人教版八年级数学下册矩形专题练习
- 格式:doc
- 大小:91.50 KB
- 文档页数:2
初中数学试卷矩形的性质和判定同步练习1.矩形的对边,对角线且,四个角都是,即是图形又是图形。
2.矩形的面积是60,一边长为5,则它的一条对角线长等于。
3.如果矩形的一边长为8,一条对角线长为10,那么这个矩形面积是__________。
4. 矩形的一内角平分线把矩形的一条边分成3和5两部分,则该矩形的周长是___________.5. 矩形的两条对角线的夹角是60°,一条对角线与矩形短边的和为15,那么矩形对角线的长为_______,短边长为_______.6.如图,已知在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为。
7.若一个直角三角形的两条直角边分别为5和12,则斜边上的中线等于 .8.平行四边形没有而矩形具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分D.对角相等9.下列叙述错误的是()A.平行四边形的对角线互相平分B.平行四边形的四个内角相等。
C.矩形的对角线相等。
D.有一个角时90º的平行四边形是矩形10.下列检查一个门框是否为矩形的方法中正确的是()A.测量两条对角线是否相等B.用曲尺测量对角线是否互相垂直C.用曲尺测量门框的三个角是否都是直角D.测量两条对角线是否互相平分11.矩形ABCD对角线相交于点O,如果△ABC周长比△AOB周长大10cm,则AD长是()A.5cmB.7.5cmC.10cmD.12.5cm12.下列图形中对称轴有2条的图形是()A.平行四边形B.等边三角形C.矩形D.直角三角形二、解答题:13.如图,已知矩形ABCD的两条对角线相交于O,∠AOD=120°,AB=4cm,求此矩形的面积.14.平行四边形ABCD,E是CD的中点,△ABE是等边三角形.求证:四边形ABCD是矩形.15.如图,矩形ABCD中,EF⊥EB,EF=EB,ABCD周长为22cm,CE=3cm.求:DE的长.16.如图,矩形ABCD中,DE=AB,CF⊥DE.求证:EF=EB.17.如图,矩形ABCD中,点E、F分别在AB、CD上,BF//DE,若AD=12cm,AB=7cm,且AE:EB=5:2,求阴影部分.18.如图,矩形ABCD中,对角线AC、BD相交于O,AE⊥BD,垂足为E,已知AB=3,AD=4,求△AEO的面积.19.矩形ABCD中,E是CD上一点,且AE=CE,F是AC上一点FH⊥AE于H,FG⊥CD于G.求证:FH+FG=AD.20.在平行四边形ABCD中,对角线AC、BD相交于O,EF过点O,且AF⊥BC.求证:四边形AFCE是矩形21.平行四边形ABCD中,对角线AC、BD相交于点O,点P是四边形外一点,且PA⊥PC,PB⊥PD,垂足为P.求证:四边形ABCD为矩形.参考答案1.相等;互相平分;相等;直角;轴对称;中心对称;2.12;3.48;4.22或26;5.10,5;6.(2,4),(3,4),(8,4);7.6.5;8.A 9.B 10.C 11.C 12.C 13.163cm 2;14.证明:∵AE =BE (等边△),∠DEA =∠EAB =60º=∠ABE =∠CEB (内错角相等). DE =CE (E 中点);∴△ADE ≌△BCE (两边夹一角相等),∠C =∠D (对应角相等), ∠C +∠D =180º(同旁内角互补),∠C =∠D =90º,同理∠A =∠B =90º;所以 平行四边形ABCD 是矩形.(四个角是直角).15.∵四边形ABCD 是矩形,∴AD=BC ,DC=AB ,∠D=∠C=90°,∵EF ⊥EB ,∴∠FEB=90°,∴∠DEF+∠CEB=90°,∠CEB+∠CBE=90°,∴∠DEF=∠CBE , 在△DEF 和△CBE 中,∠D =∠C ,∠DEF =∠CBE ,EF =EB ,∴△DEF ≌△CBE (AAS ), ∴DE=BC ,DF=CE=3cm ,∵矩形ABCD 的ABCD 周长为22cm ,∴2(BC+DE+EC )=22,∴DE+DE+3=11,∴DE=4.16.∵∠AED=∠FDC ,∠DAE=∠DFC=90°∴∠ADE=∠FCD又∵DE=AB=CD ∴△ADE ≌△FCD ∴DF=AE ∴EF=DE-DF=AB-AE=BE 。
第十八章平行四边形18.2.1 矩形(第二课时矩形的判定)精选练习一.选择题(共10小题)1.四边形ABCD的对角线AC、BD互相平分,要使它成为矩形,可添加条件()A.AB=CD B.AC=BD C.AB∥CD D.AC⊥BD2.如图,要使▱ABCD为矩形,则可以添加的条件是()A.AC⊥BD B.AC=BD C.∠AOB=60°D.AB=BC3.已知▱ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC4.如图,在平行四边形ABCD中,对角线AC、BD相交于点O.下列条件不能判定平行四边形ABCD 为矩形的是()A.∠ABC=90°B.AC=BD C.AD=AB D.∠BAD=∠ADC5.如图,在▱ABCD中,对角线AC与BD相交于点O,对于下列条件:①∠1+∠3=90°;②BC2+CD2=AC2;③∠1=∠2;④AC⊥BD.能判定四边形ABCD是矩形的个数是()A.1个B.2个C.3个D.4个6.在四边形ABCD中,AD∥BC,下列选项中,不能判定四边形ABCD为矩形的是()A.AD=BC且AC=BD B.AD=BC且∠A=∠BC.AB=CD且∠A=∠C D.AB∥CD且AC=BD7.在平行四边形ABCD中,对角线AC、BD交于O点,下列条件中不能判定平行四边形ABCD是矩形的是()A.AC=BD B.AB⊥BCC.OA=OB=OC=OD D.AC⊥BD8.如图,平行四边形ABCD的对角线AC与BD相交于点O,添加一个条件使平行四边形ABCD为矩形的是()A.AD=AB B.AB⊥AD C.AB=AC D.CA⊥BD9.如图,在▱ABCD中,对角线AC、BD相交于点O,若再添加﹣个条件使▱ABCD成为矩形,则该条件不可以是()A.AC=BD B.AO=BO C.∠BAD=90°D.∠AOB=90°10.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是()A.测量对角线是否相互平分B.测量其中四边形的三个角都为直角C.测量一组对角是否都为直角D.测量两组对边是否分别相等二.填空题(共5小题)11.如图,D、E、F是△ABC各边中点,请在△ABC中添加一个条件:,使四边形DF AE是矩形.12.如图,请添加一个条件使平行四边形ABCD成为矩形,这个条件可以是(写出一种情况即可).13.如图,在△ABC中,AB=AC,点D在BC边上,DF∥AB,DE∥AC,则当∠B=°时,四边形AEDF是矩形.14.如图,已知直角三角形ABC,∠ABC=90°,小明想做一个以AB、BC为边的矩形,于是进行了以下操作:(1)测量得出AC的中点E;(2)连接BE并延长到D,使得ED=BE;(3)连接AD和DC.则四边形ABCD即为所求的矩形.理由是.15.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加条件,才能保证四边形EFGH是矩形.三.