乙不排在两端的不同排法有36种D. 甲乙丙三人从左到右由高到矮的不同排法有20种11. 已知,则()0c b a <<<A. B.C.ac b bc a+<+333b c a +<a c ab c b +<+>三、填空题:本题共3小题,每小题5分,共15分.12. 某班的全体学生参加化学测试,成绩的频率分布直方图如图所示,数据的分组依次为,则该班学生化学测试成绩的第40百分位数为[20,40),[40,60),[60,80),[80,100]__________.13. 若曲线在点处的切线也是曲线的切线,则__________.xy e x =+(0,1)ln(1)y x a =++a =14. 的展开式中,的系数为__________.5(1)(2)yx y x -+23x y 四、解答题:本题共5小题,其中第15题13分,第16,17题15分,第18,19题17分,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数3212()2.32a f x x x ax +=-+(1)若,求函数的极值;1a =()f x (2)讨论函数的单调性.()f x 16.为践行“更快更高更强”的奥林匹克格言,落实全民健身国家战略.某校高三年级发起了“发扬奥林匹克精神,锻炼健康体魄”的年度主题活动,经过一段时间后,学生的身体素质明显提高.为了解活动效果,该年级对开展活动以来近6个月体重超重的人数进行了调查,调查结果统计如图,根据上面的散点图可以认为散点集中在曲线的附近,请根据下表中bx ay e +=的数据求出(1)该年级体重超重人数y 与月份x 之间的经验回归方程系数a 和b 的最终结果精确到(;0.01)(2)预测从开展活动以来第几个月份开始该年级体重超标的人数降至10人以下.月份x 123456体重超标人数y987754483227ln z y= 4.58 4.37 3.983.87 3.46 3.29附:经验回归方程:中,,;参考数据:ˆˆˆy bx a =+1221ˆni ii nii x ynx y bxnx ==-⋅=-∑∑ˆˆa y bx =-,,,6123.52ii z==∑6177.72i ii x z==∑62191ii x==∑ln10 2.30.≈17. 已知函数,R ,,且()log (1)a f x x =+()2log (2)(a g x x t t =+∈)0a > 1.a ≠(1)当且时,求不等式的解集;01a <<1t =-()()f x g x …(2)若函数在区间上有零点,求t 的取值范围.()2()21f x F x a tx t =+-+(1,2]-18. 某企业对某品牌芯片开发了一条生产线进行试产.其芯片质量按等级划分为五个层级,分别对应如下五组质量指标值:根据长期检测结果,得[45,55),[55,65),[65,75),[75,85),[85,95].到芯片的质量指标值X 服从正态分布,并把质量指标值不小于80的产品称为A 等2(,)N μσ品,其它产品称为B 等品.现从该品牌芯片的生产线中随机抽取100件作为样本,统计得到如图所示的频率分布直方图.(1)根据长期检测结果,该芯片质量指标值的标准差s 的近似值为11,用样本平均数作x 为的近似值,用样本标准差s 作为的估计值.若从生产线中任取一件芯片,试估计该芯片μσ为 A 等品的概率保留小数点后面两位有效数字();①同一组中的数据用该组区间的中点值代表;②参考数据:若随机变量服从正态分布(ξ,则,,2(,)N μσ()0.6827P μσξμσ-<<+≈(22)0.9545P μσξμσ-<<+≈(33)0.9973.)P μσξμσ-<<+≈(2)(ⅰ)从样本的质量指标值在和的芯片中随机抽取3件,记其中质量指[45,55)[85,95]标值在的芯片件数为,求的分布列和数学期望;[85,95]ηηⅱ该企业为节省检测成本,采用随机混装的方式将所有的芯片按100件一箱包装.已知一件()A 等品芯片的利润是元,一件 B 等品芯片的利润是元,根据的计(124)m m <<ln(25)m -(1)算结果,试求m 的值,使得每箱产品的利润最大.19. 已知函数1()ln (1).x f x ae x a x -=+-+(1)当时,求函数的单调区间;0=a ()f x (2)当时,证明:函数在上单调递增;1a =()f x (0,)+∞(3)若是函数的极大值点,求实数a 的取值范围.1x =()f x数学答案一.选择题(本题共8小题,每小题5分,共40分)二.选择题(本题共3小题,每小题6分,共18分)三、填空题:(本题共3小题,每小题5分,共15分.)12. 6513.14. 40ln 2三、解答题:(本题共5小题,其中第15题13分,第16,17题15分,第18,19题17分,共77分)15.