高考数学三轮冲刺大题提分立体几何:建系困难问题理
- 格式:docx
- 大小:358.36 KB
- 文档页数:8
大题精做 7 立体几何:建系困难问题[2019·长沙统测]已知三棱锥 P ABC (如图一)的平面展开图(如图二)中,四边形 ABCD 为边长等于 2 的正方形,△ABE 和△BCF 均为正三角形,在三棱锥 P ABC 中: (1)证明:平面 PAC平面 ABC ;(2)若点 M 在棱 PA 上运动,当直线 BM 与平面 PAC 所成的角最大时,求二面角 P BC M的余弦值.图一图二【答案】(1)见解析;(2)5 33 33. 【解析】(1)设 AC 的中点为O ,连接 BO , PO .由题意,得 PA PB PC 2 , PO 1, AO BO CO 1.∵在 △PAC 中, PA PC ,O 为 AC 的中点,∴ PO AC ,∵在 △POB 中, PO 1,OB1 , PB2 , PO 2OB 2PB 2 ,∴ PO OB .∵ AC OBO , AC ,OB 平面,∴ PO 平面 ABC ,∵ PO 平面 PAC ,∴平面 PAC平面 ABC .(2)由(1)知, BO PO , BO AC , BO平面 PAC ,∴ BMO 是直线 BM 与平面 PAC 所成的角,且 tan BMO BO 1,OM OM ∴当OM 最短时,即 M 是 PA 的中点时, BMO 最大. 由 PO 平面 ABC ,OBAC ,∴ PO OB , POOC ,于是以OC ,OB ,OD 所在直线分别为 x 轴, y 轴, z 轴建立如图示空间直角坐标系,1则O 0, 0, 0,C 1,0,0, B 0,1, 0, A 1,0,0,P 0,0,1, 1 ,0, 1M22,31 BC 1,1,0, PC1,0,1, MC3 1 ,0, 2 2.设平面 MBC 的法向量为m1, 1, 1 ,x y zm BC 0则由m MC 0xy得: 113x z11.令 x ,得 1 1 y, 1 1 z ,即 m 1,1,3 .1 3设平面 PBC 的法向量为n x 2 , y 2 , z 2 ,n BC由PC0 0 xy0 得: 22x z22,令 x 1,得 y 1, z 1,即 n1,1,1.m n55 33 cos n ,m.由图可知,二面角 P BC M 的余弦值为mn33335 33 33.1.[2019·安庆期末]矩形ABCD中,AB1,AD2,点E为AD中点,沿BE将△ABE折起至△PBE,如图所示,点P在面BCDE的射影O落在BE上.(1)求证:面PCE面PBE;(2)求平面PCD与平面PBE所成锐二面角的余弦值.22.[2019·南阳期末]如图1,在矩形ABCD中,AB 35,BC 25,点E在线段DC上,且DE 5,现将△AED沿AE折到△AED的位置,连结CD,BD,如图2.5(1)若点P在线段BC上,且BP,证明:AE D P;2(2)记平面AD E与平面BCD的交线为l.若二面角B AED为2π3,求l与平面D CE 所成角的正弦值.33.[2019·苏州调研]如图,在四棱锥P ABCD中,已知底面ABCD是边长为1的正方形,侧面PAD 平面ABCD,PA PD,PA与平面PBC所成角的正弦值为.217 Array(1)求侧棱PA的长;4(2)设E为AB中点,若PA AB,求二面角B PC E的余弦值.51.【答案】(1)详见解析;(2)11 11. 【解析】(1)在四棱锥 P BCDE 中, BE CE2 , BC2 ,从而有CEBE ,又 ∵ PO 面 BCDE , 而 CE面 BCDE , ∴ CE PO , 而 PO 、 BE 面 PBE , 且PO BE O ,由线面垂直定理可证CE面 PBE ,又CE面 PCE ,由面面垂直判断定定理即证面 PCE面PBE .(2)由条件知OP 面 BCDE ,过点 E 做OP 的平行线 EZ ,又由(1)知 EC 面 PBE ,以 EB 、 EC 、 EZ 分别为 x 、 y 、 z 轴建立空间直角坐标系,如图所示:2 2 P,0,2222,C0, 2,0,2 2 D, ,0,CP2 2 , 2, 2 2, DC2 2 , ,02 2 ,面 PBE 的一个法向量为 n 10,1, 0,62 2 x 2y z0 2 2设面 PCD 的法向量为2x , y , zn,则有22x y 022,1 11 从而可得面 PCD 的一个法向量为 21,1,311 11 n, cos n 1,n 2, 设平面 PCD 与平面 PBE 所成锐二面角为 ,与11 cos ,11n 1,n 2 互补,则 故平面 PCD 与平面 PBE 所成二面角的余弦值为 11 11. 2.【答案】(1)详见解析;(2) 15 5.【解析】证明:(1)先在图 1中连结 DP ,在 Rt △ADE 中,由 AD BC2 5 , DE 5 ,15 3 5得 tan,在 Rt △PCD 中,由 DCAB 3 5 , PCBCBP 2 5,DAE2 221得 tan PDC ,∴ tan PDCtan DAE ,则 PDCDAE ,2 ∴ DOE 90 ,从而有 AEOD , AE OP ,即在图 2中有 AEOD ' , AEOP ,∴ AE平面 POD ' ,则 AE D P ;解:(2)延长 AE , BC 交于点Q ,连接 D 'Q ,根据公理 3得到 直线 D 'Q 即为l , 2π再根据二面角定义得到 D 'OP .在平面 POD ' 内过点O 作底面垂线,3以O 为原点,分别为OA , OP ,及所作垂线为 x 轴、 y 轴、 z 轴建立空间直角坐标系,则 D0,1, 3, E1,0,0,Q 11, 0, 0,C3, 4,0,D'Q 11,1, 3,EC 2,4,0,E D'1,1,3,设平面D EC的一个法向量为n x,y,z,由n EC2x4y0n ED'x y3z 0,取y 1,得3n2,1,.37∴l 与平面 D 'CE 所成角的正弦值为cos n ,D 'Qn D Q' 15n D 'Q55.3.【答案】(1) PA1或 PA 21 ;(2) 42 6 7.【解析】(1)取 AD 中点O , BC 中点 M ,连结OP ,OM ,∵ PA PD ,∴OP AD ,又∵平面 PAD 平 面 ABCD ,OP 平面 PAD ,平面 PAD 平面 ABCD AD , ∴OP平面 ABCD ,∴OPOA ,OPOM ,又∵ ABCD 是正方形,∴OA OM ,以O 为原点OA ,OM ,OP 为 x , y , z 轴建立空间直角坐标系O xyz (如图),则A1 ,0,02 , ,0,0 2D1 1 , ,1, 0 B 12 1 , ,1, 0 C 1 2, 设 P 0,0,cc0,则 PB1 ,1,c2,CB1,0,0,1xy cz设平面 PBC 的一个法向量为n 1 x 1, y 1, z 1 ,则有1112 x 01,取 z 1 1,则 y c ,从而 10,c ,1n,1设 PA 与平面 PBC 所成角为 ,∵ PA1 ,0,c,2PA cn1∴sin cos PA ,n1PA ncc12211421 7,解得 c 2 3 或 2 1c, 4 3∴ PA 1或 21 PA. 63(2)由(1)知, PA AB 1,∴ PA 1, c,23由(1)知,平面 PBC 的一个法向量为n0,c ,10, ,1,1281设平面 PCE 的一个法向量为2x ,y ,zn,而1, ,0 CE1 2 ,PC1 3,1,2 2,1 x y 0 2∴13 x y22 0 取 x 1,则 y 2 , z3 ,即n 21, 2, 3 ,设二面角 B PC E 的平面角为,∴2 36 42cos cos n ,n ,127772 2 2根据图形得 为锐角,∴二面角 B PC E 的余弦值为 427.9。
押新高考卷6题立体几何考点3年考题考情分析立体几何2022年新高考Ⅰ卷第8题2022年新高考Ⅱ卷第7题2021年新高考Ⅰ卷第3题2021年新高考Ⅱ卷第5题2020年新高考Ⅰ卷第16题2020年新高考Ⅱ卷第13题立体几何会以单选题、多选题、填空题、解答题4类题型进行考查,单选题难度一般或较难,纵观近几年的新高考试题,分别考查棱锥的体积问题,圆锥的母线长问题,球体的内切外接及表面积体积问题,棱台的体积问题。
可以预测2023年新高考命题方向将继续以表面积体积问题、球体等问题展开命题.1.立体几何基础公式(1)所有椎体体积公式:sh V 31=(2)所有柱体体积公式:shV =(3)球体体积公式:334R V π=(4)球体表面积公式:24R S π=(5)圆柱:rh r s s s sh V ππ22,2+=+==侧底表(6)圆锥:rl r s s s sh V ππ+=+==2,31侧底表2.长方体(正方体、正四棱柱)的体对角线的公式(1)已知长宽高求体对角线:2222c b a l ++=(2)已知共点三面对角线求体对角线:22322212l l l l ++=3.棱长为a 的正四面体的内切球的半径为612a ,外接球的半径为64a .4.欧拉定理(欧拉公式)2V F E +-=(简单多面体的顶点数V、棱数E 和面数F).(1)E =各面多边形边数和的一半.特别地,若每个面的边数为n 的多边形,则面数F 与棱数E 的关系:12E nF =;(2)若每个顶点引出的棱数为m ,则顶点数V 与棱数E 的关系:12E mV =.[方法一]:导数法设正四棱锥的底面边长为2a ,高为则2222l a h =+,2232(3a =+所以26h l =,2222a l h =-所以正四棱锥的体积13V Sh =3.(2021·新高考Ⅰ卷高考真题)已知圆锥的底面半径为长为()A.2B.22C.4【答案】B【分析】设圆锥的母线长为l,根据圆锥底面圆的周长等于扇形的弧长可求得【详解】设圆锥的母线长为l,由于圆锥底面圆的周长等于扇形的弧长,则故选:B.4.(2021·新高考Ⅱ卷高考真题)正四棱台的上、下底面的边长分别为A.20123+B.282C.56 3【答案】D【分析】由四棱台的几何特征算出该几何体的高及上下底面面积,再由棱台的体积公式即可得解【详解】作出图形,连接该正四棱台上下底面的中心,如图,因为该四棱台上下底面边长分别为2,4,侧棱长为所以该棱台的高()2222222h =--=,下底面面积116S =,上底面面积24S =,所以该棱台的体积()12121133V h S S S S =++=故选:D.5.(2020·新高考Ⅰ卷高考真题)已知直四棱柱5为半径的球面与侧面BCC 1B 1的交线长为________【答案】22π.【分析】根据已知条件易得1D E 3=,1D E ⊥离为2,可得侧面11B C CB 与球面的交线是扇形取11B C 的中点为E ,1BB 的中点为因为BAD ∠=60°,直四棱柱ABCD 111D E B C ⊥,又四棱柱1111ABCD A B C D -为直四棱柱,所以因为1111BB B C B = ,所以1D E【详解】因为正方体ABCD -A 1B 1C 1D 1的棱长为111111232NMD D AMN V -==⨯⨯⨯⨯=故答案为:13【点睛】在求解三棱锥的体积时,要注意观察图形的特点,看把哪个当成顶点好计算一些A .10πB .20π【答案】A【分析】新几何体的表面积比原几何体的表面积多了原几何体的轴截面面积,列出方程求解即可【详解】显然新几何体的表面积比原几何体的表面积多了原几何体的轴截面面积,设圆柱的底面半径为r ,高为h ,则所以圆柱的侧面积为2π10πrh =.故选:A.3.(2023·浙江台州·统考二模)如图所示的粮仓可以看成圆柱体与圆锥体的组合体圆柱部分的高为2米,底面圆的半径为A .3π立方米B .2π立方米【答案】C+A.241639+C.12839【答案】B【分析】过点P作底面ABCQ Q Q QP ABC与平面123-P【详解】因为三棱锥-===.2AB AC BCP ABC为正三棱锥,因此过点又因为-过B作AC的垂线于H.由三角形在直角三角形AHO中,AOPO=,在直角三角形又因为2P ABC为正三棱锥,因此因为三棱锥-又M到平面ABC距离为点Q Q AC交PC于过点M作12//【详解】3A D CD '===.()2222229C CD A C CD A C CD A D A C CD ''''⋅=+--=--=-.3,5CD BD ===.222222()99257CD CB CD CB CD CB CD DB ⋅=+--=+-=+-=- .()97822CD A C CB CD A C CD CB CD ''⋅=+⋅=⋅+⋅=--=- .A .15,66⎛⎫ ⎪⎝⎭B .13⎛ ⎝【答案】A【分析】找到水最多和水最少的临界情况,如图分别为多面体答案.【详解】将该容器任意放置均不能使水平面呈三角形,则如图,水最少的临界情况为,水面为面水最多的临界情况为多面体ABCDA 因为111111132A A BD V -=⨯⨯⨯⨯=11111111ABCDA B D ABCD A B C D C B V V V --=-所以1566V <<,即15,66V ⎛∈ ⎝故选:A.故选:C9.(2023·江苏连云港·统考模拟预测)线MN与平面BCD所成角的正切值是(A.2147B【答案】C【分析】作出图形,找出直线【详解】如图,过点A向底面作垂线,垂足为过点M作⊥MG OC于G由题意可知://MG AO且MG因为AO⊥平面BCD,所以则MNG∠即为直线MN与平面设正四面体的棱长为2,则所以222AO AN ON=-=在MNC中,由余弦定理可得:A .2B .12【答案】B【分析】连接PO ,O 为AD 的中点,再由面面垂直性质定理证明CPD ∠,解三角形求其正切值【详解】取AD 的中点O ,连接由已知PAD 为等边三角形,所以又平面PAD ⊥平面ABCD ,平面PO ⊂平面PAD ,所以PO ⊥平面ABCD ,设PD x =,则32PO x =,所以矩形ABCD 的面积ABCD S 所以四棱锥P ABCD -的体积11.(2023·山东潍坊·统考模拟预测)111ABC A B C -的体积为32,则该三棱柱外接球表面积的最小值为(A .12πB .24π【答案】C【分析】设ABC 为等腰直角三角形的直角边为的体积得264a h ⋅=,根据直三棱柱外接球半径的求法可求出最小值,即可得到该三棱柱外接球表面积的最小值【详解】设ABC 为等腰直角三角形的直角边为则111212ABC A B C ABC V S h a -=⋅=⋅故选:A13.