解答题(共2小题)16.如图,在四边形ABCD中,∠B=∠C.点E、F、G分别在边AB、BC、CD上,AE=GF=GC.(1)求证:四边形AEFG是平行四边形;(2)当∠FGC与∠EFB满足怎样的关系时,四边形AEFG是矩形.请说明理由.17.如图,在△ABC中,AD是中线,E是AD的中点,过点A作AF∥BC交CE的延长线于点F,连接BF.(1)求证:四边形AFBD是平行四边形;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并给出证明.第十八章平行四边形18.2.1 矩形(第二课时矩形的判定)精选练习答案一.选择题(共10小题)1.四边形ABCD的对角线AC、BD互相平分,要使它成为矩形,可添加条件()A.AB=CD B.AC=BD C.AB∥CD D.AC⊥BD【解答】解:需要添加的条件是AC=BD,理由如下:∵四边形ABCD的对角线AC、BD互相平分,∴四边形ABCD是平行四边形,∵AC=BD,∴平行四边形ABCD是矩形(对角线相等的平行四边形是矩形);故选:B.2.如图,要使▱ABCD为矩形,则可以添加的条件是()A.AC⊥BD B.AC=BD C.∠AOB=60°D.AB=BC【解答】解:因为有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形,故选:B.3.已知▱ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC【解答】解:A、∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°,∵∠A=∠B,∴∠A=∠B=90°,∴▱ABCD为矩形,故选项A不符合题意;B、∠A=∠C不能判定▱ABCD为矩形,故选项B符合题意;C、∵四边形ABCD是平行四边形,AC=BD,∴▱ABCD是矩形,故选项C不符合题意;D、∵AB⊥BC,∴∠B=90°,∴▱ABCD为矩形,故选项D不符合题意;故选:B.4.如图,在平行四边形ABCD中,对角线AC、BD相交于点O.下列条件不能判定平行四边形ABCD 为矩形的是()A.∠ABC=90°B.AC=BD C.AD=AB D.∠BAD=∠ADC【解答】解:A.根据有一个角是直角的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意;B.根据对角线相等的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意;C.根据邻边相等的平行四边形是菱形能判定平行四边形ABCD为菱形,不能判定平行四边形ABCD 为矩形,故此选项符合题意;D.∵平行四边形ABCD中,AB∥CD,∴∠BAD+∠ADC=180°,又∵∠BAD=∠ADC,∴∠BAD=∠ADC=90°,根据有一个角是直角的平行四边形是矩形能判定平行四边形ABCD为矩形,故此选项不符合题意.故选:C.5.如图,在▱ABCD中,对角线AC与BD相交于点O,对于下列条件:①∠1+∠3=90°;②BC2+CD2=AC2;③∠1=∠2;④AC⊥BD.能判定四边形ABCD是矩形的个数是()A.1个B.2个C.3个D.4个【解答】解:①∵∠1+∠3=90°,∴∠ABC=90°,∴▱ABCD是矩形,故①正确;②∵四边形ABCD是平行四边形,∴AB=CD,∵BC2+CD2=AC2,∴BC2+AB2=AC2,∴∠ABC=90°,∴▱ABCD是矩形,故②正确;③∵四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD=BD,∵∠1=∠2,∴OA=OB,∴AC=BD,∴▱ABCD是矩形,故③正确;④∵四边形ABCD是平行四边形,AC⊥BD,∴▱ABCD是菱形,故④错误;能判定四边形ABCD是矩形的个数有3个,故选:C.6.在四边形ABCD中,AD∥BC,下列选项中,不能判定四边形ABCD为矩形的是()A.AD=BC且AC=BD B.AD=BC且∠A=∠BC.AB=CD且∠A=∠C D.AB∥CD且AC=BD【解答】解:A.∵AD∥BC,AD=BC,∴四边形ABCD是平行四边形,∵AC=BD,∴平行四边形ABCD是矩形,故选项A不符合题意;B.∵AD∥BC,AD=BC,∴四边形ABCD是平行四边形,∴∠A+∠B=180°,∵∠A=∠B,∴∠A=∠B=90°,∴平行四边形ABCD是矩形,故选项B不符合题意;C.∵AD∥BC,∴∠A+∠B=∠C+∠D=180°,∵∠A=∠C,∴∠B=∠D,∴四边形ABCD是平行四边形,∴AB=CD,∴不能判定四边形ABCD为矩形,故选项C符合题意;D、∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形,故选项D不符合题意;故选:C.7.在平行四边形ABCD中,对角线AC、BD交于O点,下列条件中不能判定平行四边形ABCD是矩形的是()A.AC=BD B.AB⊥BCC.OA=OB=OC=OD D.AC⊥BD【解答】解:A.∵四边形ABCD是平行四边形,又∵AC=BD,∴平行四边形ABCD是矩形,故本题选项不符合题意;B.∵AB⊥BC,∴∠ABC=90°,∵四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故本选项不符合题意;C.∵AO=OB=OC=OD,∵AC=BD,∵四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故本题选项不符合题意;D.∵四边形ABCD是平行四边形,又∵AC⊥BD,∴平行四边形ABCD是菱形,不是矩形,故本题选项符合题意;故选:D.8.如图,平行四边形ABCD的对角线AC与BD相交于点O,添加一个条件使平行四边形ABCD为矩形的是()A.AD=AB B.AB⊥AD C.AB=AC D.CA⊥BD【解答】解:A、∵平行四边形ABCD中,AD=AB,∴平行四边形ABCD是菱形,故选项A不符合题意;B、∵AB⊥AD,∴∠BAD=90°,∴平行四边形ABCD是矩形,故选项B符合题意;C、平行四边形ABCD中,AB=AC,不能判定平行四边形ABCD是矩形,故选项C不符合题意;D、∵平行四边形ABCD中,CA⊥BD,∴平行四边形ABCD是菱形,故选项D不符合题意;故选:B.9.如图,在▱ABCD中,对角线AC、BD相交于点O,若再添加﹣个条件使▱ABCD成为矩形,则该条件不可以是()A.AC=BD B.AO=BO C.∠BAD=90°D.∠AOB=90°【解答】解:A、∵四边形ABCD是平行四边形,AC=BD,∴平行四边形ABCD是矩形,故选项A不符合题意;B、∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵AO=BO,∴AC=BD,∴平行四边形ABCD是矩形,故选项B不符合题意;C、∵四边形ABCD是平行四边形,∠BAD=90°,∴平行四边形ABCD是矩形,故选项C不符合题意;D、∵∠AOB=90°,∴AC⊥BD,∵四边形ABCD是平行四边形,∴平行四边形ABCD是菱形,故选项D不符合题意;故选:D.10.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是()A.测量对角线是否相互平分B.