(本小题满分13分)题号12345678答案CBABDCDA题号91011答案ACDBCDABD解:时,,(1)1a =3213()2,()(1)(2)32f x x x x f x x x '=-+=--所以 或 时, ; 时, 1x <2x >()0f x '>12x <<()0f x '<则 在 上递减,在 上递增,()f x (1,2)(,1),(2,)-∞+∞所以 的极小值为 ,极大值为()f x 2(2)3f =5(1)6f =...............................5分,则,当 时, ,所以3212(2)()232a f x x x ax +=-+()()(2)f x x a x '=--2a =()0f x '… 在 上递增,当 时, 或 时, ; 时,()f x (,)-∞+∞2a >2x <x a >()0f x '>2x a <<,所以 在 上递增,在 上递减,当 时, 或()0f x '<()f x (,2),(,)a -∞+∞(2,)a 2a <x a < 时, ; 时, 2x >()0f x '>2a x <<()0f x '<所以 在 上递增;在 上递减. ()f x (,),(2,)a -∞+∞(,2)a ...............................8分16.(本小题满分15分)(2)令,所以,解得,由于,所0.26 4.83ln10 2.310x ee e -+<=≈0.26 4.83 2.3x -+<9.73x >x N ∈以,10x ...所以从第十个月开始,该年级体重超标的人数降至10人以下. . (5)分17.(本小题满分15分)解: 时, ,又,,(1)1=- t ()()2log 1log 21a a x x +-…01a << 21(21)210x x x ⎧+-∴⎨->⎩…,解集为: ;2450151242x x x x ⎧-⎪∴∴<⎨>⎪⎩……∴15{|}24x x <…..............................................................6分解法一:,由得:且,(2)()222F x tx x t =+-+ ()0F x=22(2x t x x +=-≠-12)x -<…,设 且,则22(2)4(2)2x t x x +∴=-+-++2U x =+(14U <…2U ≠,212424U t U U U U =-=--+-+令,当时,时,单调递增,2()U U U ϕ=+1U <<()U ϕ4U <<()U ϕ且且或9(1)3,(4).2ϕϕϕ===9()2U ϕ∴…() 4.U ϕ≠12402U U ∴---< (2)044U U <---…t 的取值范围为:或2t -…t …解法二:,若,则在上没有零点.()222F x tx x t =+-+0t =()2F x x =+(1,2]-下面就时分三种情况讨论:0t ≠①方程在上有重根,则,解得:,又()0F x =(1,2]-12x x =0∆=t =1212x x t ==-(]1,2,∈-t ∴=②在上只有一个零点,且不是方程的重根,则有,解得:()F x (1,2]-()()120F F -<或,2t <-1t >又经检验: 或时, 在上都有零点;或2t =-1t =()F x (1,2]-2t ∴-… 1.t …③方程在上有两个相异实根,则有或,解得:()0F x =(1,2]-0,01122(1)0(2)0t t F F >∆>⎧⎪⎪-<-<⎪⎨⎪->⎪>⎪⎩0,01122(1)0(2)0t t F F <∆>⎧⎪⎪-<-<⎪⎨⎪-<⎪<⎪⎩,1t <<综上可知:t 的取值范围为或2t -…t …...............................15分 18.(本小题满分17分)由题意,估计从该品牌芯片的生产线中随机抽取100件的平均数为:(1)(1)即10(0.01500.025600.04700.015800.0190)69.x =⨯⨯+⨯+⨯+⨯+⨯=69x μ≈=,所以X ∽,因为质量指标值X 近似服从正态分布,11s σ≈≈2(69,11)N 2(69,11)N 所以1(69116911)1()(80)22P X P X P X μσμσ--<<+--<<+==…,10.68270.158650.162-≈=≈所以从生产线中任取一件芯片,该芯片为A 等品的概率约为 0.16...............................................................5分,所以所取样本的个数为20件,质量指标值在的芯(2)()(0.010.01)1010020i +⨯⨯=[85,95]片件数为10件,故可能取的值为0,1,2,3,相应的概率为:η,,3010103202(0)19C C P C η===21101032015(1)38C C P C η===,,12101032015(2)38C C P C η===0310103202(3)19C C P C