(2023·湖北武汉·统考模拟预测)当过A ,C ,P 三点的平面截球O A .()222a +C .()23a +【答案】A【分析】由球的截面性质结合条件确定截面的位置,的截线的长度.【详解】设底面正方形ABCD 的中心为当过A ,C ,P 三点的平面截球O 的截面面积最大时,截面圆为大圆,截面过球心O ,故点P ,O ,1O 三点共线,因为1OO ⊥平面ABCD ,所以1PO ⊥平面ABCD ,此平面截正方体的截面即为正方体的面所以()222L a =+.故选:A .14.(2023·湖北·荆门市龙泉中学校联考二模)【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,求出球心的位置,再求球的半径15.(2023·湖南·校联考模拟预测)《九章算术》卷五《商功》中描述几何体直于底面的四棱锥”,现有阳马P ABCD -在,AB BC 上,当空间四边形PEFD 的周长最小时,三棱锥A .9πB .11π【答案】B【分析】把,AP PB 剪开,使得PAB P ,E ,F ,M 在同一条直线上时,PE 122CF PD ==,∴1BF =.∴点E 为AB 利用勾股定理进而得出结论.【详解】如图所示,把,AP PB 剪开,使得延长DC 到M ,使得CM DC =,则四点间四边形PEFD 的周长取得最小值.可得如图所示,设AFD △的外心为1O ,外接圆的半径为则210sin45==︒AFr .设三棱锥P ADF -外接球的半径为R ,球心为O ,连接1OO ,则则22210111224R ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭.∴三棱锥P ADF -外接球的表面积故选:B.16.(2023·湖南益阳·统考模拟预测)金刚石的成分为纯碳,是自然界中天然存在的最坚硬物质,它的结构是由8个等边三角形组成的正八面体,如图,某金刚石的表面积为则可雕刻成的最大球体积是()A .18πB .92πC .6π【答案】D【分析】先利用条件求出正多形的边长,再将求最大球的体积转化成求金刚石的内切球体积,进而转化成求截面EMFH 内切圆的半径,从而求出结果.【详解】如图,设底面ABCD EM ,设金刚石的边长为a ,则由题知,在等边EBC 中,BC 边上的高在Rt EOH △中,EO EH =由题可知,最大球即为金刚石的内切球,由对称性易知球心在球的半径即为截面EMFH 内切圆的半径,设内切圆半径为17.(2023·广东深圳·统考二模)设表面积相等的正方体、正四面体和球的体积分别为A .123V V V <<B .21<<V V 【答案】B 【分析】设正方体棱长为a ,正四面体棱长为出,,a b R ,进而求出体积的平方,比较体积的平方大小,然后得出答案【详解】设正方体棱长为a ,正四面体棱长为正方体表面积为26S a =,所以2a =所以,()()3232321216S V a a ===;则三棱锥A M BC -的外接球的球心由题意可得3sin 60CO = 直线CM 与平面ABC 故N 的轨迹是以C 为圆心,当球心H 到CM 的距离最大时,三棱锥所以N 在O C 延长线上时,三棱锥设CM 的中点为G ,连接又3CO =,OH OC ⊥所以Rt Rt HOC HGC ≌∴223HC OC ==,∴三棱锥A M BC -的外接球体积最大为故选:C .19.(2023·浙江·统考二模)MN 折起,使点A 到达点球O 表面积的最小值为(A .8π3B 【答案】D【分析】由题设,,B C M如上图,△ANM 、△BNM 、△由平面图到立体图知:MN A N ⊥'又面A MN '⊥面BCMN ,面A MN '所以A N '⊥面BCMN ,同理可得将AMN 翻折后,,A M BM '的中点过D 作DO ⊥面A NM ',过E 作EO 再过D 作DF ⊥面BCMN ,交NM 综上,//DF A N ',//DO BN ,则所以12DO EF BN ==,而A C '=令A N x '=且01x <≤,则BN =所以球O 半径2()2A M r DO =+'当23x =时,min 13r =,故球O点H 恰好是正DAC △的中心(外心),故球心O 必在BH 上,Rt BAC 的外心为E ,连接OE ,则OE ⊥平面ABC ,OE BE ⊥,设三棱锥在Rt BEO △中,由射影定理可得2BE BH BO =⨯,即2323R =,解得∴三棱锥D ABC -外接球的表面积24π12πS R ==.故选:B.。
重难点03 立体几何【命题趋势】立体几何一直在高中数学中占有很大的分值,未来的高考中立体几何也会持续成为高考的一个热点,文科高考中立体几何主要考查三视图的相关性质利用,简单几何体的体积,表面积以及外接圆问题.另外选择部分主要考查在点线面位置关系,简单几何体三视图.选择题主要还是以几何体的基本性质为主,解答题部分主要考查平行,垂直关系以及简单几何体的变面积以及体积.本专题针对高考高频知识点以及题型进行总结,希望通过本专题的学习,能够掌握高考数学中的立体几何的题型,将高考有关的立体几何所有分数拿到.【满分技巧】基础知识点考查:一般来说遵循三短一长选最长.要学会抽象问题具体会,将题目中的直线转化成显示中的具体事务,例如立体坐标系可以看做是一个教室的墙角有关外接圆问题:一般图形可以采用补形法,将几何体补成正方体或者是长方体,再利用不在同一个平面的四点确定一个立体平面原理,从而去求.内切圆问题:转化成正方体的内切圆去求.求点到平面的距离问题:采用等体积法.求几何体的表面积体积问题:应注意巧妙选取底面积与高.(1)证明直线和平面垂直的常用方法:①线面垂直的定义;②判定定理;③垂直于平面的传递性(a ∥b ,a ⊥α⇒b ⊥α);④面面平行的性质(a ⊥α,α∥β⇒a ⊥β);⑤面面垂直的性质.(2)证明线面垂直的核心是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.【考查题型】选择,填空,解答题【限时检测】(建议用时:45分钟)一、单选题1.(2020·上海松江区·高三一模)在正方体1111ABCD A B C D 中,下列四个结论中错误的是( )A .直线1BC 与直线AC 所成的角为60︒B .直线1BC 与平面1AD C 所成的角为60︒ C .直线1B C 与直线1AD 所成的角为90︒D .直线1B C 与直线AB 所成的角为90︒【答案】B 【分析】连接1AB ∵1AB C 为等边三角形,∴160ACB ∠=︒,即直线1B C 与AC 所成的角为60°,故选项A 正确;连接11B D ,∵1111AB B C CD AD ===,∴四面体11AB CD 是正四面体,∴点1B 在平面1AD C 上的投影为1AD C 的中心,设为点O ,连接1B O ,OC ,则63OC BC =, 设直线1B C 与平面1AD C 所成的角为θ, 则16313cos 22BC BCOC B C θ===≠,故选项B 错误; 连接1BC ,∵11AD BC ,且11B C BC ⊥,∴直线1B C 与1AD 所成的角为90°,故选项C 正确;∵AB ⊥平面11BCC B ,∴1AB B C ⊥,即直线1B C 与AB 所成的角为90°,故选项D 正确. 故选:B .2.(2020·全国高三专题练习(文))一个棱柱是正四棱柱的条件是( )A .底面是正方形,有两个面是矩形的四棱柱B .底面是正方形,两个侧面垂直于底面的四棱柱C .底面是菱形,且有个顶点处的两条棱互相垂直的四棱柱D .底面是正方形,每个侧面都是全等的矩形的四棱柱【答案】D【分析】选项A 、B 中,两个面为相对侧面时,四棱柱不一定是直四棱柱,C 中底面不是正方形,故排除选项A 、B 、C ,故选:D.3.(2020·浙江台州市·高三期中)设P 为空间一点,l 、m 为空间中两条不同的直线,α、β是空间中两个不同的平面,则下列说法正确的是( )A .若P l ∈,P β∈,l α⊂,则l αβ=B .若P α∈,P l ∈,//l m ,则m 与α必有公共点C .若l α⊥,m β⊥,//αβ,则//l mD .若l 与m 异面,l α⊂,m β⊂,则//αβ【答案】C【分析】对于A 选项,如下图所示:设m αβ=,l m P =,l α⊂,则P l ∈,P β∈满足,但l αβ≠,A 选项错误; 对于B 选项,若l α⊂,P l ∈,则P α∈满足条件,若//l m ,则m α⊂或//m α,B 选项错误;对于C 选项,l α⊥,//αβ,可知l β⊥,又m β⊥,//l m ∴,C 选项正确;对于D 选项,如下图所示,l 与m 异面,l α⊂,m β⊂,但α与β相交,D 选项错误.故选:C.4.(2020·宜宾市南溪区第二中学校高三期中(文))如图,正方体1111ABCD A B C D -的棱长为1,动点E 在线11A C 上,F ,M 分别是AD ,CD 的中点,则下列结论中错误的是( )A .11//FM ACB .BM ⊥平面1CC F C .三棱锥B CEF -的体积为定值D .存在点E ,使得平面//BEF 平面11CC D D【答案】D 【分析】在A 中,因为,F M 分别是,AD CD 的中点,所以11////FM AC AC ,故A 正确; 在B 中,因为tan 2BC BMC CM ∠==,tan 2CD CFD FD∠==,故BMC CFD ∠=∠, 故2BMC DCF CFD DCF π∠+∠=∠+∠=.故BM CF ⊥,又有1BM C C ⊥,所以BM ⊥平面1CC F ,故B 正确; 在C 中,三棱锥B CEF -以面BCF 为底,则高是定值,所以三棱锥B CEF -的体积为定值,故C 正确.在D 中,BF 与平面11CC D D 有交点,所以不存在点E ,使得平面//BEF 平面11CC D D ,故D 错误.故选:D.5.(2020·河南开封市·高三一模(文))如图,将正四棱锥P ABCD -置于水平反射镜面上,得一“倒影四棱锥”P ABCD Q --.下列关于该“倒影四棱锥”的说法中,所有正确结论的编号是( )①//PA 平面BCQ ;②PQ ⊥平面ABCD ;③若,,,,P A B C D 在同一球面上,则Q 也在该球面上;④若该“倒影四棱锥”存在外接球,则AB PA =A .①③B .②④C .①②③D .①②④【答案】D【分析】由题意四棱锥P ABCD -与四棱锥Q ABCD -是两个相同的正四棱锥连接,AC BD 相交于点O ,连接,OP OQ由四棱锥P ABCD -为正四棱锥,则PO ⊥平面ABCD .根据题意四棱锥Q ABCD -为正四棱锥,所以QO ⊥平面ABCD .,PO OQ 均垂直于平面ABCD ,所以P O Q ,,三点共线.所以PQ ⊥平面ABCD ,故②正确.由AC PQ O ⋂=,根据题意,,AP QC AO OC PO OQ ===所以APO △与CQO 全等,所以PAO OCQ ∠=∠所以//AP QC ,AP ⊄平面QCB ,QC ⊂平面QCB ,所以//PA 平面BCQ ,故①正确.当,,,,P A B C D 在同一球面上,若正方形ABCD 的外接圆不是球的大圆时,根据对称性,则Q 点不在此球面上,故③不正确.若该“倒影四棱锥”存在外接球,根据对称性则正方形ABCD 的外接圆是该球的大圆. 所以此时球的球心为正方形ABCD 的对角线的交点,即点O ,设2AB a = 则2OA a =,OA OP R == 所以22222AP a a a AB =+==,所以④正确.故选:D6.(2020·全国高三专题练习(文))如图所示,正方体ABCD A B C D ''''-的棱长为1,E 、F 分别是棱AA '、CC '的中点,过直线E 、F 的平面分别与棱BB '、DD '交于M 、N ,设BM x =,]1[0x ∈,,则下列命题中错误的是( )A .平面MENF ⊥平面BDDB ''B .当且仅当12x =时,四边形MENF 的面积最小 C .四边形MENF 周长()L f x =是单调函数D .四棱锥C MENF '-的体积()V h x =为常函数【答案】C【分析】A 选项,∵//EF AC ,AC BD ⊥,'⊥AC BB ,∴AC BDD B ⊥'',∴EF ⊥平面BDD B '',又∵EF ⊂平面MENF ,∴平面MENF ⊥平面BDD B '',A 对,B 选项,由面//ABB A ''面CDDC '',又面ABB A ''⋂平面ENFM EM =,面CDD C ''⋂平面ENFM FN =,所以//EM FN ,同理//EN FM ,所以四边形MENF 为平行四边形.由EF ⊥平面BDD B '',MN ⊂平面BDD B '',所以EF MN ⊥所以四边形MENF 为菱形,∴12MENF S EF MN =⋅, 又2EF =MENF 的面积最小,只需MN 最小,则当且仅当12x =时,四边形MENF 的面积最小,B 对, C 选项,∵21()12MF x =-+21()4()12f x x =-+ ∴()f x 在[0]1,上不是单调函数,C 错, D 选项,C MENF F MC E F C NE V V V -''-'-=+,11124C ME S C E '∆'=⋅=,点F 到平面C ME '的距离为1,1113412F C ME V -'=⋅=, 又11124C NE S C E '∆'=⋅=,点F 到平面C NE '的距离为1,1113412F C NE V -'=⋅=, ∴1()6h x =为常函数,D 对, 故选:C .7.(2020·安徽高三月考(文))某几何体三视图如图,则该几何体的最长棱与最短棱长度之和为( )A .33B .5C .25+D .223+【答案】D【分析】解:该三视图还原后的几何体刚好是正方体的一部分将几何体嵌入棱长为2的正方体中即四面体ABCD , 则最长棱23BC =2CD =, 故最长棱与最短棱长度之和为223+故选:D.二、填空题8.(2020·湖南常德市一中高三月考)在平行四边形ABCD 中,22AB =3BC =,且2cos A =,以BD 为折痕,将BDC ∆折起,使点C 到达点E 处,且满足AE AD =,则三棱锥E ABD -的外接球的半径为_________. 