导热理论基础
- 格式:doc
- 大小:325.50 KB
- 文档页数:8
第二章 导热基本定律及稳态导热1、重点内容:① 傅立叶定律及其应用;② 导热系数及其影响因素; ③ 导热问题的数学模型。
2、掌握内容:一维稳态导热问题的分析解法3、了解内容:多维导热问题第一章介绍传热学中热量传递的三种基本方式:导热、对流、热辐射。
根据这三个基本方式,以后各章节深入讨论其热量传递的规律,理解研究其物理过程机理,从而达到以下工程应用上目的:基本概念、基本定律:傅立叶定律,牛顿冷却定律,斯忒藩—玻耳兹曼定律。
① 能准确的计算研究传热问题中传递的热流量 ② 能准确的预测研究系统中的温度分布导热是一种比较简单的热量传递方式,对传热学的深入学习必须从导热开始,着重讨论稳态导热。
首先,引出导热的基本定律,导热问题的数学模型,导热微分方程;其次,介绍工程中常见的三种典型(所有导热物体温度变化均满足)几何形状物体的热流量及物体内温度分布的计算方法。
最后,对多维导热及有内热源的导热进行讨论。
§2—1 导热基本定律一 、温度场1、概念温度场是指在各个时刻物体内各点温度分布的总称。
由傅立叶定律知:物体导热热流量与温度变化率有关,所以研究物体导热必涉及到物体的温度分布。
一般地,物体的温度分布是坐标和时间的函数。
即:),,,(τz y x f t =其中z y x ,,为空间坐标,τ为时间坐标。
2、温度场分类1)稳态温度场(定常温度场):是指在稳态条件下物体各点的温度分布不随时间的改变而变化的温度场称稳态温度场,其表达式),,,(z y x f t =。
2)稳态温度场(非定常温度场):是指在变动工作条件下,物体中各点的温度分布随时间而变化的温度场称非稳态温度场,其表达式),,,(τz y x f t =。
若物体温度仅一个方向有变化,这种情况下的温度场称一维温度场。
3、等温面及等温线1)等温面:对于三维温度场中同一瞬间同温度各点连成的面称为等温面。
2)等温线(1)定义:在任何一个二维的截面上等温面表现为等温线。
传热学 复习要点1-3节为导热部分1.导热理论基础 (分稳态导热和非稳态导热) (1)导热现象的物理本质及在不同介质中的传递特征.依靠分子,原子和自由电子等微观粒子热运动进行的热量传递.气体中为分子,金属中为电子,非导电固体和液体中为晶格(2)温度场的空间时间概念.表达式:t=f(x,y,z, τ)空间用x,y,z表示.时间用τ.稳态: 非稳态:(3)温度梯度的概念和表达式.定义: 两等温面温差 与其法线方向距离 的比值极限..表达式:(4)傅立叶定律的概念及其表达式.----导热基本定律定义:表达式:适用范围:只适用于各向同性的固体材料.(5)导热系数的定义,物理意义和影响因素.表达式:物理意义:表征物体导热能力的大小.影响因素:(6)物性参数为常数时的导热微分方程式在各种不同条件下的数学表达.导热微分方程---由傅立叶定律和热一律导出.导热微分方程表达式:无内热源:稳态温度场:无内热源且为稳态温度场:(7)导温系数的表达及其物理意义,与导热系数的区别.导温系数a定义: a=λ/cρ;物理意义:表示物体加热或冷却时,物体内部各部分温度趋于一致的能力.(8)导热过程单值性条件和数学表达.单值性条件包括4个:几何条件;物理条件;时间条件;边界条件;其中边界条件分3类:①第一类边界条件:已知边界面温度.②第二类边界条件:已知边界面热流密度..③第二类边界条件:已知边界面与周围流体间的表面传热系数及周围流体温度tf.牛顿冷却公式:2.稳态导热--t=f(x,y,z)(1)通过单层平壁,多层平壁和复合平壁的导热计算式及温度分布,热阻概念及其表达式和运用.A: 第一类边界条件: 在无内热源,常物性条件下1)单层平壁,高度h>>厚度δ,即为无限大平壁.因是一维导热,所以温度分布为线性分布.t=tw1-(tw1-tw2)x/δ;热流密度q=tw1-tw2/(δ/λ)=Δt/Rt.热阻Rt: Rt=Δt/q.2)多层平壁:温度分布为折线..B: 第三类边界条件: 厚度δ,无内热源,常物性单层平壁:q=(tf1-tf2)/(1/h1+δ/λ+1/h2)Rt=1/h1+δ/λ+1/h2多层平壁:q=(tf1-tf2)/(1/h1+δ/λ+1/h2)C: 复杂的平壁导热:(串连加并联)RA与RB串连: R=RA+RB;RA与RB并连: R=1/(1/RA+1/RB).D: 导热系数为t的函数: λ=λ0(1+bt)t=q=此时,温度分布为二次曲线.(2)通过单层圆筒壁和多层圆筒壁的导热及温度分布,热阻表达式和运用.工程上长度l>>厚度δ的称为圆筒壁导热.1)第一类边界条件:内径为r1,外径为r2单层: 边界条件:t=q=温度分布为曲线分布.