测量其中四边形的三个角都为直角C.测量一组对角是否都为直角D.测量两组对边是否分别相等【解答】解:A、对角线是否相互平分,能判定平行四边形,故选项A不符合题意;B、其中四边形中三个角都为直角,能判定矩形,故选项B符合题意;C、一组对角是否都为直角,不能判定形状,故选项C不符合题意;D、两组对边是否分别相等,能判定平行四边形,故选项D不符合题意;故选:B.二.填空题(共5小题)11.如图,D、E、F是△ABC各边中点,请在△ABC中添加一个条件:∠A=90°(答案不唯一),使四边形DF AE是矩形.【解答】解:添加条件:∠A=90°;理由如下:∵E、D、F分别是AB、BC、AC的中点,∴DE是△ABC的中位线,AE=AB,AF=AC,∴DE∥AC,DE=AC,∴DE=AF,∴四边形AEDF是平行四边形,∵∠A=90°,∴平行四边形AEDF是矩形,故答案为:∠A=90°(答案不唯一).12.如图,请添加一个条件使平行四边形ABCD成为矩形,这个条件可以是AC=BD或∠ABC=90°(写出一种情况即可).【解答】解:若使平行四边形ABCD变为矩形,可添加的条件是:AC=BD;(对角线相等的平行四边形是矩形)∠ABC=90°.(有一个角是直角的平行四边形是矩形)故答案为:AC=BD或∠ABC=90°.13.如图,在△ABC中,AB=AC,点D在BC边上,DF∥AB,DE∥AC,则当∠B=45°时,【解答】解:当∠B=45°时,四边形AEDF是矩形.∵DF∥AB,DE∥AC,∴四边形AEDF是平行四边形,∵AB=AC,∴∠B=∠C=45°,∴∠A=90°,∴四边形AEDF是矩形.故答案为45.14.如图,已知直角三角形ABC,∠ABC=90°,小明想做一个以AB、BC为边的矩形,于是进行了以下操作:(1)测量得出AC的中点E;(2)连接BE并延长到D,使得ED=BE;(3)连接AD和DC.则四边形ABCD即为所求的矩形.理由是有一个角是直角的平行四边形为矩形.【解答】解:∵E是AC的中点,∴AE=CE,∵ED=BE,∴四边形ABCD是平行四边形,又∵∠ABC=90°,∴平行四边形ABCD为矩形,故答案为:有一个角是直角的平行四边形为矩形.15.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加AC⊥BD条件,才能保证【解答】解:∵G、H、E分别是BC、CD、AD的中点,∴HG∥BD,EH∥AC,∴∠EHG=∠1,∠1=∠2,∴∠2=∠EHG,∵四边形EFGH是矩形,∴∠EHG=90°,∴∠2=90°,∴AC⊥BD.故还要添加AC⊥BD,才能保证四边形EFGH是矩形.三.解答题(共2小题)16.如图,在四边形ABCD中,∠B=∠C.点E、F、G分别在边AB、BC、CD上,AE=GF=GC.(1)求证:四边形AEFG是平行四边形;(2)当∠FGC与∠EFB满足怎样的关系时,四边形AEFG是矩形.请说明理由.【解答】(1)证明:在梯形ABCD中,AB=DC,∠B=∠C,∵GF=GC,∴∠C=∠GFC,∠B=∠GFC,∴AB∥GF,即AE∥GF,∵AE=GF,∴四边形AEFG是平行四边形.(2)解:当∠FGC=2∠EFB时,四边形AEFG是矩形,理由:∵∠FGC+∠GFC+∠C=180o,∠GFC=∠C,∠FGC=2∠EFB,∴2∠GFC+2∠EFB=180°,∴∠BFE+∠GFC=90°.∴∠EFG=90°.∵四边形AEFG是平行四边形,∴四边形AEFG是矩形.17.如图,在△ABC中,AD是中线,E是AD的中点,过点A作AF∥BC交CE的延长线于点F,连接BF.(1)求证:四边形AFBD是平行四边形;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并给出证明.【解答】解:(1)证明:∵E为AD的中点,D为BC中点,∴AE=DE,BD=CD,∵AF∥CD,∴∠AFE=∠DCE,∠F AE=∠CDE,在△AFE和△DCE中,∠AFE=∠DCE,∠F AE=∠CDE,AE=DE∴△AFE≌△DCE(AAS),∴AF=CD,∴AF=BD,∵AF∥BD,∴四边形AFBD为平行四边形;(2)当△ABC满足条件AB=AC时,四边形AFBD是矩形,证明:∵AB=AC,D为BC中点,即AD为BC边上的中线,∴AD⊥BC,即∠ADB=90°,∵四边形AFBD为平行四边形,∴四边形AFBD为矩形.。
18.2.1矩形学习要求理解矩形的概念,掌握矩形的性质定理与判定定理.矩形性质的应用矩形具有四个角都是直角、对边相等、对角线相等等性质。
因此,利用这些性质可以解决与角、线段有关的问题。
例1、已知:如图1,在矩形ABCD 中,AC 、BD 是对角线,过顶点C 作BD 的平行线与AB 的延长线相交于点E 。
求证:△ACE 是等腰三角形[分析一]欲证△ACE 是等腰三角形,即证AC=EC 。
因AC 是矩形ABCD 的对角线,则AC=BD 。
问题转成证BD=EC 。
而这两条线段恰是四边形BDCE 的对边,考虑证它是平行四边形。
[证法一]∵BD ∥EC ,BE ∥DC∴四边形BDCE 是平行四边形∴BD=EC∵四边形ABCD 是矩形,∴AC=BD∴AC=EC ,∴△ACE 是等腰三角形[分析二]欲证AC=EC ,需证∠CAE=∠E ,因为CE ∥BD ,所以∠E=∠DBA ,需证∠DBA=∠CAE 。
需证OA=OB 。
[证法二]∵四边形ABCD 是矩形∴OA=21AC ,OB=21BD ,AC=BD 图1∴OA=OB 。
∴∠CAE=∠DBA∵CE ∥BD ,∴∠DBA=∠E∴∠CAE=∠E ,∴AC=EC即△ACE 是等腰三角形[点评]对于特殊四边形的有关问题,要注意运用特殊四边形有关性质来解,这是处理这类问题的重要方法。
解法往往比较简单。
如证法一是利用矩形、平行四边形的性质证明的。
对于一些特殊四边形的有关问题,也可综合运用三角形、特殊四边形的性质来解,如证法二。
例2、已知:如图2,矩形ABCD 中,AC 、BD 相交于点O ,AE 平分∠BAD ,若∠EAO=15°,求∠BOE 的度数。
[分析] ∠BOE 是△OBE 的内角,要求 ∠BOE 的度数,需求∠OBE 、∠BEO∠OBE=∠ODA=∠OAD=30°,而∠BEO[解]∵AD ∥BC ,∴∠DAE=∠AEB∵AE 平分∠DAB ,∴∠DAE=∠BAE∴∠BAE=∠AEB ,∴AB=BE∵∠BAD=90°,∠BAE=∠EAD∴∠BAE=45°∵∠EAO=15°,∴∠BAO=45°+15°=60°∵OA=OB ,△AOB 是等边三角形∴BO=AB∵AB=BE ,∴BO=BE ,∴∠BOE=∠BEO∵∠ABE=90°,∠ABO=60°∴∠OBE=30°在△BOE 中∵∠BOE+∠BEO+∠OBE=180°∴∠BOE=21(180°-∠OBE )=75° C D 图2课堂学习检测一、填空题1.(1)矩形的定义:__________________的平行四边形叫做矩形.(2)矩形的性质:矩形是一个特殊的平行四边形,它除了具有四边形和平行四边形所有的性质,还有:矩形的四个角______;矩形的对角线______;矩形是轴对称图形,它的对称轴是____________.(3)矩形的判定:一个角是直角的______是矩形;对角线______的平行四边形是矩形;有______个角是直角的四边形是矩形.2.矩形ABCD中,对角线AC、BD相交于O,∠AOB=60°,AC=10cm,则AB=______cm,BC=______cm.3.在△ABC中,∠C=90°,AC=5,BC=3,则AB边上的中线CD=______.4.如图,四边形ABCD是一张矩形纸片,AD=2AB,若沿过点D的折痕DE将A角翻折,使点A落在BC上的A1处,则∠EA1B=______°。