【答案】132【分析】在ABD △中,由22AB =3BC =,且2cos 3A =,平行四边形中,可得BC AD =,由余弦定理可得2222cos BD AB AD AB AD A =+-⋅, 即(22223BD =+-222393⨯=,解得3BD =, 折起后,AE AD =,可得3AE BD ==,3AD BE ==,且22AB ED == 所以三棱锥的三组对棱长相等,可将四面体ABED 放在长方体中,如图所示, 设长方体的相邻三棱长分别为,,x y z ,外接球半径为R ,则222222998x y y z z x ⎧+=⎪+=⎨⎪+=⎩,则22213x y z ++=,即213R =13R = 所以四面体E ABD -13. 故答案为:132.9.(2020·全国高三其他模拟(文))已知四棱锥P ABCD -中,底面ABCD 是梯形,且//AD BC ,AD DC ⊥,224===AD DC CB ,AP PD ⊥,且AP PD =,22=PC 则三棱锥P BCD -外接球的表面积为________.【答案】283π 【分析】取AD 的中点E ,连接,PE BE ,因为AP PD =,可得AD PE ⊥, 又由底面ABCD 是梯形,且//AD BC ,AD DC ⊥,22AD DC CB ==,可得AD BE ⊥, 所以AD ⊥平面PBE ,又由AD ⊂平面ABCD ,所以所以PBE ⊥平面ABCD , 在直角PBC 中,222PB PC BC -=,在直角PAD △中,AP PD ⊥,AP PD ⊥且4=AD ,所以PBE △等边三角形, 取BE 的中点F ,可得PF BE ⊥且3PF =设三棱锥P BCD -外接球的球心为O ,半径为r ,球心到ABCD 的距离为h , 在直角BOM 中,可得22222(2)r OM BM h =+=+,在直角PON △中,可得22222(3)1r PN OM h =+=+,解得273=r , 所以球的表面积为27284433S r πππ==⨯=. 故答案为:283π.10.(2020·湖南长沙市·长沙一中高三月考(文))以棱长为26O 为球心,以(13)R R <<为半径的球面与正四面体的表面相交得到若干个圆(或圆弧)的总长度的取值范围是____________. 【答案】(0,82]π【分析】 将棱长为6A BCD -补为正方体,则正方体边长为3所以该正四面体外接球半径为3,即3OB =,设CD 中点为E ,底面BCD 的中心为O ',连接BE ,OE ,如图:则32BE =22BO '=,2EO '=∴221OO BO BO '-=,223OE OO EO ''=+=, 当13R <时,球在正四面体每个面上截得的轨迹都是圆,这些圆都是以各个面的中心为圆心的圆,设半径为(02)r r <. 所以总长度为4282r ππ⨯;33R <<时,球在四面方体每个面上截得的轨迹都是三段圆弧,其长度显然小于2π,当1R →或3R →时,球在正四面体每个面上截得的轨迹都是点,长度为0,故答案为:(0,82]π.11.(2020·江西高三其他模拟(文))在四面体ABCD 中,AC =BC ,AD =BD ,∠ABC =∠ABD =4π,CD =8,若四面体ABCD 的外接球的表面积为100π.则该四面体ABCD 的体积为_____________. 【答案】40【分析】AC =BC ,AD =BD ,∠ABC =∠ABD =4π, ADB ∴和ACB △是等腰直角三角形,取AB 中点O ,则可得OA OB OC OD ===,O ∴为四面体ABCD 的外接球的球心,设球半径为R ,则24100R ππ=,解得5R =,即5OA OB OC OD ====, ,,AB OC AB OD OC OD O ⊥⊥⋂=,AB ∴⊥平面OCD ,又221854122OCD S=⨯-=, 1112104033ABCD A OCD B OCD OCD V V V S AB --∴=+=⋅=⨯⨯=. 故答案为:40.三、解答题12.(2020·全国高三专题练习(文))如图,已知直三棱柱ABC A 1B 1C 1中,AC =BC =AA 1=1,AC ⊥BC ,E 在AB 上,且BA =3BE ,G 在AA 1上,且AA 1=3GA 1.(1)求三棱锥A 1ABC 1的体积;(2)求证:AC 1⊥EG .【答案】(1)16;(2)证明见解析.【分析】(1)在直三棱柱ABC A 1B 1C 1中,BC ⊥AC ,所以BC ⊥平面ACC 1A 1,所以B 到平面ACC 1A 1的距离为1,所以1111A ABC B AA C V V --==111111326⨯⨯⨯⨯=.(2)如图所示:,在AC 上取点D ,使CD =13CA ,连接ED ,DG ,因为BE =13BA ,所以DE //BC ,又BC ⊥平面ACC 1A 1,所以DE ⊥平面ACC 1A 1.又AC 1⊂平面ACC 1A 1,所以DE ⊥AC 1.在正方形ACC 1A 1中,由CD =13CA ,A 1G =13A 1A , 得DG ⊥AC 1.又DE ∩DG =D ,所以AC 1⊥平面DEG .所以AC 1⊥EG .13.(2020·四川成都市·成都七中高三期中(文))如图甲,平面四边形ABCD 中,已知45A ︒∠=,90︒∠=C ,105ADC ︒∠=,2AB BD ==,现将四边形ABCD 沿BD 折起,使得平面ABD ⊥平面BDC (如图乙),设点E ,F 分别是棱AC ,AD 的中点.(1)求证:DC ⊥平面ABC ;(2)求三棱锥A BEF -的体积.【答案】(1)证明见解析;(23. 【分析】(1)图甲中,∵AB BD =且45A ︒∠=,45ADB ︒∴∠=,()()180180454590ABD ADB A ︒︒︒︒︒∴∠=-∠+∠=-+=,即AB BD ⊥, 图乙中,∵平面ABD ⊥平面BDC ,且平面ABD 平面BDC BD =,∴AB ⊥平面BDC ,又CD ⊂平面BDC ,∴AB CD ⊥,又90DCB ︒∠=,∴DC BC ⊥,且AB BC B ⋂=,又AB ,BC ⊂平面AB C ,∴DC ⊥平面AB C ;(2)因为点E ,F 分别是棱AC ,AD 的中点,所以//EF DC ,且12EF DC =,所以EF ⊥平面ABC , 由(1)知,AB ⊥平面BDC ,又BC ⊂平面BDC ,所以AB BC ⊥,105ADC ︒∠=,45ADB ︒∠=,1054560CDB ADC ADB ︒︒︒∴∠=∠-∠=-=, 90906030CBD CDB ︒︒︒︒∴∠=-∠=-=,3cos30232BC BD ︒∴=⋅=⨯=1sin 30212DC BD ︒=⋅=⨯=, 所以132ABC S AB BC =⨯⨯△132ABE ABC S S ==△△1122EF DC ==, 所以11133332A BEF F ABE ABE V V EF S --==⋅⋅=⋅=△ 14.(2020·江西高三其他模拟(文))在如图所示的几何体中,底面四边形ABEF 为等腰梯形,AB ∥EF ,侧面四边形ABCD 是矩形,且平面ABCD ⊥平面ABEF ,222EF AB ==1BC BE ==(1)求证:AF ⊥平面BCE ;(2)求三棱锥A -CEF 的体积.【答案】(1)证明见解析;(2)13. 【分析】(1)证明:取EF 的中点为M ,连接BM //,//,AB MF AF BM ∴1,2,BE AF BM EM ====222,,BE BM EM BM BE ∴+=∴⊥因为平面ABCD ⊥ 平面,,ABEF BC AB ⊥,BC BM BM ∴⊥∴⊥平面,BECAF ∴⊥平面BEC (2)1121221.323A CEF C AEF V V --==⨯⨯=15.(2020·河南新乡市·高三一模(文))如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是以AB ,CD 为底边的等腰梯形,且24AB AD ==,60DAB ∠=︒,1AD D D ⊥.(1)证明:1AD BD ⊥.(2)若112D D D B ==,求四棱柱1111ABCD A B C D -的体积.【答案】(1)证明见解析;(2)33【分析】:(1)证明:在ABD △中,4AB =,2AD =,60DAB ∠=︒, 由余弦定理得222cos6023BD AB AD AB AD =+-⋅︒=则222AD BD AB +=,即AD BD ⊥,而1AD D D ⊥,1BD D D D ⋂=,故AD ⊥平面11D DBB ,又1BD ⊂平面11D DBB ,1AD BD ∴⊥.(2)解:如图所示:取BD 的中点O ,连接1D O , 由(1)可知:AD ⊥平面11D DBB , AD ⊂平面ABCD , ∴平面11D DBB ⊥平面ABCD , 由于11D D D B =, 1D O BD ∴⊥,故1D O ⊥平面ABCD , 即1D O 为四棱柱1111ABCD A B C D -的高, 又12DD =,3DO =, 2211431D O DD DO =-=-=,由AD BD ⊥知:梯形的高2233h ⨯== ∴梯形ABCD 的面积为1(24)3332⨯+= 故111133133ABCD A C D B V -==。
2023届高考数学专项练习立体几何解答题最全归纳总结【题型归纳目录】题型一:非常规空间几何体为载体题型二:立体几何存在性问题题型三:立体几何折叠问题题型四:立体几何作图问题题型五:立体几何建系繁琐问题题型六:两角相等(构造全等)的立体几何问题题型七:利用传统方法找几何关系建系题型八:空间中的点不好求题型九:创新定义【典例例题】题型一:非常规空间几何体为载体例1.如图,P为圆锥的顶点,O为圆锥底面的圆心,圆锥的底面直径AB=4,母线PH=22,M是PB的中点,四边形OBCH为正方形.(1)设平面POH∩平面PBC=l,证明:l∥BC;(2)设D为OH的中点,N是线段CD上的一个点,当MN与平面PAB所成角最大时,求MN的长.例2.如图所示,圆锥的底面半径为4,侧面积为162π,线段AB为圆锥底面⊙O的直径,C在线段AB上,且BC=3CA,点D是以BC为直径的圆上一动点;(1)当CD=CO时,证明:平面PAD⊥平面POD(2)当三棱锥P-BCD的体积最大时,求二面角B-PD-A的余弦值.例3.如图,圆锥PO 的母线长为6,△ABC 是⊙O 的内接三角形,平面PAC ⊥平面PBC .BC =23,∠ABC =60°.(1)证明:PA ⊥PC ;(2)设点Q 满足OQ =λOP ,其中λ∈0,1 ,且二面角O -QB -C 的大小为60°,求λ的值.例4.如图,D 为圆锥的顶点,O 为圆锥底面的圆心,AB 为底面直径,C 为底面圆周上一点,DA =AC =BC =2,四边形DOAE 为矩形,点F 在BC 上,且DF ⎳平面EAC .(1)请判断点F 的位置并说明理由;(2)平面DFO 将多面体DBCAE 分成两部分,求体积较大部分几何体的体积.例5.如图,在直角△POA 中,PO ⊥OA ,PO =2OA ,将△POA 绕边PO 旋转到△POB 的位置,使∠AOB =90°,得到圆锥的一部分,点C 为AB的中点.(1)求证:PC ⊥AB ;(2)设直线PC 与平面PAB 所成的角为φ,求sin φ..例6.如图,四边形ABCD 为圆柱O 1O 2的轴截面,EF 是该圆柱的一条母线,EF =2EA ,G 是AD 的中点.(1)证明:AF ⊥平面EBG ;(2)若BE =3EA ,求二面角E -BG -A 的正弦值.例7.例7.如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120°得到的,G 是DF的中点.(1)设P 是CE 上的一点,且AP ⊥BE ,求证BP ⊥BE ;(2)当AB =3,AD =2时,求二面角E -AG -C 的大小.例8.如图,四边形ABCD 是一个半圆柱的轴截面,E ,F 分别是弧DC ,AB 上的一点,EF ∥AD ,点H 为线段AD 的中点,且AB =AD =4,∠FAB =30°,点G 为线段CE 上一动点.(1)试确定点G 的位置,使DG ⎳平面CFH ,并给予证明;(2)求二面角C -HF -E 的大小.例9.坐落于武汉市江汉区的汉口东正教堂是中国南方唯一的拜占庭式建筑,象征着中西文化的有机融合.拜占庭建筑创造了将穹顶支承于独立方柱上的结构方法和与之相呼应的集中式建筑形制,其主体部分由一圆柱与其上方一半球所构成,如图所示.其中O 是下底面圆心,A ,B ,C 是⊙O 上三点,A 1,B 1,C 1是上底面对应的三点.且A ,O ,C 共线,AC ⊥OB ,C 1E =EC ,B 1F =13FB ,AE 与OF 所成角的余弦值为36565.(1)若E 到平面A 1BC 的距离为233,求⊙O 的半径.(2)在(1)的条件下,已知P 为半球面上的动点,且AP =210,求P 点轨迹在球面上围成的面积.例10.如图,ABCD 为圆柱OO 的轴截面,EF 是圆柱上异于AD ,BC 的母线.(1)证明:BE ⊥平面DEF ;(2)若AB =BC =6,当三棱锥B -DEF 的体积最大时,求二面角B -DF -E 的正弦值.例11.如图,O1,O分别是圆台上、下底的圆心,AB为圆O的直径,以OB为直径在底面内作圆E,C为圆O的直径AB所对弧的中点,连接BC交圆E于点D,AA1,BB1,CC1为圆台的母线,AB=2A1B1=8.(1)证明;C1D⎳平面OBB1O1;(2)若二面角C1-BC-O为π3,求O1D与平面AC1D所成角的正弦值.例12.某市在滨海文化中心有滨海科技馆,其建筑有鲜明的后工业风格,如图所示,截取其中一部分抽象出长方体和圆台组合,如图所示,长方体ABCD-A1B1C1D1中,AB=4,AD=AA1=2,圆台下底圆心O为AB的中点,直径为2,圆与直线AB交于E,F,圆台上底的圆心O1在A1B1上,直径为1.(1)求A1C与平面A1ED所成角的正弦值;(2)圆台上底圆周上是否存在一点P使得FP⊥AC1,若存在,求点P到直线A1B1的距离,若不存在则说明理由.题型二:立体几何存在性问题例13.如图,三棱锥P-ABC中,PA⊥平面ABC,PA=1,AB=1,AC=2,∠BAC=60°.(1)求三棱锥A-PBC的体积;(2)在线段PC上是否存在一点M,使得BM⊥AC?若存在,求MCPM的值,若不存在,请说明理由.例14.