η===随机变量的分布列为:ηη0123P21915381538219所以的数学期望η2151523()0123.193838192E η=⨯+⨯+⨯+⨯=...............................11分设每箱产品中A 等品有Y 件,则每箱产品中B 等品有件,设每箱产品的利润为()ii (100)Y -Z 元,由题意知:,(100)ln(25)(ln(25))100ln(25)Z mY Y m m m Y m =+--=--+-由知:每箱零件中A 等品的概率为,所以Y ∽,所以(1)0.16(100,0.16)B ,()1000.1616E Y =⨯=所以()[(ln(25))100ln(25)]E Z E m m Y m =--+-(ln(25))()100ln(25)m m E Y m =--+-,令16(ln(25))100ln(25)m m m =--+-1684ln(25)m m =+-()1684ln(25)(124)f x x x x =+-<<得,,又,,递增,84()16025f x x '=-=-794x =79(1,)4x ∈()0f x '>()f x 79;(,24)4x ∈,递减,所以当时,取得最大值.所以当时,每箱()0f x '<()f x 79(1,24)4x =∈()f x 794m =产品利润最大...............................................................17分19.(本小题满分17分)解:当时,,且知,在上,, (1)0=a ()ln =-f x x x 11()1-'=-=xf x x x (0,1)()0'>f x >在上单调递增;在上,, 在上单调递减;所以函数()f x (0,1)(1,)+∞()0'<f x ()f x (1,)+∞的单调增区间为,单调减区间为()f x (0,1)(1,)+∞ (4)分证明:因为,所以,且知,(2)1a =1()ln 2x f x ex x -=+-11()2x f x e x -'=+-要证函数单调递增,即证在上恒成立,()f x ()0f x '…(0,)+∞设,,则,11()2x g x e x -=+-0x >121()x g x e x -'=-注意,在上均为增函数,故在上单调递增,且1x y e-=21y x =-(0,)+∞()g x '(0,)+∞,(1)0g '=于是在上单调递减,在上单调递增,,即,因此函()g x (0,1)(1,)+∞()(1)0g x g =…()0f x '…数在上单调递增;()f x (0,)+∞ (10)分由,有,令,有,(3)11()1x f x ae a x -'=+--(1)0f '=11()1x h x ae a x -=+--121()x h x ae x -'=-①当时,在上恒成立,因此在上单调递减,0a …11()0x x h x ae x -'=-<(0,)+∞()f x '(0,)+∞注意到,故函数的增区间为,减区间为,此时是函数的(1)0f '=()f x (0,1)(1,)+∞1x =()f x 极大值点;②当时,与在上均为单调增函数,故在上单调递0a >1x y ae-=21y x =-(0,)+∞()h x '(0,)+∞增,注意到,若,即时,此时存在,使,(1)1h a '=-(1)0h '<01a <<(1,)n ∈+∞()0h n '=因此在上单调递减,在上单调递增,又知,()f x '(0,)n (,)n +∞(1)0f '=则在上单调递增,在上单调递减,此时为函数的极大值点,()f x (0,1)(1,)n 1x =()f x 若,即时,此时存在,使,(1)0h '>1a >(0,1)m ∈()0h m '=因此在上单调递减.在上单调递增,又知,()f x '(0,)m (,)m +∞(1)0f '=则在上单调递减,在上单调递增,此时为函数的极小值点.()f x (,1)m (1,)+∞1x =()f x 当时,由可知单调递增,因此非极大值点,1a =(1)()f x 1x =综上所述,实数 a 的取值范围为(,1).-∞ ..........................17分。