18.2.1矩形同步检测一、选择题1.如图,矩形ABCD的两条对角线相交于点O,∠AOD=60°,AD =4,则AC的长是( )A. 4B. 8C. 43D. 832.如图,矩形纸片ABCD中,AB=4,BC=8,将纸片折叠,使点C 与点A重合,折痕为EF,点D的对应点为G,连接DG,则图中阴影部分面积是()A. 5B. 3C. 365D. 1853.矩形具有而平行四边形不一定具有的性质是()A. 对边平行B. 对边相等C. 对角线互相平分D. 对角线相等4.如图所示,矩形ABCD的对角线交于O,AE⊥BD于E,∠1:∠2=2:1,则∠1的度数为().A. 22.5°B. 45°C. 30°D. 60°5.E为矩形ABCD的边CD上的一点,AB=AE=4,BC=2,则∠BEC 是().A. 15°B. 30°C. 60°D. 75°6.一个矩形和一个平行四边形的边分别相等,若矩形面积为这个平行四边形的面积的2倍,则平行四边形的锐角的度数为().A. 15°B. 30°C. 45°D. 60°7.已知E、F分别是矩形ABCD的对边BC和AD上的点,且BE=1BC,3 AD,连结AC、EF,那么().AF=23A. AC平分EF,但EF不平分ACB. AC与EF互相平分C. EF平分AC,但AC不平分EFD. AC与EF不会互相平分8.如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,点E 是AB的中点,CD=DE=a,则AB的长为( )A. 2aB. 22aC. 3aD. 43a39.如图,在△ABC中,∠BAC=90°,AD是BC边上的高,E、F分别是AB、AC边的中点,若AB=8,AC=6,则△DEF的周长为()A. 12B. 13C. 14D. 1510.如图,在△ABC中,∠ACB=90°, ∠ABC=60°, BD平分∠ABC ,P点是BD的中点,若AD=6, 则CP的长为( )A. 3.5B. 3C. 4D. 4.5二、填空题11.如图,△ABC中,AD是高,E、F分别是AB、AC的中点.若AB=8,AC=6,则四边形AEDF的周长为.12.如图,90∆中,5,6∆的顶∠=︒,已知ABCMON===, ABCAC BC AB点,A B分别在边,OM ON上,当点B在边ON上运动时,点A随之在边OM上运动,ABC∆的形状保持不变,在运动过程中,点C到点O的最大距离为____________.13.如图,将长方形纸片ABCD折叠,折痕为EF,若AB=2,BC=3,则阴影部分的周长为____________.14.如图,矩形ABCD中,对角线AC的中点为O,过O作EF⊥AC,分别交AB、DC于E、F,若AB=4,BC=2,那么线段EF的长为_____.15.如图,矩形ABCD内有一点E,连接AE,DE,CE,使AD=ED=EC,若∠ADE=20°,则∠AEC=____.16.如图,矩形ABCD中,对角线AC、BD交于点O,点E是BC 上一点,且AB=BE,∠1=15°,则∠2=________°.三、解答题17.已知:如图,在△ABC中,AD BC⊥,⊥,垂足为点D,BE AC垂足为点E ,M 为AB 边的中点,连结ME 、MD 、ED .(1)猜想△MED 的形状,并说明理由.(2)若4AB =,30DBE ∠=︒,求△MED 的面积.18.如图,已知矩形ABCD 的周长为20,AB =4,点E 在BC 上,点F 在CD 上,且AE ⊥EF ,AE =EF .求CF 的长.19.如图,在矩形ABCD 中,F 是BC 边上的一点,AF 的延长线交DC 的延长线于G ,DE ⊥AG 于E ,且DE=DC ,根据上述条件,请你在图中找出一对全等三角形,并证明你的结论.20.如图,在矩形ABCD中,连接对角线AC,BD,延长BC至点E,使BC=CE,连接DE.求证:DE=AC.21.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F 分别是AO、AD的中点,若AB=60cm,BC=80cm,则△AEF的周长是多少?22.如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处;(1)求证:B′E=BF;(2)设AE=a,AB=b,BF=C,试猜想a,b,c之间的一种关系,并给予证明.参考答案1.B【解析】因为∠AOD=60°,AD=4,,矩形ABCD,AC=BD, ,∠BDA=60°,所以AO=DO=AD所以AC=8.故选B.2.D【解析】过点G作GH⊥AD于点H,由题意知,AF=FC,AB=CD=AG=4,BC=AD=8,在Rt△ABF中,由勾股定理知AB2+BF2=AF2,即42+(8﹣AF)2=AF2,解得AF=5,∵∠BAF+∠FAE=∠FAE+∠EAG=90°,∴∠BAF=∠EAG,∵∠B=∠AGE=90°,AB=AG,∴△BAF≌△GAE,∴AE=AF=5,ED=GE=3,∵S△GAE=12AG•GE=12AE•GH∴GH=125,∴S△GED= 12ED•GH= 12×3×125= 185,故选D.3.D【解析】矩形的对角线相等,而平行四边形的对角线不一定相等.故选D.4.B【解析】∵四边形ABCD为矩形,AE⊥BD,∴∠2+∠ABD=∠ADB+∠ABD =∠EAD+∠ADB=90°,∴∠ADB=∠2,∠1+∠OAD+∠ADB=90°,∵四边形ABCD是矩形,∴AO=OD,∴∠OAD=∠ADB=∠2,∴∠1+2∠2=90°,∵∠1:∠2=2:1,∴2∠2=∠1,∴2∠1=90°,∴∠1=45°,故选B.5.D【解析】∵在Rt△ADE中,AD=2,AE=4,∴∠AED=30°,∵AB∥CD,∴∠EAB=∠AED=30°,∵AB=AE,∴∠AEB=75°,∴∠BEC=180°-∠AED-∠AEB=180°-30°-75°=75°.故选D.【点睛】本题考查了矩形的性质,含30度角的直角三角形等,熟记矩形的性质和含30度角的直角三角形的性质是解题的关键.6.B【解析】如图,矩形ABCD与平行四边形BCFG中,BG=AB,过点G作GH⊥BC,垂足为H,∵S矩形ABCD=BC·AB=2S平行四边形BCFG=2BC·GH,∴BG=2GH,∵△BGH是Rt△,∠BHG=90°,∴∠GBH=30°,故选B.