已知四棱锥P-ABCD中,底面ABCD是矩形,且AD=2AB,△PAD是正三角形,CD⊥平面PAD,E、F、G、O分别是PC、PD、BC、AD的中点.(1)求平面EFG与平面ABCD所成的锐二面角的大小;(2)线段PA上是否存在点M,使得直线GM与平面EFG所成角的大小为π6,若存在,求出PMPA的值;若不存在,说明理由.例15.已知三棱柱ABC-A1B1C1中,∠ACB=90°,A1B⊥AC1,AC=AA1=4,BC=2.(1)求证:平面A1ACC1⊥平面ABC;(2)若∠A1AC=60°,在线段AC上是否存在一点P,使二面角B-A1P-C的平面角的余弦值为34若存在,确定点P的位置;若不存在,说明理由.例16.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AD⎳BC,AD⊥CD,且AD=CD,BC=2CD,PA=2AD.(1)证明:AB⊥PC;(2)在线段PD上是否存在一点M,使得二面角M-AC-D的余弦值为1717,若存在,求BM与PC所成角的余弦值;若不存在,请说明理由.例17.如图,△ABC是边长为6的正三角形,点E,F,N分别在边AB,AC,BC上,且AE=AF=BN=4,M 为BC边的中点,AM交EF于点O,沿EF将三角形AEF折到DEF的位置,使DM=15.(1)证明:平面DEF⊥平面BEFC;(2)试探究在线段DM上是否存在点P,使二面角P-EN-B的大小为60°?若存在,求出DPPM的值;若不存在,请说明理由.例18.图1是直角梯形ABCD ,AB ⎳CD ,∠D =90∘,AB =2,DC =3,AD =3,CE =2ED ,以BE 为折痕将△BCE 折起,使点C 到达C 1的位置,且AC 1=6,如图2.(1)求证:平面BC 1E ⊥平面ABED ;(2)在棱DC 1上是否存在点P ,使得C 1到平面PBE 的距离为62?若存在,求出二面角P -BE -A 的大小;若不存在,说明理由.例19.如图所示,在四棱柱ABCD -A 1B 1C 1D 1中,侧棱A 1A ⊥底面ABCD ,AB ⊥AC ,AB =1,AC =AA 1=2,AD =CD =5,E 为棱AA 1上的点,且AE =12.(1)求证:BE ⊥平面ACB 1;(2)求二面角D 1-AC -B 1的余弦值;(3)在棱A 1B 1上是否存在点F ,使得直线DF ∥平面ACB 1?若存在,求A 1F 的长;若不存在,请说明理由.例20.如图,在五面体ABCDE中,已知AC⊥BD,AC⊥BC,ED⎳AC,且AC=BC=2ED=2,DC=DB =3.(1)求证:平面ABE⊥与平面ABC;(2)线段BC上是否存在一点F,使得平面AEF与平面ABE夹角余弦值的绝对值等于54343,若存在,求BFBC的值;若不存在,说明理由.题型三:立体几何折叠问题例21.如图1,在边上为4的菱形ABCD中,∠DAB=60°,点M,N分别是边BC,CD的中点,AC∩BD=O1,AC∩MN=G.沿MN将△CMN翻折到△PMN的位置,连接PA,PB,PD,得到如图2所示的五棱锥P -ABMND.(1)在翻折过程中是否总有平面PBD⊥平面PAG?证明你的结论;(2)当四棱锥P-MNDB体积最大时,求直线PB和平面MNDB所成角的正弦值;(3)在(2)的条件下,在线段PA上是否存在一点Q,使得二面角Q-MN-P余弦值的绝对值为1010若存在,试确定点Q的位置;若不存在,请说明理由.例22.如图,在等腰直角三角形PAD中,∠A=90°,AD=8,AB=3,B、C分别是PA、PD上的点,且AD⎳BC,M、N分别为BP、CD的中点,现将△BCP沿BC折起,得到四棱锥P-ABCD,连接MN.(1)证明:MN⎳平面PAD;(2)在翻折的过程中,当PA=4时,求二面角B-PC-D的余弦值.例23.如图1,在平面四边形PDCB中,PD∥BC,BA⊥PD,PA=AB=BC=2,AD=1.将△PAB沿BA 翻折到△SAB的位置,使得平面SAB⊥平面ABCD,如图2所示.(1)设平面SDC与平面SAB的交线为l,求证:BC⊥l;(2)点Q在线段SC上(点Q不与端点重合),平面QBD与平面BCD夹角的余弦值为66,求线段BQ的长.例24.如图,在平面五边形PABCD 中,△PAD 为正三角形,AD ∥BC ,∠DAB =90°且AD =AB =2BC =2.将△PAD 沿AD 翻折成如图所示的四棱锥P -ABCD ,使得PC =7.F ,Q 分别为AB ,CE 的中点.(1)求证:FQ ∥平面PAD ;(2)若DE PE=12,求平面EFC 与平面PAD 夹角的余弦值.例25.如图,在平行四边形ABCD 中,AB =3,AD =2,∠A =60°,E ,F 分别为线段AB ,CD 上的点,且BE =2AE ,DF =FC ,现将△ADE 沿DE 翻折至△A 1DE 的位置,连接A 1B ,A 1C .(1)若点G 为线段A 1B 上一点,且A 1G =3GB ,求证:FG ⎳平面A 1DE ;(2)当三棱锥C -A 1DE 的体积达到最大时,求二面角B -A 1C -D 的正弦值.例26.如图1,四边形ABCD是边长为2的正方形,四边形ABEF是等腰梯形,AB=BE=12EF,现将正方形ABCD沿AB翻折,使CD与C D 重合,得到如图2所示的几何体,其中D E=4.(1)证明:AF⊥平面AD E;(2)求二面角D -AE-C 的余弦值.例27.如图,在梯形ABCD中,AD∥BC,AB=BC=2,AD=4,现将△ABC所在平面沿对角线AC翻折,使点B翻折至点E,且成直二面角E-AC-D.(1)证明:平面EDC⊥平面EAC;(2)若直线DE与平面EAC所成角的余弦值为12,求二面角D-EA-C的余弦值.例28.如图1,在△ABC 中,∠ACB =90°,DE 是△ABC 的中位线,沿DE 将△ADE 进行翻折,使得△ACE 是等边三角形(如图2),记AB 的中点为F .(1)证明:DF ⊥平面ABC .(2)若AE =2,二面角D -AC -E 为π6,求直线AB 与平面ACD 所成角的正弦值.题型四:立体几何作图问题例29.已知四棱锥P -ABCD 中,底面ABCD 为正方形,O 为其中心,点E 为侧棱PD 的中点.(1)作出过O 、P 两点且与AE 平行的四棱锥截面(在答题卡上作出该截面与四棱锥表面的交线,并写出简要作图过程);记该截面与棱CD 的交点为M ,求出比值DM MC (直接写出答案);(2)若四棱锥的侧棱与底面边长均相等,求AE 与平面PBC 所成角的正弦值.例30..如图,已知底面为平行四边形的四棱锥P-ABCD中,平面MNGH与直线PB和直线AC平行,点E为PD的中点,点F在CD上,且DF:FC=1:2.(1)求证:四边形MNGH是平行四边形;(2)求作过EF作四棱锥P-ABCD的截面,使PB与截面平行(写出作图过程,不要求证明).截面的定义:用一个平面去截一个几何体,平面与几何体的表面的交线围成的平面图形.例31.如图,在棱长为2的正方体ABCD-A1B1C1D1中,E为棱B1C1的中点,F,G分别是棱CC1,BC上的动点(不与顶点重合).(1)作出平面A1DG与平面CBB1C1的交线(要求写出作图过程),并证明:若平面A1DG⎳平面D1EF,则EF⎳A1D;(2)若G为棱BC的中点,是否存在F,使平面D1EF⊥平面DGF,若存在,求出CF的所有可能值;若不存在,请说明理由.例32.如图,在棱长为2的正方体ABCD-A1B1C1D1中,E为棱B1C1的中点,F,G分别是棱CC1,BC上的动点(不与顶点重合).(1)作出平面A1DG与平面CBB1C1的交线(要求写出作图过程),并证明:若平面A1DG⎳平面D1EF,则EF⎳A1D;(2)若F,G均为其所在棱的中点,求点G到平面D1EF的距离.例33.如图多面体ABCDEF中,面FAB⊥面ABCD,△FAB为等边三角形,四边形ABCD为正方形,EF⎳BC,且EF=32BC=3,H,G分别为CE,CD的中点.(1)求二面角C-FH-G的余弦值;(2)作平面FHG与平面ABCD的交线,记该交线与直线AB交点为P,写出APAB的值(不需要说明理由,保留作图痕迹).例34.如图,已知多面体EABCDF的底面ABCD是边长为2的正方形,EA⊥底面ABCD,FD⎳EA,且FD =12EA=1.(1)求多面体EABCDF的体积;(2)记线段BC的中点为K,在平面ABCD内过点K作一条直线与平面ECF平行,要求保留作图痕迹,但不要求证明.例35.四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠DAB=2π3.AC∩BD=O,且PO⊥平面ABCD,PO=3,点F,G分别是线段PB.PD上的中点,E在PA上.且PA=3PE.(Ⅰ)求证:BD⎳平面EFG;(Ⅱ)求直线AB与平面EFG的成角的正弦值;(Ⅲ)请画出平面EFG与四棱锥的表面的交线,并写出作图的步骤.题型五:立体几何建系繁琐问题例36.如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点.过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1⎳MN,且平面A1AMN⊥平面EB1C1F;(2)设O为△A1B1C1的中心.若AO⎳平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.例37.如图,在锥体P-ABCD中,ABCD是边长为1的菱形,且∠DAB=60°,PA=PD=2,PB=2,E,F 分别是BC,PC的中点(1)证明:AD⊥平面DEF(2)求二面角P-AD-B的余弦值.例38.如图,AEC 是半径为a 的半圆,AC 为直径,点E 为AC的中点,点B 和点C 为线段AD 的三等分点,平面AEC 外一点F 满足FB =FD =5a ,EF =6a .(1)证明:EB ⊥FD ;(2)已知点Q ,R 为线段FE ,FB 上的点,FQ =23FE ,FR =23FB ,求平面BED 与平面RQD 所成二面角的正弦值.例39.《九章算术》是中国古代的一部数学专著,是《算经十书》中最重要的一部,成于公元一世纪左右.它是一本综合性的历史著作,是当时世界上最简练有效的应用数学,它的出现标志着中国古代数学形成了完整的体系.《九章算术》中将由四个直角三角形组成的四面体称为“鳖臑”,已知在三棱锥P -ABC 中,PA ⊥平面ABC .(1)从三棱锥P -ABC 中选择合适的两条棱填空: BC ⊥ ,则三棱锥P -ABC 为“鳖臑”;(2)如图,已知AD ⊥PB ,垂足为D ,AE ⊥PC ,垂足为E ,∠ABC =90°.(ⅰ)证明:平面ADE ⊥平面PAC ;(ⅱ)设平面ADE 与平面ABC 的交线为l ,若PA =23,AC =2,求二面角E -l -C 的大小.例40.已知四面体ABCD,AD=CD,∠ADB=∠CDB=120°,且平面ABD⊥平面BCD.(Ⅰ)求证:BD⊥AC;(Ⅱ)求直线CA与平面ABD所成角的大小.例41.已知四面体ABCD,∠ADB=∠CDB=120°,且平面ABD⊥平面BCD.(Ⅰ)若AD=CD,求证:BD⊥AC;(Ⅱ)求二面角B-CD-A的正切值.题型六:两角相等(构造全等)的立体几何问题例42.如图,在三棱锥A-BCD中,ΔABC是等边三角形,∠BAD=∠BCD=90°,点P是AC的中点,连接BP,DP(1)证明:平面ACD⊥平面BDP;(2)若BD=6,cos∠BPD=-33,求三棱锥A-BCD的体积.例43.如图,在三棱锥A-BCD中,ΔABC是等边三角形,∠BAD=∠BCD=90°,点P是AC的中点,连接BP,DP.(1)证明:平面ACD⊥平面BDP;(2)若BD=6,且二面角A-BD-C为120°,求直线AD与平面BCD所成角的正弦值.例44.如图,四棱锥F-ABCD中,底面ABCD为边长是2的正方形,E,G分别是CD、AF的中点,AF=4,∠FAE=∠BAE,且二面角F-AE-B的大小为90°.(1)求证:AE⊥BG;(2)求二面角B-AF-E的余弦值.例45.如图,四棱锥E-ABCD中,四边形ABCD是边长为2的菱形,∠DAE=∠BAE=45°,∠DAB=60°.(Ⅰ)证明:平面ADE⊥平面ABE;(Ⅱ)当直线DE与平面ABE所成的角为30°时,求平面DCE与平面ABE所成锐二面角的余弦值.例46.如图,在四面体ABCD中,已知∠ABD=∠CBD=60°,AB=BC=2,(1)求证:AC⊥BD;(2)若平面ABD⊥平面CBD,且BD=52,求二面角C-AD-B的余弦值.题型七:利用传统方法找几何关系建系例47.如图:长为3的线段PQ与边长为2的正方形ABCD垂直相交于其中心O(PO>OQ).(1)若二面角P-AB-Q的正切值为-3,试确定O在线段PQ的位置;(2)在(1)的前提下,以P,A,B,C,D,Q为顶点的几何体PABCDQ是否存在内切球?若存在,试确定其内切球心的具体位置;若不存在,请说明理由.例48.在四棱锥P-ABCD中,E为棱AD的中点,PE⊥平面ABCD,AD⎳BC,∠ADC=90°,ED=BC= 2,EB=3,F为棱PC的中点.(Ⅰ)求证:PA⎳平面BEF;(Ⅱ)若二面角F-BE-C为60°,求直线PB与平面ABCD所成角的正切值.例49.三棱柱ABC-A1B1C1中,AB⊥AC,AB=AC=2,侧面BCC1B1为矩形,∠A1AB=2π3,二面角A-BC-A1的正切值为12.(Ⅰ)求侧棱AA1的长;(Ⅱ)侧棱CC1上是否存在点D,使得直线AD与平面A1BC所成角的正切值为63,若存在,判断点的位置并证明;若不存在,说明理由.例50.如图,在四棱锥P-ABCD中,底面四边形ABCD内接于圆O,AC是圆O的一条直径,PA⊥平面ABCD,PA=AC=2,E是PC的中点,∠DAC=∠AOB(1)求证:BE⎳平面PAD;(2)若二面角P-CD-A的正切值为2,求直线PB与平面PCD所成角的正弦值.例51.如图所示,PA⊥平面ABCD,ΔCAB为等边三角形,PA=AB,AC⊥CD,M为AC中点.(Ⅰ)证明:BM⎳平面PCD;(Ⅱ)若PD与平面PAC所成角的正切值为62,求二面角C-PD-M的正切值.题型八:空间中的点不好求例52.如图,直线AQ⊥平面α,直线AQ⊥平行四边形ABCD,四棱锥P-ABCD的顶点P在平面α上,AB =7,AD=3,AD⊥DB,AC∩BD=O,OP⎳AQ,AQ=2,M,N分别是AQ与CD的中点.