多层:q=1)第三类边界条件:单层:多层:(3)临界热绝缘直径的物理概念和如何确定合理的绝热层厚度.当绝热层外径=dx时,总热组最小,散热量最大.这一直径称为临界~~Dx=dc=2λins/h2.说明:外径d2<dc时,热损失反而增大.外径d2>dc时,加绝热层才有效.(4)肋片的作用及温度分布曲线,肋片效率概念及影响因素,肋片散热量的计算式.---- 只讨论等截面直肋1)等截面直肋:肋高为l,肋厚为δ,肋片周边长度为U,导热系数为λ,l>>δ,可认为肋片温度只沿着高度方向变化.边界条件:2)过余温度:以周围介质tf为基准的温度.θ=t-tf.其中m=温度分布为一条余弦双曲函数,即沿x反向逐渐降低.肋端国余温度:3)肋片表面散热量:4)肋片效率:定义:在肋片表面平均温度tm下,肋片的实际散热量Φ与假定整个肋片表面都处在肋基温度to时的理想散热量Φo的比值.即:结论:①当m一定时,随着肋高增加, Φ先迅速增大然后逐渐趋于平缓.也即η先降低,肋高增加到一定程度时, Φ急剧降低.②ml大,肋端过于温度小,肋片表面tm小,效率低.所以应降低m提高效率.③λ与h都给定时,m随U/A降低而减小.变截面肋片效率高.(5)接触热阻的形成和表达式.两固体直接接触,因接触面不绝对平整,会产生接触热阻.定义式:减小接触热阻的措施:改善接触面粗糙镀;提高接触面挤压压力;减小表面硬度;接触面上涂油.3.非稳态导热 (分瞬态导热和周期性导热)两个重要准则:Fo准则和Bi准则.Bi=(δ/λ):(1/h)Fo=aτ/δ2(1)瞬态导热过程及周期性不稳态导热过程的特点.前者物理量瞬间变化.后者物理量周期性变化.(2)Fo准则的表达式及物理意义,当Fo>0.2时,无限大平壁内的温度变化规律.傅立叶准则:Fo=aτ/δ2物理意义:表征不稳态导热过程的无因次时间. Fo>0.2为临界值.无限大平壁:在进行到F o>0.2的时间起,物体中任何给定地点的过余温度的对数值将随时间按线性规律变化.(3)Bi准则的表达式及物理意义, Bi准则对无限大平壁内温度分布的影响.毕渥准则Bi=(δ/λ):(1/h)物理意义:表征物体内部导热热阻与表面对流换热热阻之比.它的值越小,内部温度越趋于均匀一致.Bi<0.1可近似认为,物体温度是均匀一致的.(4)运用集总参数法的条件及温度计算式.集总参数法的条件:对于平板,圆柱,球体,温度计算式:V为体积,A为表面积,初始温度θ=to-tf.地下建筑的预热:5-7节为对流换热部分5.对流换热分析 (对流换热=导热+热对流)(1) 对流换热过程的特征及基本计算公式.定义:流体因外部原因(强迫对流)或内部原因(自然对流)而流动并与物体表面接触时发生的热量传递.特征:①导热与热对流同时存在的复杂热传递过程② 必须有直接接触(流体与壁面)和宏观运动;也必须有温差③ 由于流体的粘性和受壁面摩擦阻力的影响,紧贴壁面处会形成速度梯度很大的边界层基本计算公式:---牛顿冷却公式:q=h(tw-tf)(2)影响对流换热的因素.影响因素:①流动的起因(强迫对流或自然对流);②流动状态(层流或紊流);③有无相变;④换热表面几何因素;⑤流体的物理性质。
第一章 导热理论基础本章重点:准确理解温度场、温度梯度、导热系数等基本概念,准确掌握导热基本定律与导热问题的基本分析方法。
物质部导热机理的物理模型:(1)分子热运动;(2)晶格(分子在无限大空间里排列成周期性点阵)振动形成的声子运动;(3)自由电子运动。
物质部的导热过程依赖于上述三种机理中的部分项,这几种机理在不同形态的物质中所起的作用是不同的。
导热理论从宏观研究问题,采用连续介质模型。
第一节基本概念与傅里叶定律1-1 导热基本概念一、温度场(temperature field)(一)定义:在某一时刻,物体各点温度分布的总称,称为即为温度场(标量场)。
它是空间坐标和时间坐标的函数。
在直角坐标系下,温度场可表示为:),,,(τz y x f t = (1-1)(二)分类:1.从时间坐标分:①稳态温度场:不随时间变化的温度场,温度分布与时间无关,0=∂∂τt ,此时,),,(z y x f t =。
(如设备正常运行工况)稳态导热:发生于稳态温度场中的导热。
②非稳态温度场:随时间而变化的温度场,温度分布与时间有关,),,,(τz y x f t =。
(设备启动和停车过程)非稳态导热:在非稳态温度场中发生的导热。
2.从空间坐标分: ①三维温度场:温度与三个坐标有关的温度场,⎩⎨⎧==稳态非稳态),,(),,,(z y x f t z y x f t τ ②二维温度场:温度与二个坐标有关的温度场,⎩⎨⎧==稳态非稳态),(),,(y x f t y x f t τg ra d t③一维温度场:温度只与一个坐标有关的温度场,⎩⎨⎧==稳态非稳态,)()(x f t x f t τ 二、等温面与等温线1.等温面(isothermal surface):在同一时刻,物体温度相同的点连成的面即为等温面。