【点睛】本题考查了矩形的面积、平行四边形的面积以及直角三角形中,30度角所对直角边等于斜边的运用,根据已知条件推导出平行四边形的高与一边的关系是解题的关键.7.B【解析】∵四边形ABCD 是矩形,∴AD=BC ,AD//BC ,∴∠DAC=∠ACB ,∵BE=13BC ,AF=23AD ,∴AF=CE , 又∵∠AOF=∠COE ,∴△AOF ≌△COE ,∴AO=CO ,FO=EO ,即AC 与EF 互相平分,故选B.8.B【解析】CD ⊥AB ,CD =DE =a,所以222a a a +=点E 是AB 的中点,CE=1,2AB 所以2故选B.9.A【解析】试题解析:在ABC 中,由勾股定理可得:22226810.BC AB AC +=+= AD 是BC 边上的高,E 、F 分别是AB 、AC 边的中点,则:1115,4, 3.222EF BC DE AB DF AC ======DEF 的周长为:45312.DE EF DF ++=++= 点睛:直角三角形的性质:直角三角形斜边的中线等于斜边的一半.10.B【解析】试题分析:∵∠ACB =90°,∠ABC =60°,∴∠A =30°,∵BD 平分∠ABC ,∴∠ABD =12∠ABC =30°,∴∠A =∠ABD ,∴BD =AD =6,∵在Rt △BCD 中,P 点是BD 的中点,∴CP =12BD =3.故选B .11.14【解析】试题解析:∵AD 是高,90ADB ADC ∴∠=∠=,∵E 、F 分别是AB 、AC 的中点,11,22ED EB AB DF FC AC ∴====, ∵AB=8,AC=6,∴AE+ED=8,AF+DF=6,∴四边形AEDF 的周长为8+6=14,故答案为:14.12.7【解析】试题解析:如图,取AB 的中点D ,连接CD .∵AC=BC=5,AB=6.∵点D是AB边中点,∴BD=12AB=3,∴CD=2222=53BC BD--=4;连接OD,OC,有OC≤OD+DC,当O、D、C共线时,OC有最大值,最大值是OD+CD,又∵△AOB为直角三角形,D为斜边AB的中点,∴OD=12AB=3,∴OD+CD=3+4=7,即OC=7.13.10【解析】∵AE=ME,AB=MN,BF=NF,∴ME+DE+MN+CD+CF+NF=AE+DE+AB+CD+CF+BF=AD+AB+CD+BC=2+3+2+3=10.点睛:本题主要考查了折叠问题以及矩形的性质的运用,解题时注意:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.14.5【解析】如图,连接CE ,∵点O 是矩形ABCD 对角线AC 的中点,EF ⊥AC ,∴AE=CE ,AO=12AC=222242255AB BC +=+==.设AE=x ,则CE=x ,BE=4x -,在Rt △BCE 中,由勾股定理可得:CE2=BE2+BC2,即()22242x x =-+, 解得: 2.5x =,即AE=2.5,∴在Rt △AOE 中,OE=()222252.552AE AO -=-=, ∵点O 是矩形ABCD 对角线AC 的中点,∴点O 是矩形的对称中心,∴EF=2OE=5.点睛:由矩形是关于对角线中点成中心对称的可得:EF=2OE ,AO=12AC ,从而把求EF 的长转化为求OE 的长,进一步转化为求AE 的长,连接CE ,由已知得到CE=AE ,就可把问题转化到Rt △CEB 中求CE 的长,这样利用勾股定理建立方程即可解得AE ,从而求得EF.15.120°(180°【解析】在△ADE中,∵∠ADE=20°,AD=ED,∴∠AED=12-20°)=80°,∵四边形ABCD是矩形,∠ADE=20°,∴∠EDC=90°-20°=70°,在△DEC中,∵ED=EC,∴∠DEC=180°-70°×2=40°,∴∠AEC=∠AED+∠DEC=80°+40°=120.16.30【解析】∵四边形ABCD是矩形,∴∠ABC=∠BAD=90°,OB=OD,OA=OC,AC=BD,∴OB=OC,OB=OA,∴∠OCB=∠OBC,∵AE平分∠BAD,∴∠BAE=∠DAE=45°,∴∠AEB=180°−90°−45°=45°,∵∠1=15°,∴∠OCB=∠AEB−∠EAC=45°−15°=30°,∴∠OBC=∠OCB=30°,∴∠AOB=30°+30°=60°,∵OA=OB,∴△AOB是等边三角形,∴AB=OB,∵∠BAE=∠AEB=45°,∴AB=BE,∴OB=BE,∴∠OEB=∠EOB,∵∠OBE=30°,∠OBE+∠OEB+∠BEO=180°,∴∠OEB=75°,∵∠AEB=45°,∴∠2=∠OEB−∠AEB=30°,故答案为:30.点睛:本题考查了矩形的性质,等边三角形的性质,等腰三角形的性质的综合应用,能求出∠OEB和∠AEB的度数是解此题的关键. 17.(1)等腰三角形;(2【解析】试题分析:(1)由于AD⊥BC,BE⊥AC,所以△ADB和△ABE是直角三角形,又因为M为AB边的中点,所以ME=MD=1AB,2所以△MED为等腰三角形;(2)由条件知∠EMD=2∠DAC=60°,从而可得等腰三角形DME是边长为2的等边三角形可得到问题答案.试题解析:(1)猜测△MED 为等腰三角形,理由如下.由题意可得,DM 是RT △ABD 斜边上的中线, ∴1DM AB BM 2==,EM 是Rt ABE 斜边上的中线, ∴1EM AB BM 2==,∴DM EM =,∴MED 为等腰三角形.(2)由(1)中可得:DM BM =,EM BM =,∴MBD MDB ∠∠=,MBE MEB ∠∠=,∴AMD MBD MDB 2MDB ∠∠∠∠=+=,AME MBE MEB 2MBE ∠∠∠∠=+=, ∴()EMB AMD AME 2MBD MBE 2DBE ∠∠∠∠∠∠=-=-=,∴在等腰MED 中,EMD 2DBE 60∠∠==︒,∴MED 是等边三角形,边长为AB DM BM 22===, ∴DEM S =点睛:本题考查了直角三角形斜边上的中线等于斜边的一半的性质、等边三角形的判定和性质和等边三角形的面积计算,题目综合性很好.18.2cm【解析】试题分析:根据已知条件易证△ABE ≌△ECF ,根据全等三角形的性质可得CE=AB=4cm ,根据矩形的周长为20cm 可得2(4+4+BE )=20,B E=2cm ,再由全等三角形的性质可得CF=BE=2cm.试题解析:∵AE⊥EF,∴∠AFE=90°,∴∠AEB+∠BAE =90°,而∠AEB+∠CEF=90°,∴∠BAE=∠CEF,又∠ABE=∠ECF=90°,AE=EF,∴Rt△ABE≌Rt△ECF,∴CE=AB=4cm又∵矩形ABCD周长为20cm∴2(4+4+BE)=20∴BE=2cm∴CF=BE=2cm19.详见解析.【解析】由已知条件易得:∠DEA=∠ABF=90°,∠DAE=∠AFB,DE=DC=AB,从而可得:△ABF≌△DEA.试题解析:图中:△ABF≌△DEA,证明如下:∵四边形ABCD为矩形,∴∠B=90°,AB=DC.∵DE⊥AG于E,DE=DC,∴∠AED=90°=∠B,AB=DE.∵四边形ABCD为矩形,∴AD∥CB.∴∠DAE=∠AFB.,∴△ABF≌△DEA(AAS).20.证明见解析【解析】试题分析:证明CD是线段BE的垂直平分线,得到DB=DE,又因为DB=AC,则得证.试题解析:∵四边形ABCD是矩形,∴AC=BD,∠BCD=90°,∵BC=CE,∴DC是BE的中垂线,∴BD=DE,∴DE=AC.21.△AEF的周长是90cm.【解析】试题分析:先根据勾股定理求出AC的长,由矩形的性质可知:矩形的两条对角线相等,可得BD=AC,即可得OD的长,在△AOD中,根据E、F分别是AO、AD在中点,分别求出AE、EF、AF的长,即可得△AEF的周长.试题解析:在Rt△ABC中,=100cm,在矩形ABCD中BD=AC=100cm,AD=BC=80cm,∵点E、F分别是AO、AD的中点,∴EF是△AOD的中位线,∴EF=12OD=14BD=25,AF=12AD=12BC=40cm,AE=12AO=14AC=25,∴△AEF的周长=AE+AF+EF=90cm.22.