(1)求证:MN⎳平面QBC;(2)求二面角M-CB-Q的余弦值.例53.如图,四棱锥S-ABCD中,AB⎳CD,BC⊥CD,侧面SAB为等边三角形.AB=BC=2,CD=SD=1.(1)证明:SD⊥平面SAB(2)求AB与平面SBC所成角的正弦值.例54.如图,四棱锥S-ABCD中,底面ABCD为矩形,SD⊥底面ABCD,AD=2,DC=SD=2,点M在侧棱SC上,∠ABM=60°.(Ⅰ)证明:M是侧棱SC的中点;(Ⅱ)求二面角S-AM-B的余弦值.例55.如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,底面ABCD为直角梯形,其中AB⎳CD,∠CDA=90°,CD=2AB=2,AD=3,PA=5,PD=22,点E在棱AD上且AE=1,点F为棱PD的中点.在棱AD上且AE=1,点F位棱PD的中点.(1)证明:平面BEF⊥平面PEC;(2)求二面角A-BF-C的余弦值的大小.例56.如图,在四棱锥A-BCFE中,四边形EFCB为梯形,EF⎳BC,且EF=34BC,ΔABC是边长为2的正三角形,顶点F在AC上的射影为点G,且FG=3,CF=212,BF=52.(1)证明:平面F GB⊥平面ABC;(2)求二面角E-AB-F的余弦值.例57.三棱柱ABC-A1B1C1的底面ABC是等边三角形,BC的中点为O,A1O⊥底面ABC,AA1与底面ABC所成的角为π3,点D在棱AA1上,且AD=32,AB=2.(1)求证:OD⊥平面BB1C1C;(2)求二面角B-B1C-A1的平面角的余弦值.例58.如图,将矩形ABCD沿AE折成二面角D1-AE-B,其中E为CD的中点,已知AB+2,BC=1.BD1 =CD1,F1为D1B的中点.(1)求证:CF⎳平面AD1E;(2)求AF与平面BD1E所成角的正弦值.题型九:创新定义例59.蜂房是自然界最神奇的“建筑”之一,如图1所示.蜂房结构是由正六棱柱截去三个相等的三棱锥H-ABC,J-CDE,K-EFA,再分别以AC,CE,EA为轴将△ACH,△CEJ,△EAK分别向上翻转180°,使H,J,K三点重合为点S所围成的曲顶多面体(下底面开口),如图2所示.蜂房曲顶空间的弯曲度可用曲率来刻画,定义其度量值等于蜂房顶端三个菱形的各个顶点的曲率之和,而每一顶点的曲率规定等于2π减去蜂房多面体在该点的各个面角之和(多面体的面角是多面体的面的内角,用弧度制表示).例如:正四面体在每个顶点有3个面角,每个面角是π3,所以正四面体在各顶点的曲率为2π-3×π3=π.(1)求蜂房曲顶空间的弯曲度;(2)若正六棱柱底面边长为1,侧棱长为2,设BH=x(i)用x表示蜂房(图2右侧多面体)的表面积S(x);(ii)当蜂房表面积最小时,求其顶点S的曲率的余弦值.例60.类比于二维平面中的余弦定理,有三维空间中的三面角余弦定理;如图1,由射线PA,PB,PC构成的三面角P-ABC,∠APC=α,∠BPC=β,∠APB=γ,二面角A-PC-B的大小为θ,则cosγ=cosαcosβ+sinαsinβcosθ.时,证明以上三面角余弦定理;(1)当α、β∈0,π2(2)如图2,四棱柱ABCD-A1B1C1D1中,平面AA1C1C⊥平面ABCD,∠A1AC=60°,∠BAC=45°,①求∠A1AB的余弦值;②在直线CC1上是否存在点P,使BP⎳平面DA1C1?若存在,求出点P的位置;若不存在,说明理由.例61.(1)如图,对于任一给定的四面体A1A2A3A4,找出依次排列的四个相互平行的平面α1,α2,α3,α4,使得A i ∈αi i=1,2,3,4,且其中每相邻两个平面间的距离都相等;(2)给定依次排列的四个相互平行的平面α1,α2,α3,α4,其中每相邻两个平面间的距离为1,若一个正四面体A1A2A3A4的四个顶点满足:A i∈αi i=1,2,3,4,求该正四面体A1A2A3A4的体积.例62.已知a =(x 1,y 1,z 1),b =(x 2,y 2,z 2),c =(x 3,y 3,z 3),定义一种运算:(a ×b )⋅c =x 1y 2z 3+x 2y 3z 1+x 3y 1z 2-x 1y 3z 2-x 2y 1z 3-x 3y 2z 1,已知四棱锥P -ABCD 中,底面ABCD 是一个平行四边形,AB =(2,-1,4),AD =(4,2,0),AP =(-1,2,1)(1)试计算(AB ×AD )⋅AP 的绝对值的值,并求证PA ⊥面ABCD ;(2)求四棱锥P -ABCD 的体积,说明(AB ×AD )⋅AP 的绝对值的值与四棱锥P -ABCD 体积的关系,并由此猜想向量这一运算(AB ×AD )⋅AP 的绝对值的几何意义.立体几何解答题最全归纳总结【题型归纳目录】题型一:非常规空间几何体为载体题型二:立体几何存在性问题题型三:立体几何折叠问题题型四:立体几何作图问题题型五:立体几何建系繁琐问题题型六:两角相等(构造全等)的立体几何问题题型七:利用传统方法找几何关系建系题型八:空间中的点不好求题型九:创新定义【典例例题】题型一:非常规空间几何体为载体例1.如图,P 为圆锥的顶点,O 为圆锥底面的圆心,圆锥的底面直径AB =4,母线PH =22,M 是PB 的中点,四边形OBCH 为正方形.(1)设平面POH ∩平面PBC =l ,证明:l ∥BC ;(2)设D 为OH 的中点,N 是线段CD 上的一个点,当MN 与平面PAB所成角最大时,求MN 的长.【解析】(1)因为四边形OBCH 为正方形,∴BC ∥OH ,∵BC ⊄平面POH ,OH ⊂平面POH ,∴BC ∥平面POH .∵BC ⊂平面PBC ,平面POH ∩平面PBC =l ,∴l ∥BC .(2)∵圆锥的母线长为22,AB =4,∴OB =2,OP =2,以O 为原点,OP 所在的直线为z 轴,建立如图所示的空间直角坐标系,则P 0,0,2 ,B 0,2,0 ,D 1,0,0 C 2,2,0 ,M 0,1,1 ,设DN =λDC =λ,2λ,0 0≤λ≤1 ,ON =OD +DN =1+λ,2λ,0 ,MN =ON -OM =1+λ,2λ-1,-1 ,OD =1,0,0 为平面PAB 的一个法向量,设MN 与平面PAB 所成的角为θ,则sin θ=1+λ,2λ-1,-1 ⋅1,0,0 1+λ 2+2λ-1 2+1 =1+λ5λ2-2λ+3,令1+λ=t ∈1,2 ,则sin θ=t 5t 2-12t +10=15-12t +101t 2=1101t -35 2+75所以当1t =35时,即λ=23时,sin θ最大,亦θ最大,此时MN =53,13,-1 ,所以MN =MN =53 2+13 2+-1 2=353.例2.如图所示,圆锥的底面半径为4,侧面积为162π,线段AB 为圆锥底面⊙O 的直径,C 在线段AB 上,且BC =3CA ,点D 是以BC 为直径的圆上一动点;(1)当CD =CO 时,证明:平面PAD ⊥平面POD(2)当三棱锥P -BCD 的体积最大时,求二面角B -PD -A 的余弦值.【解析】(1)∵PO 垂直于圆锥的底面,∴PO ⊥AD ,当CD =CO 时,CD =OC =AC ,∴AD ⊥OD ,又OD ∩PO =O ,∴AD ⊥平面POD ,又AD ⊂平面PAD ,∴平面PAD ⊥平面POD ;(2)由题可知OA =OB =4,4π⋅PB =162π,∴PB =42,∴PO =4,当三棱锥P -BCD 的体积最大时,△DBC 的面积最大,此时D 为BC的中点,如图,建立空间直角坐标系O -xyz ,则A (0,-4,0),B (0,4,0),P (0,0,4),D 3,1,0 ,∴BP =0,-4,4 ,PD =3,1,-4 ,AP =(0,4,4),设平面PAD 的法向量为n 1 =(a ,b ,c ),则n 1 ⋅AP =0n 1 ⋅PD =0 ,即4b +4c =03a +b -4c =0,令a =5,则b =-3,c =3,∴n 1 =(5,-3,3),设平面PBD 的法向量n 2 =x ,y ,z ,则n 2 ⋅BP =0n 2 ⋅PD =0 ,即-4y +4z =03x +y -4z =0,令x =1,则y =1,z =1,∴n 2 =1,1,1 ,则cos n 1 ,n 2 =n 1 ⋅n 2 n 1 n 2 =5-3+33×52+-3 2+32=5129129,∴二面角B -PD -A 的余弦值为-5129129.例3.如图,圆锥PO 的母线长为6,△ABC 是⊙O 的内接三角形,平面PAC ⊥平面PBC .BC =23,∠ABC =60°.(1)证明:PA ⊥PC ;(2)设点Q 满足OQ =λOP ,其中λ∈0,1 ,且二面角O -QB -C 的大小为60°,求λ的值.【解析】(1)∵PA =PB =PC =6,BC =23,PB 2+PC 2=BC 2,∴PB ⊥PC∵平面PAC ⊥平面PBC 且平面PAC ∩平面PBC =PC ,PB ⊂平面PBC ,PB ⊥PC ,∴PB ⊥平面PAC ,又PA ⊂平面PAC ,∴PB ⊥PA ,∴AB =PA 2+PB 2=23,∴∠ABC =60°,∴△ABC 是正三角形,AC =23,∵PA 2+PC 2=AC 2∴PA ⊥PC ;(2)在平面ABC 内作OM ⊥OB 交BC 于M ,以O 为坐标原点,OM ,OB ,OP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系O -xyz 如图所示:易知OB =OC =2,OP =PB 2-OB 2=2,所以B 2,0,0 ,P 0,0,2 ,C -1,3,0 ,Q 0,0,2λ ,QB =2,0,-2λ ,BC =-3,3,0 ,设平面OBC 的法向量n 1 =x ,y ,z ,依题意n 1 ⋅QB =0n 1 ⋅CB =0 ,即2x -2λz =0-3x +3y =0 ,不妨令y =3λ,得n 1 =λ,3λ,2 ,易知平面OQB 的法向量n 2 =0,1,0 ,由λ∈0,1 可知cos n 1 ,n 2 =n 1 ⋅n 2 n 1 ⋅n 2=cos60°,即3λλ2+(3λ)2+2 2=12,解得λ=12例4.如图,D 为圆锥的顶点,O 为圆锥底面的圆心,AB 为底面直径,C 为底面圆周上一点,DA =AC =BC =2,四边形DOAE 为矩形,点F 在BC 上,且DF ⎳平面EAC .(1)请判断点F 的位置并说明理由;(2)平面DFO 将多面体DBCAE 分成两部分,求体积较大部分几何体的体积.【解析】(1)点F 是BC 的中点,取BC 的中点F ,连接OF ,DF ,因为O 为AB 的中点,所以OF ⎳AC ,又AC ⊂平面AEC ,OF ⊄平面AEC ,所以OF ⎳平面AEC ,由四边形DOAE 为矩形,所以DO ⎳AE ,又AE ⊂平面AEC ,OD ⊄平面AEC ,所以OD ⎳平面AEC ,因为DO ∩OF =O ,DO ,OF ⊂平面DOF ,所以平面DOF ⎳平面AEC ,因为DF ⊂平面DOF ,所以DF ⎳平面AEC ,(2)由(1)知点F 是BC 的中点,因为DA =AC =BC =2,所以AB =AC 2+BC 2=22,所以OA =OC =OB =2,且OC ⊥AB ,所以OD =AD 2-OA 2=2,所以三棱锥D -BOF 的体积V D -BOF =13S △BOF ⋅DO =13×12×2×22×2=26;又三棱锥D -BOC 的体积V D -BOC =13S △BOC ⋅DO =13×12×2×2×2=23,所以四棱锥C -DOAE 的体积V C -DOAE =13S DOAE ×2=13×2 2×2=223,所以几何体DBCAE 的体积V DBCAE =V D -BCO +V C -DOAE =2,所以体积较大部分几何体的体积为V DBCAE -V D -BOF =2-26=526;例5.如图,在直角△POA 中,PO ⊥OA ,PO =2OA ,将△POA 绕边PO 旋转到△POB 的位置,使∠AOB =90°,得到圆锥的一部分,点C 为AB 的中点.(1)求证:PC ⊥AB ;(2)设直线PC 与平面PAB 所成的角为φ,求sin φ.【解析】(1)证明:由题意知:PO ⊥OA ,PO ⊥OB ,OA ∩OC =0∴PO ⊥平面AOB ,又∵AB ⊂平面AOB ,所以PO ⊥AB .又点C 为AB 的中点,所以OC ⊥AB ,PO ∩OC =0,所以AB ⊥平面POC ,又∵PC ⊂平面POC ,所以PC ⊥AB .(2)以O 为原点,OA ,OB ,OP 的方向分别作为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系,设OA =2,则A 2,0,0 ,B 0,2,0 ,P 0,0,4 ,C 2,2,0 ,所以AB =-2,2,0 ,AP =-2,0,4 ,PC =2,2,-4 .设平面PAB 的法向量为n =a ,b ,c ,则n ⋅AB =-2a +2b =0,n ⋅AP =-2a +4c =0, 取c =1,则a =b =2可得平面PAB 的一个法向量为n =2,2,1 ,所以sin φ=cos n ,PC =n ⋅PC n PC =42-465=210-5 15.例6.如图,四边形ABCD 为圆柱O 1O 2的轴截面,EF 是该圆柱的一条母线,EF =2EA ,G 是AD 的中点.(1)证明:AF ⊥平面EBG ;(2)若BE =3EA ,求二面角E -BG -A 的正弦值.【解析】(1)由已知EF ⊥平面ABE ,BE ⊂平面ABE ,所以EF ⊥BE ,因为AB 是圆O 1的直径,所以AE ⊥BE ,因为AE ∩FE =E ,所以BE ⊥平面AFE ,AF ⊂平面AFE ,故BE ⊥AF ,因为EF =2EA =2AG ,所以EA =2AG ,易知:Rt △AEG ∼Rt △EFA ,所以∠GEA +∠EAF =90°,从而AF ⊥EG ,又BE ∩EG =E ,所以AF ⊥平面EBG .(2)以E 为坐标原点,EA 为x 轴正方向,EA 为单位向量,建立如图所示的空间直角坐标系E -xyz ,则AB =2,BE =3,EF =2,从而A 1,0,0 ,B 0,3,0 ,D 1,0,2 ,F 0,0,2 ,AB =-1,3,0 ,AD =0,0,2 ,设n =x ,y ,z 位平面BGA 的法向量,则{n ⋅AB =0n ⋅AD =0⇒{-x +3y =02z =0⇒{x =3y =1z =0,所以n =3,1,0 ,由(1)知:平面BEG 的法向量为AF =-1,0,2 ,因为cos n ,AF =n ⋅AF n ⋅AF=-12,所以二面角E -BG -A 的正弦值为32.