2.等温线(isotherms):用一个平面与等温面相截,所得的交线称为等温线。
为了直观地表示出物体部的温度分布,可采用图示法,标绘出物体中的等温面(线)。
第一章导热理论基础2已知:10.62()W m K λ=∙、20.65()W m K λ=∙、30.024()W m K λ=∙、40.016()W m K λ=∙求:'R λ、''R λ 解:2'3124124224259210 1.1460.620.650.016m K R W λσσσλλλ-⨯⨯⨯⨯⎛⎫∙=++=++⨯= ⎪⎝⎭'"232232560.265/0.650.024R m k W λσσλλ⨯⎛⎫=+=+=⋅ ⎪⎝⎭由计算可知,双Low-e 膜双真空玻璃的导热热阻高于中空玻璃,也就是说双Low-e 膜双真空玻璃的保温性能要优于中空玻璃。
5.6.已知:50mm σ=、2t a bx =+、200a =℃、2000b =-℃/m 2、45()Wm K λ=∙求:(1)0x q =、6x q = (2)v q解:(1)00020x x x dtq bx dx λλ====-=-= 3322452(2000)5010910x x x dtW q bx m dx σσσλλ-====-=-=-⨯⨯-⨯⨯=⨯(2)由220vq d t dx λ+=2332245(2000)218010v d t W q b m dxλλ=-=-=-⨯-⨯=⨯9.取如图所示球坐标,其为无内热源一维非稳态导热 故有:22t a t r r r r τ∂∂∂⎛⎫= ⎪∂∂∂⎝⎭00,t t τ==0,0tr r∂==∂ ,()f tr R h t t rλ∂=-=-∂ 10.解:建立如图坐标,在x=x 位置取dx 长度微元体,根据能量守恒有:x dx x Q Q Q ε++= (1)x dt Q dx λ=-+()x dx d dtQ t dx dx dxλ+=-++∙ 4()b b Q EA E A T Udx εεεσ===代入式(1),合并整理得:2420b fU d t T dx εσλ-= 该问题数学描写为:2420b f U d t T dx εσλ-= 00,x t T == ,0()x ldtx l dx ===假设的 4()b e x ldtfT f dx λεσ=-=真实的 第二章稳态导热3.解:(1)温度分布为 121w w w t t t t x δ-=-(设12w w t t >)其与平壁的材料无关的根本原因在 coust λ=(即常物性假设),否则t 与平壁的材料有关 (2)由 dtq dxλ=- 知,q 与平壁的材料即物性有关5.解: 2111222()0,(),w w ww d dt r dr drr r t t t t r r t t===>==设有:12124()11w w Q t t r r πλ=-- 21214F r r R r r λπλ-=7.已知:4,3,0.25l m h m δ=== 115w t =℃, 25w t =-℃, 0.7/()W m k λ=⋅ 求:Q解: ,l h δ ,可认为该墙为无限大平壁15(5)0.7(43)6720.25tQ FW λδ∆--∴==⨯⨯⨯= 8.已知:2220,0.14,15w F m m t δ===-℃,31.28/(), 5.510W m k Q W λ=⋅=⨯ 求:1w t解: 由 tQ Fλδ∆= 得一无限平壁的稳态导热312 5.510150.141520 1.28w w Q t t F δλ⨯=+=-+⨯=⨯℃ 9.已知:12240,20mm mmδδ==,120.7/(),0.58/()W m k W m k λλ=⋅=⋅3210.06/(),0.2W m k q q λ=⋅=求:3δ解: 设两种情况下的内外面墙壁温度12w w t t 和保持不变,且12w w t t >221313由题意知:1211212w w t t q δδλλ-=+122312123w w t t q δδδλλλ-=++再由: 210.2q q =,有121231212121230.2w w w w t t t t δδδδδλλλλλ--=+++得:123312240204()40.06()90.60.70.58mm δδδλλλ=+=⨯⨯+= 10.