(1)证明见解析;(2)a,b,c三者存在的关系是a+b>c,理由见解析.【解析】(1)首先根据题意得B′F=BF,∠B′FE=∠BFE,接着根据平行线的性质和等腰三角形的判定即可证明B′E=BF;(2)解答此类题目时要仔细读题,根据三角形三边关系求解分类讨论解答,要提高全等三角形的判定结合勾股定理解答.证明:(1)由题意得B′F=BF,∠B′FE=∠BFE,在矩形ABCD中,AD ∥BC,∴∠B′EF=∠BFE,∴∠B′FE=∠B'EF,∴B′F=BE,∴B′E=BF;解:(2)答:a,b,c三者关系不唯一,有两种可能情况:(ⅰ)a,b,c三者存在的关系是a2+b2=c2.证明:连接BE,则BE=B′E,由(1)知B′E=BF=c,∴BE=c.在△ABE中,∠A=90°,∴AE2+AB2=BE2,∵AE=a,AB=b,∴a2+b2=c2;(ⅱ)a,b,c三者存在的关系是a+b>c.证明:连接BE,则BE=B′E.由(1)知B′E=BF=c,∴BE=c,在△ABE中,AE+AB>BE,∴a+b>c.“点睛”此题以证明和探究结论形式来考查矩形的翻折、等角对等边、三角形全等、勾股定理等知识.第一,较好考查学生表述数学推理和论证能力,第(1)问重点考查了学生逻辑推理的能力,主要利用等角对等边、翻折等知识来证明;第二,试题呈现显示了浓郁的探索过程,试题设计的起点低,图形也很直观,也可通过自已动手操作,寻找几何元素之间的对应关系,形成较为常规的方法解决问题,第(2)问既考查了学生对勾股定理掌握的程度又考查学生的数学猜想和探索能力,这对于培养学生创新意识和创新精神十分有益;第三,解题策略多样化在本题中得到了充分的体现.。
初中数学试卷《矩形的判定》练习一、选择——基础知识运用1.在四边形ABCD中,AC、BD交于点O,在下列各组条件中,不能判定四边形ABCD为矩形的是()A.AB=CD,AD=BC,AC=BDB.AO=CO,BO=DO,∠A=90°C.∠A=∠C,∠B+∠C=180°,AC⊥BDD.∠A=∠B=90°,AC=BD2.检查一个门框是否为矩形,下列方法中正确的是()A.测量两条对角线,是否相等B.测量两条对角线,是否互相平分C.测量门框的三个角,是否都是直角D.测量两条对角线,是否互相垂直3.在四边形ABCD中,AC与BD相交于点O,且OA=OC,OB=OD.如果再增加条件AC=BD,此四边形一定是()A.正方形B.矩形C.菱形D.都有可能4.有下列说法:①四个角都相等的四边形是矩形;②有一组对边平行,有两个角为直角的四边形是矩形;③两组对边分别相等且有一个角为直角的四边形是矩形;④对角线相等且有一个角是直角的四边形是矩形;⑤对角线互相平分且相等的四边形是矩形;⑥一组对边平行,另一组对边相等且有一角为直角的四边形是矩形.其中,正确的个数是()A.2个B.3个C.4个D.5个5.已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:对于两人的作业,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对)二、解答——知识提高运用6.已知,平行四边形ABCD中,AB=5,AD=12,BD=13.求证:平行四边形ABCD是矩形。
7.如图所示,在□ABCD中,E为AD的中点,△CBE是等边三角形,求证:□ABCD是矩形。
8.已知:在△ABC中,∠A=90°,D,E分别是AB,AC上任意一点,M,N,P,Q分别是DE,BE,BC,CD的中点,求证:四边形PQMN是矩形。
9.如图,□ABCD与□ABEF中,BC=BE,∠ABC=∠ABE,求证:四边形EFDC是矩形。
初中数学试卷第02课矩形的性质与判定同步练习题【例1】如图,在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F.求证:DF=DC.【例2】如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长.【例3】如图,已知在△ABC中,AC=3,BC=4,AB=5,点P在AB上(不与A、B重合),过P作PE⊥AC,PF⊥BC,垂足分别是E、F,连接EF,M为EF的中点.(1)请判断四边形PECF的形状,并说明理由;(2)随着P点在边AB上位置的改变,CM的长度是否也会改变?若不变,请你求CM的长度;若有变化,请你求CM的变化范围.【例4】如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别在边AD,BC上,且DE=CF,连接OE,OF.求证:OE=OF.【例5】如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB 的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.课堂同步练习一、选择题:1、如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE 成为矩形的是( )A.AB=BEB.DE⊥DCC.∠ADB=90°D.CE⊥DE第1题图第2题图第4题图2、如图是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA上,点C的对应点为点F,若BE=6cm,则DC的长是()A.4cmB.6cmC.8cmD.10cm3、若顺次连接四边形ABCD各边的中点所得到的四边形是矩形,则该四边形ABCD一定是()A.菱形B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形4、如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()A.50°B.55°C.60°D.65°5、如图.矩形ABCD中.E在AD上.且EF⊥EC.EF=EC.DE=2.矩形的周长为16.则AE的长是()A.3B.4C.5D.7第5题图第6题图第7题图6、如图,E是矩形ABCD中BC边的中点,将△ABE沿AE折叠到△AFE,F在矩形ABCD内部,延长AF交DC于G 点,若∠AEB=55°,则∠DAF=( )A.40°B.35°C.20°D.15°7、如图,将矩形纸片ABCD沿EF折叠,使点B与CD的中点重合,若AB=2,BC=3,则△FCB′与△B′DG的面积之比为( )A.9:4B.3:2C.4:3D.16:98、如图,矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于E,AD=8,AB=4,则DE长为( )A.3B.4C.5D.6第8题图第9题图9、如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为( )A.3B.3.5C.2.5D.2.810、如图,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,则下列结论:△ODC是等边三角形;②BC=2AB;③∠AOE=135°;④S△AOE=S△COE.其中正确的结论的个数有( )A.1B.2C.3D.4第10题图第11题图第12题图11、在矩形ABCD中,点A关于∠B的角平分线的对称点为E,点E关于∠C的角平分线的对称点为F,若AD=,AB=3,则S △ADF=()A.2B.3C.3D.12、如图,在矩形ABCD中,O为AC中点,EF过O点,且EF⊥AC分别交DC于F,交AB于E,点G是AE中点,且∠AOG=30°.①DC=3OG;②OG=BC;③△OGE是等边三角形;④S△AOE=S矩形ABCD.则结论正确的个数为( )A.1B.2C.3D.4二、填空题:13、若矩形的一个角的平分线分一边为4cm和3cm的两部分,则矩形的周长为cm.14、如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC,若AC=4 cm,则四边形CODE的周长为。