例7.例7.如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120°得到的,G 是DF的中点.(1)设P 是CE 上的一点,且AP ⊥BE ,求证BP ⊥BE ;(2)当AB =3,AD =2时,求二面角E -AG -C 的大小.【解析】(1)因为AP ⊥BE ,AB ⊥BE ,AB ,AP ⊂平面ABP ,AB ∩AP =A ,所以BE ⊥平面ABP ,又BP ⊂平面ABP ,所以BP ⊥BE .(2)以B 为坐标原点,分别以BE ,BP ,BA 所在的直线为x ,y ,z 轴,建立如图所示的空间直角坐标系.由题意得A (0,0,3),E (2,0,0),G (1,3,3),C (-1,3,0),故AE =(2,0,-3),AG =(1,3,0),CG =(2,0,3).设m =x 1,y 1,z 1 是平面AEG 的一个法向量,由m ·AE =0m ·AG =0 可得2x 1-3z 1=0,x 1+3y 1=0.取z 1=2,可得平面AEG 的一个法向量m =(3,-3,2).设n =x 2,y 2,z 2 是平面ACG 的一个法向量,由n ·AG =0n ·CG =0,可得x 2+3y 2=0,2x 2+3z 2=0. 取z 2=-2,可得平面ACG 的一个法向量n =(3,-3,-2).所以cos ‹m ,n ›=m ⋅n |m |⋅|n |=12, 因为<m ,n >∈[0,π],故所求的角为60°.例8.如图,四边形ABCD 是一个半圆柱的轴截面,E ,F 分别是弧DC ,AB 上的一点,EF ∥AD ,点H 为线段AD 的中点,且AB =AD =4,∠FAB =30°,点G 为线段CE 上一动点.(1)试确定点G 的位置,使DG ⎳平面CFH ,并给予证明;(2)求二面角C -HF -E 的大小.【解析】(1)当点G 为CE 的中点时,DG ∥平面CFH .证明:取CF 得中点M ,连接HM ,MG .∵G ,M 分别为CE 与CF 的中点,∴GM ∥EF ,且GM =12EF =12AD ,又H 为AD 的中点,且AD ∥EF ,AD =EF ,∴GM ∥DH ,GM =DH .四边形GMHD 是平行四边形,∴HM ∥DG又HM ⊂平面CFH ,DG ⊄平面CFH∴DG ∥平面CFH(2)由题意知,AB 是半圆柱底面圆的一条直径,∴AF ⊥BF .∴AF =AB cos30°=23,BF =AB sin30°=2.由EF ∥AD ,AD ⊥底面ABF ,得EF ⊥底面ABF .∴EF ⊥AF ,EF ⊥BF .以点F 为原点建立如图所示的空间直角坐标系,则F (0,0,0),B (0,2,0),C (0,2,4),H (23,0,2)FH =(23,0,2),FC =(0,2,4)设平面CFH 的一个法向量为n =(x ,y ,z )所以n ⋅FH =23x +2z =0n ⋅FC =2y +4z =0则令z =1则y =-2,x =-33即n =-33,-2,1由BF ⊥AF ,BF ⊥FE ,AF ∩FE =F .得BF ⊥平面EFH ∴平面EFH 的一个法向量为FB =(0,2,0)设二面角C -HF -E 所成的角为θ∈0,π2则cos θ=∣cos ‹n ,FB ›=|n ⋅FB ||n ||FB |=0×-33 +(-2)×2+1×02×13+4+1=32 ∴二面角C -HF -E 所成的角为π6.例9.坐落于武汉市江汉区的汉口东正教堂是中国南方唯一的拜占庭式建筑,象征着中西文化的有机融合.拜占庭建筑创造了将穹顶支承于独立方柱上的结构方法和与之相呼应的集中式建筑形制,其主体部分由一圆柱与其上方一半球所构成,如图所示.其中O 是下底面圆心,A ,B ,C 是⊙O 上三点,A 1,B 1,C 1是上底面对应的三点.且A ,O ,C 共线,AC ⊥OB ,C 1E =EC ,B 1F =13FB ,AE 与OF 所成角的余弦值为36565.(1)若E 到平面A 1BC 的距离为233,求⊙O 的半径.(2)在(1)的条件下,已知P 为半球面上的动点,且AP =210,求P 点轨迹在球面上围成的面积.【解析】(1)如图,取BB 1,CE 上的点N ,M .连接OM ,OF ,FM .过N 作NH ⊥A 1B 于H ,则OM ∥AE ,由题意知cos ∠FOM =36565,设⊙O 的半径为r ,AA 1=h ,由勾股定理知OF =r 2+916h 2,OM =r 2+116h 2,FM =2r 2+14h 2,由余弦定理知cos ∠FOM =OF 2+OM 2-FM 22×OF ×OM.代入解得h =2r ,因为EN ∥BC ,EN ⊄面A 1BC ,所以EN ∥面A 1BC ,故N 到面A 1BC 的距离是233,因为BC ⊥AB ,BC ⊥AA 1,AA 1∩AB =A ,所以BC ⊥面A 1AB ,BC ⊥NH ,因为NH ⊥BC ,NH ⊥A 1B ,A 1B ∩BC =B ,所以NH ⊥面A 1BC ,NH =233,而sin ∠A 1BB 1=NH BN =A 1B 1A 1B ,即233×h 2=2r 2r 2+h 2,解得r =2,h =4,即⊙O 的半径为2.(2)设上底面圆心为O 1,则O 1P =2,O 1O 2与O 1P 的夹角为θ,所以|AP |=|AO 1 +O 1P |=20+4+85cos θ=210,解得cos θ=255,过P 作PO 2⊥AO 1于O 2,则O 2P =O 1P ⋅sin θ=255,所以点P 的轨迹是以O 2为圆心,以255为半径的圆,因此可作出几何体被面AOA 1所截得到的截面,如图所示.设弧A 1C 1旋转一周所得到的曲面面积为S 1,弧PP 得到的为S 2,则S 2S 1=1-cos θS 1=12×4πr2 ,因此S 2=2πr 2(1-cos θ)=8π1-255 .因此P 点轨迹在球面上围成的面积为8π1-255.例10.如图,ABCD 为圆柱OO 的轴截面,EF 是圆柱上异于AD ,BC 的母线.(1)证明:BE ⊥平面DEF ;(2)若AB =BC =6,当三棱锥B -DEF 的体积最大时,求二面角B -DF -E 的正弦值.【解析】(1)证明:如图,连接AE ,由题意知AB 为⊙O 的直径,所以AE ⊥BE .因为AD ,EF 是圆柱的母线,所以AD ∥EF 且AD =EF ,所以四边形AEFD 是平行四边形.所以AE ⎳DF ,所以BE ⊥DF .因为EF 是圆柱的母线,所以EF ⊥平面ABE ,又因为BE ⊂平面ABE ,所以EF ⊥BE .又因为DF ∩EF =F ,DF 、EF ⊂平面DEF ,所以BE ⊥平面DEF .(2)由(1)知BE 是三棱锥B -DEF 底面DEF 上的高,由(1)知EF ⊥AE ,AE ∥DF ,所以EF ⊥DF ,即底面三角形DEF 是直角三角形.设DF =AE =x ,BE =y ,则在Rt △ABE 中有:x 2+y 2=6,所以V B -DEF =13S △DEF ⋅BE =13⋅12x ⋅6⋅y =66xy ≤66⋅x 2+y 22=62,当且仅当x =y =3时等号成立,即点E ,F 分别是AB ,CD的中点时,三棱锥B -DEF 的体积最大,。
厉兵秣马,2019高考数学立体几何必考压轴题及解析,冲刺140必备高中数学的立体几何很抽象,一直让不少学生头疼。
然而,每年的高考都会至少考一题立体几何,且往往是分值高的大题,如果没有迎难而上的勇气,一下子就会被别人甩下将近20分;相反,如果你能搞定立体几何,那你就等于甩开了数以万计被立体几何打败的学生,有助你考上理想大学。
高考对于立体几何的考查重点集中在以下几个方面:①几何的机构特征和三视图、直观图,重点是三视图。
②点、线、平面之间的位置关系,重点是平行关系、垂直关系和异面直线③空间的角度,重点是二面角、直线和平面所成的角、异面直线所成的角④空间向量,一般是以解答题的形式出现,这是立体几何考查的一个重要点。
下面是小编为同学们整理的2019年高考数学立体几何必考压轴题及答案解析,希望同学们一定要给予足够的重视!由于篇幅有限文中无法全部为同学们展示,所以,如果同学们需要完整版的话可以点小编的头像私信咨询小编哦~!私信:立体几何高中数学《立体几何》压轴题及答案解析在高一的时候,同学们开始学习立体几何“三视图”时,大家都会觉得这个内容非常难学.这块内容之所以难学其本质的原因是大家空间想象力不够,对空间几何体直观图的框架呈现方式没有深入理解,另平行投影的原理及三视图的边界意义是还原几何体的重点.三视图作为高考数学立体几何部分的核心考点之一,关键是如何还原几何体.涉及立体几何所有知识点:包括空间几何体(棱锥、棱柱、棱台、圆锥、圆柱、圆台、球)的直观图画法;三视图的投影原理(平行投影:长对正、高平齐、宽相等);截面的做法(平面的基本性质的应用);常见几何体的概念及相关计算公式(表面积和体积等).还原几何体过程中还会考虑到空间点、线、面位置关系的判断等,如线面平行、线面垂直的判定定理与性质定理.立体几何中的动态问题或最值问题,这类问题往往困扰成绩比较好的同学,一般成绩较弱的同学其实这类问题就果断放弃了.究其原因,这类问题的知识覆盖面广,很多同学在这方面缺乏专项的训练,常常在解题时没有明确的思路,无从下手.即使偶尔能做对,也是凭着运气成分,并不是实力使然,也不能100%的做对.。
预测11 空间向量与立体几何概率预测☆☆☆☆☆题型预测选择题、填空题☆☆☆☆解答题☆☆☆☆☆考向预测1、重点考简单几何体的表面积或体积;2、球与简单几何体的切接问题或与之有关的最大值;3、几何体的点面距离等问题;1、线线、线面、面面垂直的判定与性质;2、第二小题重点考查利用向量计算线面角或二面角;从近几年的高考试题来看,所考的主要内容是:(1)有关线面位置关系的组合判断,试题通常以选择题的形式出现,主要是考查空间线线、线面、面面位置关系的判定与性质;(2)有关线线、线面和面面的平行与垂直的证明,试题以解答题中的第一问为主,常以多面体为载体,突出考查学生的空间想象能力及推理论证能力;(3)线线角、线面角和二面角是高考的热点,选择题、填空题皆有,解答题中第二问必考,一般为中档题,在全卷的位置相对稳定,主要考查空间想象能力、逻辑思维能力和转化与化归的应用能力.1.平面的基本性质(1)熟悉三个公理的三种语言的描述(自然语言、图形语言、符号语言),明白各自的作用,能够依据这三个公理及其推论对点与平面、直线与平面、平面与平面的位置关系作简单的判断.(2)掌握确定一个平面的依据:不共线的三点确定一个平面、直线与直线外一点确定一个平面、两相交直线确定一个平面、两平行直线确定一个平面.2.空间直线、平面的位置关系(1)空间两条直线与直线的位置关系:相交、平行、异面.判断依据:是否在同一个平面上;公共点的个数情况.理解平行公理与等角定理:平行公理:平行于同一条直线的两条直线平行;等角定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补. (2)直线与平面的位置关系:直线在平面内、直线与平面平行或相交 判断依据:直线与平面的公共点的个数. 理解直线与平面平行的定义.(3)空间两个平面的位置关系:相交、平行判断依据:没有公共点则平行,有一条公共直线则相交. 3.空间直线、平面平行的判定定理与性质定理 (1)线面平行的判定定理与性质定理1)线面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则直线与平面平行. 符号语言:,,////a b a b a ααα⊄⊂⇒.要判定直线与平面平行,只需证明直线平行于平面内的一条直线.2)线面平行的性质定理:一条直线与一个平面平行,则过这条直线的平面与已知平面的交线与该直线平行.符号语言://,,//a a b a b αβαβ⊂=⇒.当直线与平面平行时,直线与平面内的直线不一定平行,只有在两条直线共面时才平行. 3)面面平行的判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行. 符号语言://,//,,,//a b a b ab P ααββαβ⊂⊂=⇒.要使两个平面平行,只需证明其中一个平面内的两条相交直线与另一个平面平行即可,这里的直线需是相交直线.4)面面平行的性质定理:如果两个平行平面同时与第三个平面相交,那么它们的交线平行. 符号语言://,,//m n m n αβαγβγ==⇒.5)平行关系的转化−−−→−−−→←−−−←−−−判定判定性质性质线线平行线面平行面面平行 (2)直线、平面垂直的判定定理与性质定理1)线面垂直的判定定理:如果直线垂直于平面内的两条相交直线,则直线与平面垂直. 符号语言:,,,,l a l b a b ab P l ααα⊥⊥⊂⊂=⇒⊥.要判定直线与平面垂直,只需判定直线垂直于平面内的两条相交直线即可. 2)线面垂直的性质定理:垂直于同一个平面的两条直线平行. 符号语言:,//a b a b αα⊥⊥⇒.此性质反映了平行、垂直之间的关系,也可以获得以下推论:两直线平行,若其中一条直线与一个平面垂直,则另一条直线也与该平面垂直.3)面面垂直的判定定理:若直线垂直于平面,则过该直线的平面与已知平面垂直. 符号语言:,a a αβαβ⊥⊂⇒⊥.要证明平面与平面垂直,关键是在其中一个平面内找到一条与另一个平面垂直的直线. 4)面面垂直的性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直. 符号语言:,,,m n n m n αβαβαβ⊥=⊂⊥⇒⊥.要通过平面与平面垂直推理得到直线与平面垂直,必须满足直线垂直于这两个平面的交线. 5)垂直关系的转化−−−→−−−→←−−−←−−−判定判定性质性质线线垂直线面垂直面面垂直 4.空间向量在立体几何中的应用 (1)空间向量的坐标运算设123123(,,),(,,)a a a b b b ==a b ,则112233(,,)a b a b a b ±=±±±a b ,123(,,)()a a a λλλλλ=∈R a ,112233a b a b a b ⋅=++a b ,112233,,()b a b a b a λλλλλ⇔=⇔===∈R ab b a ,1122330a b a b a b ⊥⇔⋅=++=a b a b ,==acos ,⋅==a ba b a b 5. 