已知:1450w t =℃,20.0940.000125,50w t t λ=+=℃,2340/q W m ≤ 求:δ 解: 412,0.094 1.25102w w t t tq m m λλδ+∆==+⨯⨯41212[0.094 1.2510]2w w w w t t t t tmq qδλ+-∆==+⨯⋅ 44505045050[0.094 1.2510]0.14742340m +-=+⨯⨯⨯= 即有 2340/147.4q W m m mδ≤≥时有 11.已知:11120,0.8/()mm W m k δλ==⋅,2250,0.12/()mm W m k δλ==⋅33250,0.6/()mm W m k δλ==⋅求:'3?δ=解: '2121'3123112313,w w w w t t t t q q δδδδδλλλλλ--==+++由题意知:'q q =212tw 1tw 2q 11λ12λ23λ322即有:2121'3123112313w w w wt t t t δδδδδλλλλλ--=+++'33322λδδδλ=+ 0.6250505000.12mm =+⨯= 12.已知:1600w t =℃,2480w t =℃,3200w t =℃,460w t =℃ 求:123,,R R R R R R λλλλλλ解:由题意知其为多层平壁的稳态导热 故有: 14122334123w w w w w w w w t t t t t t t t q R R R R λλλλ----====∴112146004800.2260060w w w w R t t R t t λλ--===-- 223144802000.5260060w w w w R t t R t t λλ--===--33414200600.2660060w w w w R t t R t t λλ--===-- 14.已知:1)11012,40/(),3,250f mm W m k mm t δλδ==⋅==℃,60f t =℃ 220112,75/(),50/()h W m k h W m k λλ==⋅=⋅ 2)223,320/()mm W m k δλ==⋅ 3)2'23030,,70/()h W m k δδλλ===⋅求:123123,,,,,q q q k k k ∆∆∆ 解:未变前的122030102250605687.2/1113101754050f f t t q W m h h δλ---===⨯++++tw 1tw 4tw 2tw 3R 1R2R3R =R 1+R 2R3+t αt f221)21311121129.96/()1112101754050k W m k h h δλ-===⋅⨯++++ 21129.96(25060)5692.4/q k t W m =∆=⨯-= 21105692.45687.2 5.2/q q q W m ∆=-=-= 2)22321221129.99/()11131017532050k W m k h h δλ-===⋅⨯++++ 22229.99(25060)5698.4/q k t W m =∆=⨯-= 22205698.45687.211.2/q q q W m ∆=-=-= 3) 22330'101136.11/()131********k W m k h h δλ-===⋅⨯++++ 23336.11(25060)6860.7/q k t W m =∆=⨯-= 23306860.75687.21173.5/q q q W m ∆=-=-= 321q q q ∴∆∆>∆ ,第三种方案的强化换热效果最好 15.已知:35,130A C B mm mm δδδ===,其余尺寸如下图所示,1.53/(),0.742/()A C B W m k W m k λλλ==⋅=⋅求:R λ解:该空斗墙由对称性可取虚线部分,成为三个并联的部分R 1R 1R 1R2R3R 2R 2R3R311113222,A B C A B C R R R R RR R R R =++==++ 3321111311135101301020.1307()/1.53 1.53C A B A B C R R m k W δδδλλλ--⨯⨯∴=++=⨯+==⋅332322222335101301020.221()/1.530.742C A B A B C R m k W δδδλλλ--⨯⨯=++=⨯+=⋅2212115.0410()/1111220.13070.221R m k W R R λ-∴===⨯⋅⨯+⨯+16.已知:121160,170,58/()d mm d mm W m k λ===⋅,2230,0.093/()mm W m k δλ==⋅33140,0.17/(),300w mm W m k t δλ==⋅=℃,450w t =℃求:1)123,,R R R λλλ; 2) l q : 3) 23,w w t t . 