矩形、菱形的性质定理和判定定理及其证明习题精选矩形的性质和判定1.矩形的两条对角线的夹角为60°,一条对角线与短边的和为15,则短边的和为15,则短边的长是________。
2.如图32-3-1,设矩形ABCD和矩形AEFC的面积分别为S1、S2,则二者的大小关系是:S1____S2。
3.如果矩形一个角的平分线分一边为4 cm和3 cm两部分,那么矩形的周长为_______。
4.现有一张长为40cm, 宽为20 cm的长方形纸片(如图32-3-2所示),要从中剪出长为18 cm,宽为12 cm的长方形纸片,则最多能剪出___张。
5.矩形的一条较短边的长为5 c m,两条对角线的夹角为60°,则它的对角线的长等于_____ cm。
6.如图32-3-3,在矩形ABCD中,CE⊥BD于E,∠DCE:∠ECB=3:1,则∠ACE=____度。
7.下列说法中正确的是( )A.一个角是直角,两条对角线相等的四边形是矩形。
B.一组对边平行且有一个角是直角的四边形是矩形。
C.对角线互相垂直的平行四边开是矩形。
D.一个角是直角且对角线互相平分的四边形是矩形。
8.四边形ABCD的对角线相交于O,在下列条件中,不能说明它为矩形的是()A.AB=CD,AD=BC, BAD=90°B.AO=CO,BO=DO,AC=BDC.∠BAD=∠ABC=90°, ∠BAD+∠ADC=180°D.∠BAD=∠BCD, ∠ABC+∠ADC=180°★菱形的性质和判定9.己知菱形的锐角是60°,边长是20 cm,则较长对角线是_____。
10.菱形两条对角线的长分别为6 cm和8 cm,它的高为______。
11.菱形的一个内角是120°,平分这个内角的一条对角钱长为13 cm,则菱形的周长是____。
12.菱形的一边与两条对角线所构成的两个角的差是32°,则菱形较小的内角是_____。
人教版 八年级数学下册 18.2.1 矩形 培优练习(含答案)1.如图,矩形ABCD 的两条对角线相交于点O ,∠AOB =60°,AD =2,则AC 的长是( )A .2B .4C .23D .432.如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( )A .当AB=BC 时,它是菱形B .当AC ⊥BD 时,它是菱形 C .当∠ABC=90°时,它是矩形D .当AC=BD 时,它是正方形3.下列命题是假命题的是( ) A.不在同一直线上的三点确定一个圆 B.矩形的对角线互相垂直平分 C.正六边形的内角和是720° D.角平分线上的点到角两边的距离相等4.矩形的两条对角线的夹角为60°,对角线长为15cm ,较短边的长为( )cm . A.12 B.10 C.7.5 D.55.如图,四边形ABCD 为平行四边形,延长AD 到E ,使DE=AD ,连接EB ,EC ,DB 。
添加一个条件,不能使四边形DBCE 成为矩形的是( )A.AB=BEB.BE ⊥DCC.∠ADB=90°D.CE ⊥DE 6.下列命题是假命题的是( )A .四个角相等的四边形是矩形B .对角线相等的平行四边形是矩形C .对角线垂直的四边形是菱形D .对角线垂直的平行四边形是菱形 7.以下四个命题正确的是( ) A. 任意三点可以确定一个圆 B. 菱形对角线相等C. 直角三角形斜边上的中线等于斜边的一半D. 平行四边形的四条边相等8.如图,四边形ABCD 是矩形,AB=6cm ,BC=8cm ,把矩形沿直线BD 折叠,点C 落在点E 处,BE 与AD 相交于点F ,连接AE.下列结论中结论正确的个数有 ( ) ①△FBD 是等腰三角形; ②四边形ABDE 是等腰梯形; ③图中有6对全等三角形;BC O DAOD C B A A B C DEF EDA④四边形BCDF的周长为532;⑤AE的长为145cm.A.2个B.3个 C.4个D.5个9.如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是( )A.4.8 B.5 C.6 D.7.2二、填空题(共有7道小题)10.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=4,则AC的长为。
矩形的性质练习一、选择——基础知识运用1.如图,矩形的两条对角线的一个交角为60°,两条对角线的长度的和为20cm,则这个矩形的一条较短边的长度为()A.10cm B.8cm C.6cm D.5cm2.如图,在矩形ABCD中,DE平分∠ADC交BC于点E,EF⊥AD交AD于点F,若EF=3,AE=5,则AD等于()A.5 B.6 C.7 D.83.Rt△ABC中,∠C=90°,锐角为30°,最短边长为5cm,则最长边上的中线是()A.5cm B.15cm C.10cm D.2.5cm4.如图,在△ABC中,CF⊥AB于F,BE⊥AC于E,M为BC的中点,EF=7,BC=10,则△EFM的周长是()A.17 B.21 C.24 D.275.如图,在矩形ABCD中,AF⊥BD于E,AF交BC于点F,连接DF,则图中面积相等但不全等的三角形共有()A.2对B.3对C.4对D.5对6.如图,在平面直角坐标系中,矩形OABC,OA=3,OC=6,将△ABC沿对角线AC翻折,使点B落在点B′处,AB′与y轴交于点D,则点D的坐标为()A.(0, B.(0, C.(0, D.(0,二、解答——知识提高运用7.如果把电视屏幕看作一个长方形平面,建立一个直角坐标系,若左下方的点的坐标是(0,0),右下方的点的坐标是(32,0),左上方的点的坐标是(0,28),则右上方的点的坐标是。
8.长方形ABCD面积为12,周长为14,则对角线AC的长为。
9.如图,自矩形ABCD的顶点C作CE⊥BD,E为垂足,延长EC至F,使CF=BD,连接AF,求∠BAF的大小。
10.如图,在△ABC中,∠BAC>90°,DC⊥DB,BE⊥EC,F为BC上的一个动点,猜想:当F为于BC上的什么位置时,△FDE是等腰三角形,并证明你的猜想是正确的。
11.如图,在矩形ABCD中,AD=12,AB=7,DF平分∠ADC,AF⊥EF。