直线的方向向量和平面的法向量(1)直线的方向向量:如果表示非零向量a 的有向线段所在直线与直线l 平行或重合,则称此向量a 为直线l 的方向向量.(2)平面的法向量:直线l ⊥α,取直线l 的方向向量a ,则向量a 叫做平面α的法向量. 6. 空间位置关系的向量表示l 1∥l 2 n 1∥n 2⇔n 1=λn 2 l 1⊥l 2 n 1⊥n 2⇔n 1·n 2=0直线l 的方向向量为n ,平面α的法向量为m , l ∥α,n ⊥m ⇔n ·m =0 l ⊥α,n ∥m ⇔n =λm平面α,β的法向量分别为n ,m , α∥β,n ∥m ⇔n =λmα⊥β,n ⊥m ⇔n ·m =03. 异面直线所成的角7·.设a ,b 分别是两异面直线l 1,l 2的方向向量,则a 与b 的夹角β l 1与l 2所成的角θ范围(0,π) ⎝⎛⎦⎤0,π2a 与b 的夹角β l 1与l 2所成的角θ求法 cos β=a·b |a||b| cos θ=|cos β|=|a·b||a||b|8 求直线与平面所成的角设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,则sin θ=|cos〈a ,n 〉|=|a·n||a||n|.5. 求二面角的大小(1)如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉①②③(2)如图②③,n 1,n 2 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角).利用空间向量计算二面角大小的常用方法(1)找法向量:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.(2)找与棱垂直的方向向量:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小. 二、探索性问题对于探索性问题常见的是是否存在点的位置问题,此类问题主要是有两种方法:一是直接通过参数设点坐标,二是通过向量之间的关系,引入参数,然后表示点坐标。
立体几何立体几何是高考数学的必考内容,在大题中一般分两问,第一问考查空间直线与平面的位置关系证明;第二问考查空间角、空间距离等的求解。
考题难度中等,常结合空间向量知识进行考查。
2024年高考有很大可能延续往年的出题方式。
题型一:空间异面直线夹角的求解1(2023·上海长宁·统考一模)如图,在三棱锥A-BCD中,平面ABD⊥平面BCD,AB=AD,O为BD的中点.(1)求证:AO⊥CD;(2)若BD⊥DC,BD=DC,AO=BO,求异面直线BC与AD所成的角的大小.【思路分析】(1)利用面面垂直的性质、线面垂直的性质推理即得.(2)分别取AB,AC的中点M,N,利用几何法求出异面直线BC与AD所成的角.【规范解答】(1)在三棱锥A-BCD中,由AB=AD,O为BD的中点,得AO⊥BD,而平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AO⊂平面ABD,因此AO⊥平面BCD,又CD⊂平面BCD,所以AO⊥CD.(2)分别取AB,AC的中点M,N,连接OM,ON,MN,于是MN⎳BC,OM⎳AD,则∠OMN是异面直线BC与AD所成的角或其补角,由(1)知,AO ⊥BD ,又AO =BO ,AB =AD ,则∠ADB =∠ABD =π4,于是∠BAD =π2,令AB =AD =2,则DC =BD =22,又BD ⊥DC ,则有BC =BD 2+DC 2=4,OC =DC 2+OD 2=10,又AO ⊥平面BCD ,OC ⊂平面BCD ,则AO ⊥OC ,AO =2,AC =AO 2+OC 2=23,由M ,N 分别为AB ,AC 的中点,得MN =12BC =2,OM =12AD =1,ON =12AC =3,显然MN 2=4=OM 2+ON 2,即有∠MON =π2,cos ∠OMN =OM MN =12,则∠OMN =π3,所以异面直线BC 与AD 所成的角的大小π3.1、求异面直线所成角一般步骤:(1)平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线.(2)证明:证明所作的角是异面直线所成的角.(3)寻找:在立体图形中,寻找或作出含有此角的三角形,并解之.(4)取舍:因为异面直线所成角θ的取值范围是0,π2,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2、可通过多种方法平移产生,主要有三种方法:(1)直接平移法(可利用图中已有的平行线);(2)中位线平移法;(3)补形平移法(在已知图形中,补作一个相同的几何体,以便找到平行线).3、异面直线所成角:若n 1 ,n 2分别为直线l 1,l 2的方向向量,θ为直线l 1,l 2的夹角,则cos θ=cos <n 1 ,n 2 > =n 1 ⋅n 2n 1 n 2.1(2023·江西萍乡·高三统考期中)如图,在正四棱台ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,CD 的中点.(1)证明:EF ⎳平面AB1C 1D ;(2)若AB =2A 1B 1,且正四棱台的侧面积为9,其内切球半径为22,O 为ABCD 的中心,求异面直线OB 1与CC 1所成角的余弦值.【答案】(1)证明见解析;(2)45【分析】(1)根据中位线定理,结合线面平行判定定理以及面面平行判定定理,利用面面平行的性质,可得答案;(2)根据题意,结合正四棱台的几何性质,求得各棱长,利用线线角的定义,可得答案.【解析】(1)取CC 1中点G ,连接GE ,GF ,如下图:在梯形BB 1C 1C 中,E ,G 分别为BB 1,CC 1的中点,则EG ⎳B 1C 1,同理可得FG ⎳C 1D ,因为EG ⊄平面AB 1C 1D ,B 1C 1⊂平面AB 1C 1D ,所以EG ⎳平面AB 1C 1D ,同理可得GF ⎳平面AB 1C 1D ,因为EG ∩FG =G ,EG ,FG ⊆平面EFG ,所以平面EFG ⎳平面AB 1C 1D ,又因为EF ⊆平面EFG ,所以EF ⎳平面AB 1C 1D ;(2)连接AC ,BD ,则AC ∩BD =O ,连接A 1O ,A 1C 1,B 1O ,在平面BB 1C 1C 中,作B 1N ⊥BC 交BC 于N ,在平面BB 1D 1D 中,作B 1M ⊥BD 交BD 于M ,连接MN ,如下图:因为AB =2A 1B 1,则OC =A 1C 1,且OC ⎳A 1C 1,所以A 1C 1CO 为平行四边形,则A 1O ⎳CC 1,且A 1O =CC 1,所以∠A 1OB 1为异面直线OB 1与CC 1所成角或其补角,同理可得:B 1D 1DO 为平行四边形,则B 1O =D 1D ,在正四棱台ABCD -A 1B 1C 1D 1中,易知对角面BB 1D 1D ⊥底面ABCD ,因为平面ABCD ∩平面BB 1D 1D =BD ,且B 1M ⊥BD ,B 1M ⊂平面BB 1D 1D ,所以B 1M ⊥平面ABCD ,由内切球的半径为22,则B 1M =2,在等腰梯形BB 1C 1C 中,BC =2B 1C 1且B 1N ⊥BC ,易知BN =14BC ,同理可得BM =14BD ,在△BCD 中,BN BC=BM BD =14,则MN =14CD ,设正方形ABCD 的边长为4x x >0 ,则正方形A 1B 1C 1D 1的边长为2x ,MN =x ,由正四棱台的侧面积为9,则等腰梯形BB 1C 1C 的面积S =94,因为B 1M ⊥平面ABCD ,MN ⊂平面ABCD ,所以B 1M ⊥MN ,在Rt △B 1MN ,B 1N =B 1M 2+MN 2=2+x 2,可得S =12⋅B 1N ⋅B 1C 1+BC ,则94=12×2+x 2×4x +2x ,解得x =12,所以BC =2,B 1C 1=1,BN =14BC =12,B 1N =32,则A 1B 1=1,在Rt △BB 1N 中,BB 1=B 1N 2+BN 2=102,则CC 1=DD 1=102,所以在△A 1OB 1中,则cos ∠A 1OB 1=A 1O 2+B 1O 2-A 1B 212⋅A 1O ⋅B 1O=1022+102 2-12×102×102=45,所以异面直线OB 1与CC 1所成角的余弦值为45.2(2023·辽宁丹东·统考二模)如图,平行六面体ABCD -A 1B 1C 1D 1的所有棱长都相等,平面CDD 1C 1⊥平面ABCD ,AD ⊥DC ,二面角D 1-AD -C 的大小为120°,E 为棱C 1D 1的中点.(1)证明:CD ⊥AE ;(2)点F 在棱CC 1上,AE ⎳平面BDF ,求直线AE 与DF 所成角的余弦值.【答案】(1)证明见解析;(2)37【分析】(1)根据面面垂直可得线面垂直进而得线线垂直,由二面角定义可得∠D 1DC =120°,进而根据中点得线线垂直即可求;(2)由线面平行的性质可得线线平行,由线线角的几何法可利用三角形的边角关系求解,或者建立空间直角坐标系,利用向量的夹角即可求解.【解析】(1)因为平面CDD 1C 1⊥平面ABCD ,且两平面交线为DC ,AD ⊥DC ,AD ⊂平面ABCD , 所以AD ⊥平面CDD 1C 1,所以AD ⊥D 1D ,AD ⊥DC ,∠D 1DC 是二面角D 1-AD -C 的平面角,故∠D 1DC =120°.连接DE ,E 为棱C 1D 1的中点,则DE ⊥C 1D 1,C 1D 1⎳CD ,从而DE ⊥CD .又AD ⊥CD ,DE ∩AD =D ,DE ,AD ⊂平面AED ,所以CD ⊥平面AED ,ED ⊂平面AED ,因此CD ⊥AE .(2)解法1:设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.连AC 交BD 于点O ,连接CE 交DF 于点G ,连OG .因为AE ⎳平面BDF ,AE ⊂平面AEC ,平面AEC ∩平面BDF =OG ,所以AE ∥OG ,因为O 为AC 中点,所以G 为CE 中点,故OG =12AE =72.且直线OG 与DF 所成角等于直线AE 与DF 所成角.在Rt △EDC 中,DG =12CE =72,因为OD =2,所以cos ∠OGD =722+72 2-(2)22×72×72=37.因此直线AE 与DF 所成角的余弦值为37.解法2;设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.取DC 中点为G ,连接EG 交DF 于点H ,则EG =DD 1=2.连接AG 交BD 于点I ,连HI ,因为AE ⎳平面BDF ,AE ⊂平面AGE ,平面AGE ∩平面BDF =IH ,所以AE ∥IH .HI 与DH 所成角等于直线AE 与DF 所成角.正方形ABCD 中,GI =13AG ,DI =13DB =223,所以GH =13EG ,故HI =13AE =73.在△DHG 中,GH =13EG =23,GD =1,∠EGD =60°,由余弦定理DH =1+49-1×23=73.在△DHI 中,cos ∠DHI =732+73 2-223 22×73×73=37.因此直线AE 与DF 所成角的余弦值为37.解法3:由(1)知DE ⊥平面ABCD ,以D 为坐标原点,DA为x 轴正方向,DA为2个单位长,建立如图所示的空间直角坐标系D -xyz .由(1)知DE =3,得A 2,0,0 ,B 2,2,0 ,C 0,2,0 ,E (0,0,3),C 1(0,1,3).则CC 1=(0,-1,3),DC =(0,2,0),AE =(-2,0,3),DB =(2,2,0).由CF =tCC 1 0≤t ≤1 ,得DF =DC +CF =(0,2-t ,3t ).因为AE ⎳平面BDF ,所以存在唯一的λ,μ∈R ,使得AE =λDB +μDF=λ2,2,0 +μ(0,2-t ,3t )=2λ,2λ+2μ-tμ,3μt ,故2λ=-2,2λ+2μ-tμ=0,3μt =3,解得t =23,从而DF =0,43,233 .所以直线AE 与DF 所成角的余弦值为cos AE ,DF =AE ⋅DF|AE ||DF |=37.题型二:空间直线与平面夹角的求解2(2024·安徽合肥·统考一模)如图,三棱柱ABC -A 1B 1C 1中,四边形ACC 1A 1,BCC 1B 1均为正方形,D ,E 分别是棱AB ,A 1B 1的中点,N 为C 1E 上一点.(1)证明:BN ⎳平面A 1DC ;(2)若AB =AC ,C 1E =3C 1N,求直线DN 与平面A 1DC 所成角的正弦值.【思路分析】(1)连接BE ,BC 1,DE ,则有平面BEC 1⎳平面A 1DC ,可得BN ⎳平面A 1DC ;(2)建立空间直角坐标系,利用空间向量进行计算即可.【规范解答】(1)连接BE ,BC 1,DE .因为AB ⎳A 1B 1,且AB =A 1B 1,又D ,E 分别是棱AB ,A 1B 1的中点,所以BD ⎳A 1E ,且BD =A 1E ,所以四边形BDA 1E 为平行四边形,所以A 1D ⎳EB ,又A 1D ⊂平面A 1DC ,EB ⊄平面A 1DC ,所以EB ⎳平面A 1DC ,因为DE ⎳BB 1⎳CC 1,且DE =BB 1=CC 1,所以四边形DCC 1E 为平行四边形,所以C 1E ⎳CD ,又CD ⊂平面A 1DC ,C 1E ⊄平面A 1DC ,所以C 1E ⎳平面A 1DC ,因为C 1E ∩EB =E ,C 1E ,EB ⊂平面BEC 1,所以平面BEC 1⎳平面A 1DC ,因为BN ⊂平面BEC 1,所以BN ⎳平面A 1DC .(2)四边形ACC 1A 1,BCC 1B 1均为正方形,所以CC 1⊥AC ,CC 1⊥BC ,所以CC 1⊥平面ABC .因为DE ⎳CC 1,所以DE ⊥平面ABC ,从而DE ⊥DB ,DE ⊥DC .又AB =AC ,所以△ABC 为等边三角形.因为D 是棱AB 的中点,所以CD ⊥DB ,即DB ,DC ,DE 两两垂直.以D 为原点,DB ,DC ,DE 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系D -xyz .设AB =23,则D 0,0,0 ,E 0,0,23 ,C 0,3,0 ,C 10,3,23 ,A 1-3,0,23 ,所以DC =0,3,0 ,DA 1=-3,0,23 .设n=x ,y ,z 为平面A 1DC 的法向量,则n ⋅DC=0n ⋅DA 1 =0,即3y =0-3x +23z =0 ,可取n=2,0,1 .因为C 1E =3C 1N ,所以N 0,2,23 ,DN =0,2,23 .设直线DN 与平面A 1DC 所成角为θ,则sin θ=|cos ‹n ,DN ›|=|n ⋅DN ||n |⋅|DN |=235×4=1510,即直线DN 与平面A 1DC 所成角正弦值为1510.1、垂线法求线面角(也称直接法):(1)先确定斜线与平面,找到线面的交点B 为斜足;找线在面外的一点A ,过点A 向平面α做垂线,确定垂足O ;(2)连结斜足与垂足为斜线AB 在面α上的投影;投影BO 与斜线AB 之间的夹角为线面角;(3)把投影BO 与斜线AB 归到一个三角形中进行求解(可能利用余弦定理或者直角三角形)。