解:1)4211111170lnln 1.66410()/2258160d R m k W d λπλπ-===⨯⋅⨯2222221117060lnln 0.517()/220.093170d R m k W d λδπλπ++===⋅⨯ 223332222111706080lnln 0.279()/2220.1717060d R m k W d λδδπλδπ++++===⋅+⨯+tw 1112323tw 4132R R R λλλ∴< 2) 2330050314.1/0.5170.279l i t t q W m R R R λλλ∆∆-====++∑ 3)由 121w w l t t q R λ-=得 4211300314.1 1.66410299.95w w l t t q R λ-=-=-⨯⨯=℃ 同理:34350314.10.279137.63w w l t t q R λ=+=+⨯=℃ 17.已知:1221211,,22m m d d δδλλ=== 求:'ll q q 解:忽略管壁热阻010121020122211ln ln 222d d R d d λδδδπλπλδ+++=++ '010122010122211ln ln 222d d R d d λδδδπλπλδ+++=++ '',l l t tq q R R λλ∆∆== (管内外壁温13,w w t t 不变)01012'20101'010*******22211lnln 22222211ln ln 222l l d d q R d d d d q R d d λλδδδπλπλδδδδπλπλδ+++++∴==+++++01010010101001241lnln 22241ln ln 22d d d d d d d d δδδδδδ++++=++++由题意知: 1001011[(2)]2m d d d d δδ=++=+ 2112011[(2)]32mm m d d d d δδ=++=+ 即:21010101232()m m d d d d d δδδ=⇒+=+⇒= (代入上式)3''15ln 3ln23 1.277ln 3ln 23l l q R q R λλ+∴===+ 即: '0.783l l q q ='21.7%l llq q q -∆==即热损失比原来减小21.7%。
传热学复习要点1-3节为导热部分1.导热理论基础(分稳态导热和非稳态导热) (1)导热现象的物理本质及在不同介质中的传递特征.依靠分子,原子和自由电子等微观粒子热运动进行的热量传递.气体中为分子,金属中为电子,非导电固体和液体中为晶格(2)温度场的空间时间概念.表达式:t=f(x,y,z, τ)空间用x,y,z表示.时间用τ.稳态: 非稳态:(3)温度梯度的概念和表达式.定义: 两等温面温差与其法线方向距离的比值极限..表达式:(4)傅立叶定律的概念及其表达式.----导热基本定律定义:表达式:适用范围:只适用于各向同性的固体材料.(5)导热系数的定义,物理意义和影响因素.表达式:物理意义:表征物体导热能力的大小.影响因素:(6)物性参数为常数时的导热微分方程式在各种不同条件下的数学表达.导热微分方程---由傅立叶定律和热一律导出.导热微分方程表达式:无内热源:稳态温度场:无内热源且为稳态温度场:(7)导温系数的表达及其物理意义,与导热系数的区别.导温系数a定义: a=λ/cρ;物理意义:表示物体加热或冷却时,物体内部各部分温度趋于一致的能力.(8)导热过程单值性条件和数学表达.单值性条件包括4个:几何条件;物理条件;时间条件;边界条件;其中边界条件分3类:①第一类边界条件:已知边界面温度.②第二类边界条件:已知边界面热流密度..③第二类边界条件:已知边界面与周围流体间的表面传热系数及周围流体温度tf.牛顿冷却公式:2.稳态导热--t=f(x,y,z)(1)通过单层平壁,多层平壁和复合平壁的导热计算式及温度分布,热阻概念及其表达式和运用.A: 第一类边界条件: 在无内热源,常物性条件下1)单层平壁,高度h>>厚度δ,即为无限大平壁.因是一维导热,所以温度分布为线性分布.t=tw1-(tw1-tw2)x/δ;热流密度q=tw1-tw2/(δ/λ)=Δt/Rt.热阻Rt: Rt=Δt/q.2)多层平壁:温度分布为折线..B: 第三类边界条件: 厚度δ,无内热源,常物性单层平壁:q=(tf1-tf2)/(1/h1+δ/λ+1/h2)Rt=1/h1+δ/λ+1/h2多层平壁:q=(tf1-tf2)/(1/h1+δ/λ+1/h2)C: 复杂的平壁导热:(串连加并联)RA与RB串连: R=RA+RB;RA与RB并连: R=1/(1/RA+1/RB).D: 导热系数为t的函数:λ=λ0(1+bt)t= q=此时,温度分布为二次曲线.