2024-2025学年广东省揭阳市高三上学期10月月考数学检测试题一、单选题1. 已知集合3}{3|6M x x =-<,2,0,1,3}{N =-,则M N =I ( )A. {0,1,3} B. {2}- C. {2,0}- D. {2,0,1,3}-【答案】C 【解析】【分析】先求出结合M ,再应用交集运算得出选项.【详解】因为{|1}M x x =<,所以{2,0}M N =-I .故选:C.2. 已知π2cos sin()06a a +-=,则tan a =( )A.B.C.D.【答案】A 【解析】【分析】根据两角差的正弦公式化简,再由同角三角函数的基本关系得解.【详解】因为π132cos sin()2cos cos cos 0622a a a a a a a +-=+-=+=,所以sin tan cos aa a==故选:A3. 已知等差数列{}n a 的公差大于0,2350a a a +-=,236a a =,则{}n a 的前10项和为( )A. 55- B. 45- C. 45D. 55【答案】D 【解析】【分析】根据题意列出方程组可解得11a d ==,再代入前n 项和公式计算可得答案.【详解】根据题意可设等差数列{}n a 的公差为0d >,由2350a a a +-=,236a a =可得()()1111124026a d a d a d a d a d +++--=ìí++=î,解得11a d ==,所以{}n a 的前10项和为10110910552S a d ´=+=.故选:D4. 在△ABC 中,若π6A =,1AB =,AC =,则BC 边上的高为( )A. 1B.C.D. 2【答案】C 【解析】【分析】先利用余弦定理求得BC 的长,再利用三角形等面积法即可求得BC 边上的高.【详解】由余弦定理,得1BC ==,设BC 边上的高为h ,则1π1sin 1262ABC S AB AC h =××=´×V ,解得h =.故选:C .5. 已知函数()e 1e 1x x f x -=+,且满足()()220f m f m +->,则实数m 的取值范围是( )A. ()1,+¥B. (),2-¥- C. ()(),21,-¥-+¥U D. ()2,1-【答案】C 【解析】【分析】先用定义法证明()f x 为奇函数,化简()f x 解析式可知()f x 为增函数,然后结合函数的奇偶性与单调性解不等式即可.【详解】因为()()e 11e e 1e 1x xx x f x f x -----===-++,所以()f x 为奇函数,又因()e 1221e 1e 1x x xf x +-==-++,所以()f x 为R 上的增函数.因为()()220f mf m +->,()f x 为奇函数,所以()()()222f mf m f m >--=-,为又()f x 为R 上的增函数,所以22m m >-,即220m m +->,解得2m <-或1m >,所以实数m 的取值范围为()(),21,-¥-+¥U .故选:C.6. 设各项均为正数的等比数列{}n a 满足41082a a a ×=,则()2121011log a a a a ×××等于( )A. 102 B. 112 C. 11 D. 9【答案】C 【解析】【分析】由定比数列的项之间的性质求出6a 的值,再用等比中项知道111210116a a a a a ×××=,从而计算出结果.【详解】∵41082a a a ×=,∴441042a a a q =,∴10642a a q ==∴()()111121210112111210576262log log log log 211a a a a a a a a a a a a ×××=×××===故选:C7. 已知定义在R 上的奇函数()f x 满足()()2f x f x =-.当12x ££时,()()2log 7f x x =+,则()2023f =( )A. 3B. 3- C. 5- D. 5【答案】B 【解析】【分析】首先判断函数的周期,再利用周期求函数值.【详解】由条件可知,()()f x f x -=-,且()()2f x f x =-,即()()2f x f x -=--,即()()2f x f x +=-,那么()()()42f x f x f x +=-+=,所以函数()f x 是周期为4的函数,()()()()220235064111log 83f f f f =´-=-=-=-=-.故选:B8. 已知a 为锐角,π4πsin sin cos sin 653a a a a æöæö+-=-ç÷ç÷èøèø,则sin a =( )A.B.C.D.【答案】C 【解析】【分析】利用诱导公式与两角和的余弦公式化简已知条件等式得π4cos 265a æö+=-ç÷èø,根据角的范围与函数值的大小比较得ππ5π2266a <+<,从而得到π3sin 265a æö+=ç÷èø,然后利用两角差的余弦公式求得cos 2a ,再利用二倍角的余弦公式求sin a 可得.详解】由π4πsin sin cos sin 653a a a a æöæö+-=-ç÷ç÷èøèø,得ππ4cos cos sin sin 665a a a a æöæö+-+=-ç÷ç÷èøèø, 则π4cos 265a æö+=-ç÷èø,由a 为锐角,则ππ7π2666a <+<,又45<-<Q ,ππ5π2266a \<+<,故π3sin 265a æö+=ç÷èø,所以ππππππcos 2cos 2cos 2cos sin 2sin 666666a a a a éùæöæöæö=+-=+++ç÷ç÷ç÷êúèøèøèøëû431552=-´+´=由二倍角余弦公式得2cos 212sin a a =-=2sin a =.