2021年人教版八年级数学下册《矩形》同步基础练习卷一、选择题1.下列关于矩形的说法,正确的是( )A.对角线相等的四边形是矩形B.对角线互相平分的四边形是矩形C.矩形的对角线互相垂直且平分D.矩形的对角线相等且互相平分2.在□ABCD中,AC交BD于点O,再添加一个条件,仍不能判定四边形ABCD是矩形的条件是( )A.AB=ADB.OA=OBC.AC=BDD.DC⊥BC3.如图,四边形ABCD的对角线AC,BD相交于点O,已知下列6个条件:①AB∥DC;②AB=DC;③AC=BD;④∠ABC=90°;⑤OA=OC;⑥OB=OD.则不能使四边形ABCD成为矩形的是( )A.①②③B.②③④C.②⑤⑥D.④⑤⑥4.如图,要使平行四边形ABCD成为矩形,需添加的条件是( )A.AB=BCB.AC⊥BDC.AC=BDD.∠1=∠25.如图,顺次连接四边形ABCD各边中点得四边形EFGH,要使四边形EFGH为矩形,应添加的条件是( )A.AB∥DCB.AC=BDC.AC⊥BDD.AB=DC6.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是( )A.测量对角线是否相互平分B.测量两组对边是否分别相等C.测量一组对角是否为直角D.测量四边形的其中三个角是否都为直角7.有下列说法:①四个角都相等的四边形是矩形;②有一组对边平行,有两个角为直角的四边形是矩形;③两组对边分别相等且有一个角为直角的四边形是矩形;④对角线相等且有一个角是直角的四边形是矩形;⑤对角线互相平分且相等的四边形是矩形;⑥一组对边平行,另一组对边相等且有一角为直角的四边形是矩形.其中,正确的个数是()A.2个 B.3个C.4个 D.5个8.检查一个门框是否为矩形,下列方法中正确的是()A.测量两条对角线,是否相等B.测量两条对角线,是否互相平分C.测量门框的三个角,是否都是直角D.测量两条对角线,是否互相垂直9.如图,将矩形纸片ABCD沿对角线BD折叠一次,则图中全等三角形有()A.2对B. 3对C. 4对D.5对10.如图,将矩形ABCD沿对角线BD折叠,使点C和点C′重合,若AB=2,则C′D的长为()A.1B.2C.3D.411.如图,在矩形ABCD中,DE平分∠ADC交BC于点E,EF⊥AD交AD于点F,若EF=3,AE=5,则AD等于()A.5B.6C.7D.812.如图,矩形ABCD中,E在AD上,EF⊥EC,EF=EC,DE=2,矩形周长为16,则AE长是( )A.3B.4C.5D.7二、填空题13.如图,要使平行四边形ABCD是矩形,则应添加的条件是__________(添加一个条件即可).14.如图,把一张矩形纸片ABCD沿EF折叠,点C、D分别落在C/、D/的位置上,EC′交AD于G,已知∠EFG=56°,那么∠BEG= .15.如图,在矩形ABCD中,AE⊥BD于E,∠DAE=3∠EAB,则∠ACD的度数为.16.如图,点E是矩形ABCD内任一点,若AB=3,BC=4.则图中阴影部分的面积为.17.如图,△ABC中,若∠ACB=90°,∠B=55°,D是AB的中点,则∠ACD= °.18.如图是叠放在一起的两张长方形卡片,图中有∠1、∠2、∠3,则其中一定相等的是_____三、解答题19.如图,四边形ABCD是平行四边形,AC,BD交于点O,∠1=∠2.求证:四边形ABCD是矩形.20.如图,四边形ABCD的对角线AC、BD交于点O,已知O是AC的中点,AE=CF,DF∥BE.(1)求证:△BOE≌△DOF;(2)若2OD=AC,则四边形ABCD是什么特殊四边形?请证明你的结论.21.如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.(1)求证:△ABD≌△CAE.(2)连结DE,线段DE与AB之间有怎样的位置关系和数量关系?请证明你的结论.22.如图,将平行四边形ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F。
矩形专题 八年级 张老师组稿 姓名
学号 2010.05.15
一、选择题(仔细读题,一定要选择最佳答案哟!)
1.如图1中(1),把一个长为m 、宽为n 的长方形(m n >)沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( )
A .
2m n
-
B .m n -
C .2
m D .2n 2.如图2.在矩形ABCD 中,1=AB ,3=AD ,AF 平分DAB ∠,过C 点作BD CE ⊥于E ,延长AF 、EC 交于点H ,下列结论中:①FH AF =;②BF BO =;③ CH CA =;④ED BE 3=, 正确的( )
A .②③
B .③④
C .①②④
D .②③④
3.如图3,矩形纸片ABCD 中,AB =4,AD =3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,
则AG 的长为( )
A .1
B .34
C .2
3 D .2 4、如图4,EF 过矩形ABCD 对角线的交点O ,交AB 、CD 于E 、F ,则阴影部分的面积是矩形面积的( )。
A 、51
B 、41
C 、31
D 、10
3 5、如图5,矩形ABCD 中,AB=8㎝,把矩形沿直线AC 折叠,使点B 落在点E 处,AE 交DC 于F ,若AF=
4
25㎝,则AD 长为( )。
A 、4㎝
B 、5㎝
C 、6㎝
D 、7㎝
6.如图6,长方形ABCD 中,E 点在BC 上,且AE平分∠BAC 。
若BE=4,AC =15,则 AEC 面积为( )
(A ) 15 (B ) 30 (C ) 45 (D ) 60 。
图1 图2 图3
图4 图5 图6
二、填空题 (试一试,你一定能成功哟!)
1.若将4根木条钉成的矩形木框变形为平行四边形形状,并使面积为矩形面积的一半,则这个平行四边形的一个最小内角是______度。
2.如果用4个相同的长为3宽为1的长方形,拼成一个大的长方形,那么这个大的长方形的周长可以是_____.
3.矩形内有一点P 到各边的距离分别为1、3、5、7,则该矩形的最大面积为 平方单位.
4.一个矩形的对角线等于长边的一半与短边的和,则短边与长边的比为 。
5.现在一张长为40cm ,宽为30cm 的纸片,要从中剪出长为18cm ,宽为12cm 的矩形纸片,则最多能剪出 张。
6.矩形的两条对角线的夹角为60°,一条对角线和短边的和为15,则短边的长是,对角线长是。
7.如图7,先把矩形ABCD对折,折痕为MN,再把B点折叠在折痕MN上,折痕为AE,点B在MN上对应点为B1,则∠DAB1
等于。
8.如图8,在矩形ABCD中,AE⊥BD于E,对角线AC、BD相交于点O,且BE︰ED=1︰3,AD=6㎝,则AE的长等于。
9.如图9,在矩形ABCD中,EF∥BC,HG∥AB,S矩形AEOH=9,S矩形HOFD=4,S矩形OGCF=7,则S△HBF= 。
10.如图10,矩形ABCD沿AE折叠,使点B落在DC边上的F处,若△AFD的周长为9,△ECF周长为3,则矩形的周长
为。
三、解答题(认真解答,一定要细心哟!)
1、已知如图18,矩形ABCD中,DE=AB,CF⊥DE,试说明EF=EB。
2.如图四边形ABCD是矩形,△PBC和△QCD都是等边三角形,且点P在矩形上方,点Q在矩形内.
求证:(1)∠PBA=∠PCQ=30°;(2)P A=PQ.
3、如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F。
①求证:EO=FO;②当O点运动到何处时,四边形AECF是矩形?并证明你的结论。