(2)通过单层圆筒壁和多层圆筒壁的导热及温度分布,热阻表达式和运用.工程上长度l>>厚度δ的称为圆筒壁导热.1)第一类边界条件:内径为r1,外径为r2单层: 边界条件:t=q=温度分布为曲线分布.多层:q=1)第三类边界条件:单层:多层:(3)临界热绝缘直径的物理概念和如何确定合理的绝热层厚度. 当绝热层外径=dx时,总热组最小,散热量最大.这一直径称为临界~~Dx=dc=2λins/h2.说明:外径d2<dc时,热损失反而增大.外径d2>dc时,加绝热层才有效.(4)肋片的作用及温度分布曲线,肋片效率概念及影响因素,肋片散热量的计算式.---- 只讨论等截面直肋1)等截面直肋:肋高为l,肋厚为δ,肋片周边长度为U,导热系数为λ,l>>δ,可认为肋片温度只沿着高度方向变化.边界条件:2)过余温度:以周围介质tf为基准的温度.θ=t-tf.其中m=温度分布为一条余弦双曲函数,即沿x反向逐渐降低.肋端国余温度:3)肋片表面散热量:4)肋片效率:定义:在肋片表面平均温度tm下,肋片的实际散热量Φ与假定整个肋片表面都处在肋基温度to时的理想散热量Φo的比值.即:结论:①当m一定时,随着肋高增加, Φ先迅速增大然后逐渐趋于平缓.也即η先降低,肋高增加到一定程度时, Φ急剧降低.②ml大,肋端过于温度小,肋片表面tm小,效率低.所以应降低m提高效率.③λ与h都给定时,m随U/A降低而减小.变截面肋片效率高.(5)接触热阻的形成和表达式.两固体直接接触,因接触面不绝对平整,会产生接触热阻.定义式:减小接触热阻的措施:改善接触面粗糙镀;提高接触面挤压压力;减小表面硬度;接触面上涂油.3.非稳态导热(分瞬态导热和周期性导热)两个重要准则:Fo准则和Bi准则.Bi=(δ/λ):(1/h)Fo=aτ/δ2(1)瞬态导热过程及周期性不稳态导热过程的特点.前者物理量瞬间变化.后者物理量周期性变化.(2)Fo准则的表达式及物理意义,当Fo>0.2时,无限大平壁内的温度变化规律.傅立叶准则:Fo=aτ/δ2物理意义:表征不稳态导热过程的无因次时间. Fo>0.2为临界值.无限大平壁:在进行到F o>0.2的时间起,物体中任何给定地点的过余温度的对数值将随时间按线性规律变化.(3)Bi准则的表达式及物理意义, Bi准则对无限大平壁内温度分布的影响.毕渥准则Bi=(δ/λ):(1/h)物理意义:表征物体内部导热热阻与表面对流换热热阻之比.它的值越小,内部温度越趋于均匀一致.Bi<0.1可近似认为,物体温度是均匀一致的.(4)运用集总参数法的条件及温度计算式.集总参数法的条件:对于平板,圆柱,球体,温度计算式:V为体积,A为表面积,初始温度θ=to-tf.地下建筑的预热:5-7节为对流换热部分5.对流换热分析(对流换热=导热+热对流)(1)对流换热过程的特征及基本计算公式.定义:流体因外部原因(强迫对流)或内部原因(自然对流)而流动并与物体表面接触时发生的热量传递.特征:①导热与热对流同时存在的复杂热传递过程②必须有直接接触(流体与壁面)和宏观运动;也必须有温差③由于流体的粘性和受壁面摩擦阻力的影响,紧贴壁面处会形成速度梯度很大的边界层基本计算公式:---牛顿冷却公式:q=h(tw-tf)(2)影响对流换热的因素.影响因素:①流动的起因(强迫对流或自然对流);②流动状态(层流或紊流);③有无相变;④换热表面几何因素;⑤流体的物理性质。
grad t 第一章 导热理论基础第一节基本概念及傅里叶定律 1-1 导热基本概念一、温度场1、定义:在某一时间,物体内部各处的温度分布即为温度场。
直角坐标系:),,,(τz y x f t = (2-1)热流是由高温向低温传递,具有方向性。
而温度则属于标量,无方向性。
2、分类: 从时间坐标看,稳态导热:温度分布与时间无关,),,(z y x f t =; 非稳态导热:温度分布与时间有关,),,,(τz y x f t =。
从空间坐标可将导热分为一维、二维、三维导热。
其中最简单的是一维稳态导热,可表示为:)(x f t =。
3、等温面(线) 在同一瞬间,物体内温度相同的点连成的面即为等温面。
不同的等温面与同一平面相交,在平面上得到的一组线为等温线。
不同的等温面(线)之间是不可能相交的。
图2-1所示的即为一维大平壁和一维圆筒壁内的等温面(线)的示意图。
二、温度梯度定义沿法线方向的温度变化率为温度梯度,以t grad →表示。
n tn t gradn t ∂∂=∆∆=→∆→0lim(2-3)温度梯度是一个矢量,具有方向性。
它的方向是沿等温面法线由低温指向高温方向。