又a 为锐角,所以sin 0a >,故sin a ==.故选:C.二、多选题【9. 已知n S 为数列{}n a 的前n 项和,若3n n S a n =+,则( )A. 112a =B. 数列{}1n a -为等比数列C. 312nn a æö=-ç÷èøD. 3332nn S n æö=-×+ç÷èø【答案】BCD 【解析】【分析】当1n =时,1131S a =+,解得112a =-;根据3n n S a n =+,可得当2n ³时,1131n n S a n --=+-,从而得13122n n a a -=-,即()13112n n a a --=-;根据B 可求得312nn a æö-=-ç÷èø;从而可求出333·2nn S n æö=-+ç÷èø.【详解】A :当1n =时,1131S a =+,解得112a =-,故A 错误;B :因为3n n S a n =+,当2n ³时,1131n n S a n --=+-,将两式相减可得1331n n n a a a -=-+,即13122n n a a -=-,则()13112n n a a --=-,因112a =-,则1312a -=-,数列{}1n a -为首项为32-,公比为32的等比数列,故B 正确;C :由B 可得13331·222n n n a -æöæö-=-=-ç÷ç÷èøèø,所以312nn a æö=-ç÷èø,故C 正确;D :3333·2nn n S a n n æö=+=-+ç÷èø,故D 正确.故选:BCD.10. 已知110a b<<,则( )A. 22a b > B. ln()ln()b a ->-C. ()2222()a ba b +>+ D. 2a ab<【答案】BCD 【解析】【分析】首先判断0b a <<,再结合不等式的性质,函数的单调性,以及作差法,即可判断选项.【详解】由110a b<<,可知,0b a <<,所以22a b <,故A 错误;0b a ->->,对数函数ln y x =单调递增,所以()()ln ln b a ->-,故B 正确;()()()222220a b a b a b +-+=->,即()()2222a b a b +>+,故C 正确;()2a ab a a b -=-,由0b a <<,可知()20a ab a a b -=-<,即2a ab <,故D 正确.故选:BCD11. 已知函数2()22cos f x x x =-,则下列结论正确的是( )A. ()f x 是周期为π的奇函数B. ()f x 的图象关于点π,112æöç÷èø对称C. ()f x 在5π4π,63éùêúëû上单调递增D. ()f x 的值域是[3,1]-【答案】CD 【解析】【分析】先化简,()π2sin 216f x x æö=--ç÷èø,A 选项利用奇函数若x =0,则()00f =,验证;B 选项令π2π6x k -=,求出f (x )对称点坐标;C 选项通过令πππ2π22262k x k p -+£-£+,求出f (x )的增区间,再判断是否正确;D 选项通过[]π2sin 22,26x æö-Î-ç÷èø,确定f (x )的值域.【详解】()222cos 2cos 212sin 216f x x x x x x p æö=-=--=--ç÷èø.A 选项:f (x )周期为p ,()02f =-不是奇函数,A 错误;B 选项:令π2π6x k -=,k ÎZ ,解得:ππ,122k x k =+ÎZ ,当0k =时,π12x =,所以π2sin 26y x æö=-ç÷èø关于π,012æöç÷èø对称,f (x )关于,112p æö-ç÷èø对称,B 错误;C 选项:令πππ2π22π262k x k -+£-£+,k ÎZ ,解得:ππππ63k x k -+££+,所以f (x )增区间为πππ,π63x k k éùÎ-++êúëû,k ÎZ ,当k =1时,则5π4π,63x éùÎêúëû,C 正确;D 选项:x ÎR ,则[]π2sin 22,26x æö-Î-ç÷èø,()[]3,1f x Î-,D 正确.故选:CD.三、填空题12. 函数3()2ln f x x x =-在点(1,(1))f 处的切线方程为___________.【答案】0x y -=【解析】【分析】根据题意,由导数的几何意义即可得到结果.【详解】由题意可知,()11f =,则切点为()1,1,因为()223f x x x¢=-,则()1321f ¢=-=,所以()f x 在点()1,1处的切线斜率为1,则切线方程为()111y x -=×-,即0x y -=故答案为:0x y -=13. 在ABC V 中,内角,,A B C 的对边分别为,,a b c ,若sin sin sin sin A B cC B a b-=-+,则A =__________.