2023年高考数学-----立体几何建系繁琐问题典型例题讲解【规律方法】 利用传统方法解决 【典型例题】例17.如图,已知三棱柱−111ABC A B C 的底面是正三角形,侧面11BB C C 是矩形,M ,N 分别为BC ,11B C 的中点,P 为AM 上一点.过11B C 和P 的平面交A B 于E ,交A C 于F . (1)证明:1//AA MN ,且平面⊥1A AMN 平面11EB C F ;(2)设O 为△111A B C 的中心.若//AO 平面11EB C F ,且=AO AB ,求直线1B E 与平面1A AMN 所成角的正弦值.【解析】(1)证明:M Q ,N 分别为BC ,11B C 的中点,底面为正三角形, ∴=1B N BM ,四边形1BB NM 为矩形,⊥111A N B C ,∴1//BB MN ,11//AA BB Q ,∴1//AA MN , ⊥11MN B C Q ,⊥111A N B C ,⋂=1MN A N N , ∴⊥11B C 平面1A AMN ,⊂11B C Q 平面11EB C F , ∴平面⊥1A AMN 平面11EB C F ,综上,1//AA MN ,且平面⊥1A AMN 平面11EB C F .(2)解:Q 三棱柱上下底面平行,平面11EB C F 与上下底面分别交于11B C ,EF ,∴11////EF B C BC ,//AO Q 面11EB C F ,⊂AO 面1A MNA ,面⋂1AMNA 面=11EB C F PN ,∴//AO PN ,四边形APNO 为平行四边形, O Q 是正三角形的中心,=AO AB ,∴=13A N ON ,=3AM AP ,===113PN BC B C EF ,由(1)知直线1B E 在平面1A AMN 内的投影为PN ,直线1B E 与平面1A AMN 所成角即为等腰梯形11EFC B 中1B E 与PN 所成角, 在等腰梯形11EFC B 中,令=1EF ,过E 作⊥11EH B C 于H , 则===113PN B C EH ,=11B H,=1B E∠==111sin B H B EH B E, ∴直线1B E 与平面1A AMN.例18.如图,在锥体−P ABCD 中,ABCD 是边长为1的菱形,且∠=︒60DAB,==PA PD =2PB ,E ,F 分别是BC ,PC 的中点(1)证明:⊥AD 平面DEF (2)求二面角−−P AD B 的余弦值.【解析】(1)取AD 的中点G ,连接PG ,BG ,在∆ABG 中,根据余弦定理可以算出==BG ,发现+=222AG BG AB ,可以得出⊥AD BG ,又//DE BG ∴⊥DE AD ,又=PA PD ,可以得出⊥AD PG ,而⋂=PG BG G , ∴⊥AD 平面PBG ,而⊂PB 平面PBG , ∴⊥AD PB ,又//PB EF , ∴⊥AD EF .又⋂=EF DE E , ∴⊥AD 平面DEF .(2)由(1)知,⊥AD 平面PBG ,所以∠PGB 为二面角−−P AD B 的平面角,在∆PBG 中,==PG ,=BG ,=2PB ,由余弦定理得+−∠==⋅222cos 2PG BG PB PGB PG BG ,因此二面角−−P AD B 的余弦值为.例19.(2022春·福建南平·高三校考期中)在三棱柱111ABC A B C -中,AB AC ⊥,1B C ⊥平面ABC ,E 、F 分别是棱AC 、11A B 的中点.(1)设G 为11B C 的中点,求证://EF 平面11BCC B ; (2)若2AB AC ==,直线1BB 与平面1ACB,求多面体1B EFGC −的体积V .【解析】(1)连接FG ,GC ,因为点E ,F ,G 分别为AC ,11A B ,11B C 的中点, 所以11FG AC ∥且1112FG AC =,11EC AC ∥,111122EC AC AC ==,所以EC FG ∥,且EC FG =,所以四边形ECGF 是平行四边形,所以EF CG ∥, 又因为CG ⊂平面11BCC B ,EF ⊄平面11BCC B , 所以EF P 平面11BCC B(2)因为1B C ⊥平面ABC ,所以1B C AB ⊥,1B C AC ⊥, 又因为AB AC ⊥,所以AB ⊥平面1ACB , 所以1BB A ∠即是直线1BB 与平面1ACB 所成的角,所以11tan AB BB A AB ∠==因为2AB =,所以1AB =因为1B C AC ⊥,2AC =,所以12B C =,因为11A B AB ∥,AB ⊥平面1ACB ,所以1FB ⊥平面1B EC , 所以11111111332F B EC B EC V FB S FB EC B C −=⋅=⋅⋅△,因为12AB AC B C ===,所以11FB =,1EC =,所以113F B EC V −=,由(1)知多面体1B EFGC −为四棱锥,且四边形ECGF 是平行四边形, 所以1223F B EC V V −==. 本课结束。
大题精做7 立体几何:建系困难问题
已知三棱锥P ABC -(如图一)的平面展开图(如图二)中,四边形ABCD ABE △和BCF △均为正三角形,在三棱锥P ABC -中: (1)证明:平面PAC ⊥平面ABC ;
(2)若点M 在棱PA 上运动,当直线BM 与平面PAC 所成的角最大时,求二面角P BC M --的余弦值.
图一
图二
【答案】(1)见解析;(2 【解析】(1)设AC 的中点为O ,连接BO ,PO .
由题意,得2PA PB PC ===,1PO =,1AO BO CO ===. ∵在PAC △中,PA PC =,O 为AC 的中点,∴PO AC ⊥,
∵在POB △中,1PO =,1OB =,PB =,222PO OB PB +=,∴PO OB ⊥. ∵AC
OB O =,AC ,OB ⊂平面,∴PO ⊥平面ABC ,
∵PO ⊂平面PAC ,∴平面PAC ⊥平面ABC .
(2)由(1)知,BO PO ⊥,BO AC ⊥,BO ⊥平面PAC , ∴BMO ∠是直线BM 与平面PAC 所成的角,且1
tan BO BMO OM OM
∠==
, ∴当OM 最短时,即M 是PA 的中点时,BMO ∠最大. 由PO ⊥平面ABC ,OB AC ⊥,∴PO OB ⊥,PO OC ⊥,
于是以OC ,OB ,OD 所在直线分别为x 轴,y 轴,z 轴建立如图示空间直角坐标系,
则()0,0,0O ,()1,0,0C ,()0,1,0B ,()1,0,0A -,()0,0,1P ,11,0,22M ⎛⎫
- ⎪⎝⎭
,
()1,1,0BC =-,()1,0,1PC =-,3
1,0,2
2MC ⎛⎫=- ⎪⎝⎭.
设平面MBC 的法向量为()111,,x y z =m ,
则由0
BC MC ⎧⋅=⎪⎨⋅=⎪⎩m m 得:1111030x y x z -=⎧⎨-=⎩.令11x =,得11y =,13z =,即()1,1,3=m .
设平面PBC 的法向量为()222,,x y z =n ,
由0
0BC PC ⎧⋅=⎪⎨⋅=⎪⎩n n 得:222200x y x z -=⎧⎨-=⎩,令1x =,得1y =,1z =,即()1,1,1=n .
cos ,⋅=
==⋅n m m n n m .由图可知,二面角P BC M --
1.矩形ABCD 中,1AB =,2AD =,点E 为AD 中点,沿BE 将ABE △折起至PBE △,如图所示,点P 在面BCDE 的射影O 落在BE 上.
(1)求证:面PCE ⊥面PBE ;
(2)求平面PCD 与平面PBE 所成锐二面角的余弦值.
2.如图1,在矩形ABCD中,35
AB=,25
BC=,点E在线段DC上,且5
DE=,现将AED
△沿AE折到AED'
△的位置,连结CD',BD',如图2.
(1)若点P在线段BC上,且BP=,证明:AE D P
⊥';
(2)记平面AD E'与平面BCD'的交线为l.若二面角B AE D
--'为2π
3
,求l与平面D CE
'所成角的正弦值.
3.如图,在四棱锥P ABCD
=,-中,已知底面ABCD是边长为1的正方形,侧面PAD⊥平面ABCD,PA PD
.
PA与平面PBC所成角的正弦值为
7
(1)求侧棱PA的长;
(2)设E为AB中点,若PA AB
≥,求二面角B PC E
--的余弦值.
1.【答案】(1)详见解析;(2
【解析】(1)在四棱锥P BCDE -
中,BE CE ==,2BC =,从而有CE BE ⊥, 又∵PO ⊥面BCDE ,而CE ⊂面BCDE ,∴CE PO ⊥,而PO 、BE ⊂面PBE ,且PO
BE O =,
由线面垂直定理可证CE ⊥面PBE ,又CE ⊂面PCE ,由面面垂直判断定定理即证面PCE ⊥面PBE . (2)由条件知OP ⊥面BCDE ,过点E 做OP 的平行线EZ ,
又由(1)知EC ⊥面PBE ,以EB 、EC 、EZ 分别为x 、y 、z 轴建立空间直角坐标系, 如图所示:
P ⎝⎭
,()
C
,D ⎛⎫ ⎪ ⎪⎝⎭
,22CP ⎛=
⎝⎭,22DC ⎛⎫= ⎪ ⎪⎝⎭
, 面PBE 的一个法向量为()10,1,0=n , 设面PCD
的法向量为()2
,,x y z =
n
,则有00x x y +==,
从而可得面PCD 的一个法向量为()
21,1,3=-
-n ,12cos ,=n n 设平面PCD 与平面PBE
所成锐二面角为θ,与12,n n 互补,则
cos θ, 故平面PCD 与平面PBE
. 2.【答案】(1)详见解析;(2.
【解析】证明:(1)先在图1中连结DP ,在Rt ADE △
中,由AD BC ==,DE
得1
tan 2
DAE ∠=
,在Rt PCD △
中,由DC AB =
=,PC BC BP ====
, 得1
tan 2
PDC ∠=,∴tan tan PDC DAE ∠=∠,则PDC DAE ∠=∠,
∴90DOE ∠=︒,从而有AE OD ⊥,AE OP ⊥,即在图2中有'AE OD ⊥,AE OP
⊥, ∴AE ⊥平面'POD ,则AE D P ⊥';
解:(2)延长AE ,BC 交于点Q ,连接'D Q ,根据公理3得到直线'D Q 即为l , 再根据二面角定义得到2π
'3
D OP ∠=
.在平面'POD 内过点O 作底面垂线, 以O 为原点,分别为OA ,OP ,及所作垂线为x 轴、y 轴、z 轴建立空间直角坐标系,
则(0,D '-,()1,0,0E -,()11,0,0Q -,()3,4,0C -,
('11,1,D Q =-,()2,4,0EC =-
,('1,ED =-,
设平面D EC '的一个法向量为(),,x y z =n
,由240
'0
EC x y ED x y ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩n n ,取1y =
,得2,1,⎛= ⎝⎭n . ∴l 与平面'D CE 所成角的正弦值为'15
cos ,'5
'D Q D Q D Q
⋅=
=
⋅n n n . 3.【答案】(1
)1PA =或PA =
;(2. 【解析】(1)取AD 中点O ,BC 中点M ,连结OP ,OM ,∵PA PD =,∴OP AD ⊥, 又∵平面PAD ⊥平面ABCD ,OP 平面PAD ,平面PAD 平面ABCD AD =,
∴OP ⊥平面ABCD ,∴OP OA ⊥,OP OM ⊥, 又∵ABCD 是正方形,∴OA OM ⊥,
以O 为原点OA ,OM ,OP 为x ,y ,z 轴建立空间直角坐标系O xyz -(如图),
则1,0,02A ⎛⎫ ⎪⎝⎭,1,0,02D ⎛⎫- ⎪⎝⎭,1,1,02B ⎛⎫ ⎪⎝⎭,1,1,02C ⎛⎫
- ⎪⎝⎭
,
设()()0,0,0P c c >,则1,1,2PB c ⎛⎫
=- ⎪⎝⎭
,()1,0,0CB =,
设平面PBC 的一个法向量为()1111,,x y z =n ,则有11111
20
x y cz x ⎧+-=⎪⎨⎪=⎩
,
取
11z =,则1y c =,从而()10,,1c =n ,
设PA与平面PBC所成角为α,∵
1
,0,
2
PA c
⎛⎫
=-
⎪
⎝⎭
,
∴1
1
1
sin cos,
PA
PA
PA
α
⋅
====
⋅
n
n
n
2
3
4
c=或2
1
3
c=,
∴1
PA=
或PA=.
(2)由(1)知,1
PA AB
≥=,∴1
PA=,c,
由(1)知,平面PBC的一个法向量为()
1
0,,1
c
⎛⎫
== ⎪
⎪
⎝⎭
n,
设平面PCE
的一个法向量为()
2
x y z
=,,
n,而
1
1,,0
2
CE
⎛⎫
=-
⎪
⎝⎭
,
1
,1,
2
PC
⎛
=-
⎝⎭
,∴
1
2
1
2
x y
x y
⎧
-
=
⎪⎪
⎨
⎪-+=
⎪⎩
取1
x=,则2
y=,z=(2=n,
设二面角B PC E
-
-的平面角为β
,∴
12
cos cos
7
,
β===
n n,根据图形得β为锐角,∴二面角B PC E
--.。