在直角坐标系:zt y t x t gradt ∂∂+∂∂+∂∂=(2-4)其中,x t ∂∂、yt∂∂、z t ∂∂分别为沿x 、y 、z 方向的温度梯度。
三、热流密度热流密度,。
热流密度是一个矢量,具有方向性,其大小等于沿着这方向单位时间单位面积流过的热量,方向即为沿等温面之法线方向,且由高温指向低温方向,见图。
在直角坐标系中,同样可以分解成由沿坐标轴三个方向的分量表示:q q q z y x ++= (2-)式中z y x q q q ,,为沿坐标轴三个方向的分热流。
而通过该等温面传递的热量为z z y y x x A q A q A q A q ++=⋅=Φ→→ (2-)1-2.傅立叶定律傅立叶(J. Fourier )热流密度与温度梯度的关系可以用下式表示ntgradt q ∂∂-=-=λλ (2-5)n tA Agradt ∂∂-=-=Φλλ (2-6)式中的比例系数λ即为材料的导热系数(或称热导率),单位)C m W ︒⋅。
负号代表热流密度与温度梯度的方向刚好相反。
傅立叶定律直接给定了热流密度和温度之间的关系。
在直角坐标系,傅立叶定律可以展开为:)(zt y t x t q q q z y x ∂∂+∂∂+∂∂-=++λ (2-7) 对应可写出各个方向上的分热流密度为:z tq y tq x t q z y x ∂∂-=∂∂-=∂∂-=λλλ(2-8) **:傅立叶定律仅适用于导热系数为各向同性的材料。
例2-1.已知厚度为100mm 的平壁,壁面内稳态温度分布式为2cx bx a t ++=。
式中:t 单位为C ︒,x 单位为m ,C a ︒=900,m C b /300︒-=,5/50m C c ︒-=。
平壁导热系数)/(40K m W ⋅=λ。
求:(1)平壁两侧的热流密度;(2)平壁内是否有内热源?内热源为多大。
解:讨论:1. 平壁不同位置处的热流密度不一定是定值;2.只要已知温度分布,就可以根据傅里叶定律求得热流密度。
即使在有内热源甚至是非稳态的的情况下也可以。
第二节 导热系数导热系数的定义:gradtq-=λ (2-) 它的值应该为每单位温度梯度下传递的热流密度。
它表证物体导热能力的大小。
在工程上,导热系数的值是由实验测定的。
常用材料在常温时的导热系数的数值见表2-1。
常温时各种不同材料的导热系数的变化范围很大。
不同物质导热系数的数值不同,一般情况是固体的导热系数最大(保温材料除外),液体(不包括液态金属)次之,而绝热材料和气体最小。
对各种材料导热系数的数值,除因其种类的不同而不同以外,导热系数的数值往往随温度、压力、密度和湿度等的改变而变化。
固体材料:导热系数随温度上升而增大。
金属导体:导热系数随温度上升而减小。
纯金属的导热系数值大于合金,且合金中杂质含量越多,导热系数值越小。
液体:导热系数随温度上升略有下降,只有水例外。
气体:导热系数随温度上升而增大。
在工程计算时,温度的变化在不大的范围内,对大部分材料来说,可以认为导热系数随温度是线性关系的,即:)1(0bt +=λλ (2-)式中,t 为温度,0λ为温度为0C ︒时的导热系数,b 是由实验测定的常数。
在实际计算时,一般可以取其平均温度时的导热系数的数值,在计算中作为常数处理。
按照国家标准(GB4272-92)的规定,凡平均温度不高于350C ︒,导热系数的数值不大于0.12 )/(K m W ⋅材料称为绝热保温材料(隔热材料或热绝缘材料)。
特点:是内部有很多细小的空隙,其中充满气体,因而并非为密实固体。
但由于其空隙细小,气体在其内部可视为静止的,主要以导热的方式传热,高温时还伴有辐射方式。
气体导热系数小,最终使得整个隔热材料的导热系数(也称表观导热系数)的数值非常小,达到隔热保温的作用。
影响因素:对绝热保温材料,除了要考虑温度的影响以外,还必须注意到湿度的影响。
在使用这类绝热保温材料的场合,必须要注意防潮。
yΦx+dx第三节.导热微分方程求解导热问题实际上就是求解物体内部的温度分布,我们可以依据能量守恒定律,来建立物体内部的温度分布的方程式。
假定:(1)物体为均质的连续体;(2) 体的物性参数已知;(3) 热源均匀,且为)(3m W q v 。