【答案】π3##60°【解析】【分析】先根据正弦定理化简题干条件可得222b c a bc +-=,进而结合余弦定理即可求解.【详解】对于sin sin sin sin A B cC B a b-=-+,由正弦定理得a b cc b a b-=-+,即222b c a bc +-=,由余弦定理得2221cos 222b c a bc A bc bc +-===,又()0,πA Î,所以π3A =.故答案为:π3.14. 在数列{}n a 中,112a =,11n n n a a a ++=,*n ÎN ,则2022a =______.【答案】2【解析】【分析】根据数列的递推公式,利用迭代法,发现规律,即数列{}n a 为周期数列,然后求出2022a 即可.【详解】由11n n n a a a ++=得,111n na a +=-,又由112a =得,21111a a =-=-,32112a a =-=,431112a a =-=,54111a a =-=-,由此可得数列{}n a 为周期数列,周期为3,又因为20223674=´,所以202232a a ==,故答案为:2.四、解答题15. 记ABC V 的内角A ,B ,C 的对边分别为a ,b ,c,已知cos cos sin b C c B A +=.(1)求锐角A 的大小;(2)若sin C C =,且ABC V的周长为3++,求ABC V 的面积.【答案】(1)π4(2【解析】【分析】(1)利用正弦定理将边化角,再由两角和的正弦公式及诱导公式计算可得;(2)首先求出C ,即可得到B,再由正弦定理得到a =,b =,c =()0k >,由周长求出k ,即可得到a ,c ,再由面积公式计算可得.小问1详解】因为cos cos sin b C c B A +=,由正弦定理可得2sin cos cos sin B C B C A +=,因()sin cos cos sin sin sin B C B C B C A +=+=,代入得2sin A A =,又因sin 0A >,则sin A =A 为锐角,故π4A =;【小问2详解】由sin C C =可得tan C =()0,πC Î,则π3C =.由(1)可得()ππ5πππ4312B A C æö=-+=-+=ç÷èø,由正弦定理π5ππsinsin sin 4123ab c==,其中5πππππππ1sinsin sin cos cos sin 124646462æö=+=+==ç÷èø设比值为()0k k >,则a =,b =,c=,因ABC V 的周长为3+,即3k=+即k ===,则2a ==,c ==故ABC V 的面积11sin 222ABC S ac B ==´=V .16. 已知{}n a 是各项均为正数的等比数列,11a =,且1a ,2a ,33a -成等差数列.(1)求{}n a 的通项公式;(2)求数列{}n a n -的前n 项和n S .【答案】(1)113n n a -=(2)()1311232nn n n S éù+æö=--êúç÷èøêúëû【解析】【分析】(1)设公比为0q >,根据等差中项可得13223a a a =-,根据等比数列通项公式列式求解即可;(2)由(1)可知:113n n a n n --=-,利用分组求和结合等差、等比数列求和公式运算求解.【小问1详解】设等比数列{}n a 的公比为0q >,且11a =,因为1a ,2a ,33a -成等差数列,则13223a a a =-,【即2213q q =-,解得13q =或1q =-(舍去),所以{}n a 的通项公式为1111133n n n a --æö=´=ç÷èø.【小问2详解】由(1)可知:113n n a n n --=-,则()11111123393n n S n -æöæöæö=-+-+-+×××+-ç÷ç÷ç÷èøèøèø()11111123393n n -æö=+++×××+-++×××+ç÷èø()()111131*********nnn n n n æö-ç÷éù++æöèø=-=--êúç÷èøêúëû-,所以()1311232nn n n S éù+æö=--êúç÷èøêúëû.17. 已知向量(sin ,1)a x =,,2)b x =-r ,函数()()f x a b a =+×r r r.(1)求()f x 的最小正周期和单调递减区间;(2)已知ABC V 为锐角三角形,a ,b ,c 为ABC V 的内角A ,B ,C 的对边,2b =,且1()2f A =,求ABC V 面积的取值范围.【答案】(1)π,π5π[π,π](Z)36k k k ++Î (2).【解析】【分析】(1)利用数量积的坐标表示求出()f x ,再利用正弦函数的性质求解即得.(2)由(1)的信息及已知求出A ,再利用正弦定理和面积公式可将三角形面积转化为三角函数求值域问题,确定自变量范围,即可得解.