一、导热微分方程在直角坐标系中:⎥⎦⎤⎢⎣⎡∆=⎥⎦⎤⎢⎣⎡Φ+⎥⎦⎤⎢⎣⎡ΦU v c 能的增量微元体的内的发热量微元体内热源体的净导热量导进与导出微元(2-3-1)下面对每一项分别进行讨论:c Φ:在坐标系三个方向上均有热量的导进与导出,首先来看x 方向: 沿x 方向导进的热量:dydz q x x =Φ导出的热量:dxdydz xqdx x x x x x dx x ∂∂+Φ=∂Φ∂+Φ=Φ+ 因此,由x 方向导入的净导热量为:dxdydz xqx dx x x ∂∂-=Φ-Φ+同理,沿y 和z 方向导入的净导热量分别为:dxdydz yq y ∂∂-dxdydz zq z∂∂-最后可得进入该微元体的净导热量:)(dxdydz zqdxdydz y q dxdydz x q z yx c ∂∂+∂∂+∂∂-=Φ(f )将傅里叶定律表达式,即式(2-8)代入上式,得:dxdydz ztz y t y x t x c )]()()([∂∂∂∂+∂∂∂∂+∂∂∂∂=Φλλλ (a ) 微元体内部发热量:dxdydz q v v =Φ (b )微元体的内能增量:dxdydz tcU τρ∂∂=∆ (c ) 将(a )、(b )、(c )代入(2-3-1),并经整理得:v q ztz y t y x t x t c+∂∂∂∂+∂∂∂∂+∂∂∂∂=∂∂)()()(λλλτρ (2-3-2) 该式即为通用的导热微分方程。
二、简化1.常物性:c q z ty t x t a t v ρτ+∂∂+∂∂+∂∂=∂∂)(222222 (2-3-3b )式中,ca ρλ=称为材料的热扩散系数(或导温系数),其单位为s m 2。
表征了材料在非稳态导热时扩散热量的能力或传播温度变化的能力。
2.稳态导热,微分方程可简化为:0)(222222=+∂∂+∂∂+∂∂λv q zty t x t (2-3-4)3.稳态导热,若无内热源,则0222222=∂∂+∂∂+∂∂zty t x t (2-3-5) 4.常物性、一维稳态且无内热源,则简化为:022=dxtd三、其它坐标系中导热微分方程。
对圆柱坐标系),,(z r t ϕ(见图)v q ztz t r r t r r r t c+∂∂∂∂+∂∂∂∂+∂∂∂∂=∂∂)()(1)(12λϕλϕλτρ (2-3-6)对球坐标系),,(θϕr t (见图)v q tr t r r t r r r t c+∂∂∂∂+∂∂∂∂+∂∂∂∂=∂∂)sin (sin 1)(sin 1)(122222θθλθθϕλϕθλτρ (2-3-7)对常物性、一维稳态且无内热源的导热问题,两方程可简化为0)(=dr dtr dr d 0)(2=drdt r dr d第四节.导热过程的单值性条件特解= 通解+单值性条件。
定解条件有四种: 1.几何条件何条件是指参与导热过程物体的几何形状、尺寸。
δ 2.物理条件物理条件是指参与导热过程物体的物理特性。
即已知物性参数ρ、λ、c 的数值。
3.时间条件稳态导热,不存在时间条件。
非稳态导热,给出过程刚开始进行时物体的温度分布情况,故也称初始条件。
),,,(,0z y x f t ==τ (2-3-8)4.边界条件参与导热物体边界面上的温度条件。
有几个边界,就应给出几个边界条件。
常见导热物体的边界条件有三类:第一类边界条件:已知边界面上各点的温度值。
即:i s s z y x f t i),,,,(τ= (2-3-9)最简单的边界条件是const t t w s i==,即边界面上各点的温度为定值。
第二类边界条件:已知边界面上的热流密度值。
即:),,,(τz y x f q q w s i== (2-3-10a )或:λws q nt i-=∂∂ (2-3-10c )当边界面绝热时,此时边界上0==∂∂-w s q n tiλ,即可以表示为: 0=∂∂is nt (2-3-11)第三类边界条件:已知边界面上与之接触的流体的温度t f 和表面传热系数h 。
sf s s n tt t h q i∂∂-=-=λ)( )(f s st t h n t-=∂∂-λ(2-3-12) 而式中的sn t∂∂和s t 是未知的。
例2-1.对大平壁一维稳态导热,已知两侧壁面温度t w1,t w2,壁面厚度δ,导热系数λ为定值。
试推导通过该平壁的热流密度及壁面内温度分布。
分析:由于该问题为一维稳态且无内热源的导热,故可由傅立叶定律直接求解。
同理,对圆柱坐标系及球坐标系的一维稳态且无内热源的导热问题,我们可用同样的方法进行求解。
思考:若上题中壁面的导热系数为变量,)1(0bt +=λλ,此时通过该平壁的热流密度及壁面内温度分布是否一样?会如何变化?例2-3.一墙壁内在非稳态过程中的某个时刻的温度分布如图所示。
试问这墙壁是在加热还是在被冷却?分析:对非稳态过程中的某个时刻,其热流密度与温度梯度的关系同样符合傅里叶定律,即:xtq ∂∂-=λ对壁面,依据能量守恒原理,比较0=x 和δ=x 处热流密度的大小,即可知道墙壁是在加热还是在被冷却。
说明:本题墙壁物性为常数,且无内热源。
小结:本章首先讲述有关导热的基本概念,并提出基本规律的傅里叶定律。
最后推出通用的导热微分方程及对应的单值性条件。