【小问1详解】依题意,221cos 2()sin 1sin 2212x f x a a b x x x x -=+×=++-=+-rrrπ1sin(2)62x =--,因此函数()f x 的最小正周期2ππ2T ==,由ππ3π2π22π,Z 262k x k k +£-£+Î,解得π5πππ,Z 36k x k k +££+Î,所以()f x 的单调递减区间是π5π[π,π](Z)36k k k ++Î.【小问2详解】由(1)知,1()2f A =,即πsin(216A -=,在锐角ABC V 中,π(0,2A Î,则ππ262A -=,即π3A =,由正弦定理sin sin c b CB =,得2sinsin C c B=,因此13sin 22tan ABC S bc A B ====+V ,由π022ππ032B B ì<<ïïíï<-<ïî,得ππ62B <<,则tanB >32tan B <+<,所以ABC V 面积的取值范围为.18. 已知数列{}n a 前n 项和为n S ,且223n S n n =+,数列{}n b 满足34log 1n n a b =+.(1)求,n n a b ;(2)设n n n c a b =×,数列{}n c 的前n 项和为n T ,求n T .【答案】(1)41n a n =+,3n n b =(2)1312322n n T n +æö=+-×ç÷èø【解析】【分析】(1)已知n S 求n a ,利用公式11,1,2n nn S n a S S n -=ì=í-³î求解n a ,进而利用已知关系求n b 即可;(2)利用错位相减法求前n 项和.【小问1详解】由223n S n n =+, 的当2n ³时,22123[2(1)3(1)]41n n n a S S n n n n n -=-=+--+-=+.当1n =时,115a S ==,也适合41n a n =+.综上可得,41n a n =+.由34log 141n n a b n =+=+,所以3n n b =.【小问2详解】由(1)知(41)3nn n a b n =+×125393(41)3n n T n =´+´+++L ①23135393(43)3(41)3n n n T n n +=´+´++-×++×L ②①-②得212154343(41)3n n n T n +-=+´++´-+×L 1119(132154(41)33(41)313n n n n T n n -++--=+´-+×=---×-),所以1312322n n T n +æö=+-×ç÷èø.19. 已知函数()()e 2x f x a x =-+,(1)若1a =,求()f x 在点()()0,0f 处的切线方程.(2)若()f x 有两个零点,求a 的取值范围.【答案】(1)1y =-;(2)1(,)e Î+¥a .【解析】【分析】(1)把1a =代入,求出导数,利用导数的几何意义求出切线方程.(2)求导后,分别在0a £、e 1(0,]a Î和1(,)eÎ+¥a 的情况下,求得()f x 单调性和最值,结合零点存在定理可确定符合题意的取值范围.【小问1详解】当1a =时,()e 2x f x x =--,求导得()e 1x f x ¢=-,则(0)0f ¢=,而(0)1f =-,所以函数()f x 的图象在点(0,(0))f 处的切线方程为1y =-.【小问2详解】函数()e (2)x f x a x =-+的定义域为R ,求导得()e ¢=-x f x a ,①当0a £时,()0f x ¢>恒成立,函数()f x 在R 上单调递增,()f x 至多有一个零点,不合题意;②当0a >时,由()0f x ¢=,解得ln x a =,当(,ln )x a Î-¥时,()0f x ¢<;当(ln ,)x a Î+¥时,()0f x ¢>,函数()f x 在(,ln )a -¥上单调递减,在(ln ,)a +¥上单调递增,则min (ln )(ln 2)(l 1)n )(f f a a a a a a x ==-+=-+,当e 1(0,a Î时,ln 1a £-,则min ()0f x ≥,则()f x 至多有一个零点,不合题意;当1(,)e Î+¥a 时,ln 1a >-,则min ()0f x <,而2(2)e 0--=>f ,则()f x 在(,ln )a -¥上有唯一零点;由(1)知,当0x >时,e 10x ->,函数e 2x y x =--在(0,)+¥上单调递增,当2x >时,e 20x x -->,即e 2x x >+,当()2ln 2x a >时,ln 222()(2)e (2)(2)202e e x x a x f x a x a x a =×+>+--×+=>,()f x 在(ln ,)a +¥上有唯一零点;因此当1(,)e Î+¥a 时,()f x 有两个不同零点,所以实数a 的取值范围为1(,)e +¥.。