马尔可夫链—复习参考资料_43210516
- 格式:pdf
- 大小:670.96 KB
- 文档页数:30
马尔可夫链的基础知识马尔可夫链是一种数学模型,用于描述一系列随机事件的演变过程。
它的基本思想是,当前事件的发生只与前一个事件的状态有关,与更早的事件无关。
马尔可夫链在许多领域都有广泛的应用,如自然语言处理、金融市场分析、生物信息学等。
一、马尔可夫链的定义马尔可夫链由状态空间、状态转移概率和初始状态分布组成。
状态空间是指所有可能的状态的集合,用S表示。
状态转移概率是指从一个状态转移到另一个状态的概率,用P表示。
初始状态分布是指在初始时刻各个状态出现的概率分布,用π表示。
二、马尔可夫链的性质1. 马尔可夫性质:当前状态的发生只与前一个状态有关,与更早的状态无关。
即P(Xn+1|Xn,Xn-1,...,X1) = P(Xn+1|Xn)。
2. 遍历性质:从任意一个状态出发,经过有限步骤可以到达任意一个状态。
3. 唯一性质:对于给定的状态空间和状态转移概率,存在唯一的初始状态分布使得马尔可夫链收敛到平稳分布。
4. 平稳性质:当马尔可夫链收敛到平稳分布时,后续状态的分布不再改变。
三、马尔可夫链的应用1. 自然语言处理:马尔可夫链可以用于生成文本,如自动写诗、自动对话等。
通过学习语料库中的马尔可夫链模型,可以生成具有一定连贯性的文本。
2. 金融市场分析:马尔可夫链可以用于预测金融市场的走势。
通过分析历史数据,建立马尔可夫链模型,可以预测未来的市场状态。
3. 生物信息学:马尔可夫链可以用于基因序列分析。
通过建立马尔可夫链模型,可以预测基因序列中的隐含信息,如启动子、剪接位点等。
四、马尔可夫链的改进1. 高阶马尔可夫链:考虑当前状态与前几个状态的关系,可以建立高阶马尔可夫链模型。
高阶马尔可夫链可以更准确地描述事件的演变过程。
2. 隐马尔可夫链:考虑到状态不可观测的情况,可以建立隐马尔可夫链模型。
隐马尔可夫链可以用于序列标注、语音识别等领域。
五、总结马尔可夫链是一种描述随机事件演变过程的数学模型,具有马尔可夫性质、遍历性质、唯一性质和平稳性质。
马尔科夫链专题讲义马尔科夫链是以俄罗斯数学家安德烈·马尔科夫的名字命名,是一个数学随机模型,描述了一连串可能发生的事件,从一个状态到另外一个状态,也可以是保持当前状态的随机过程.下一个状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关.高中数学中经常与条件概率,全概率公式,贝叶斯公式相结合,构造递推关系求的概率.一、马尔科夫链的性质马尔科夫链具有状态空间,无记忆性,转移概率(转移矩阵)等三个要素,马尔科夫链是从一个状态到另一个状态转化的随机过程,每个状态称为状态空间.无记忆性是而的事件均与之无关.这种特定类型的“无记忆性”称作马尔科天性.在马尔科夫链的每一步,根据概率分布,可以从个状态变频另外一个状态,也可以保持当前状态.状态的改变叫做转移,与不同状态改变相关的概率叫做转移项率.对于随机变量序列X m已知第n小时的状态X n.如果X n−1的随机变化规律与前面的各项X1,X2,⋯,X n−1的取值都没有关系,那么称随机变量序列X n具有马尔科夫性,称具有马尔科夫性的随机变量序列{X n}为马尔科夫链。
二、马尔科夫链基本原理虽然贝叶斯公式不做要求,但是全概率公式已经是新高考考查内容,利用全概率公式,我们既可以构造某些递推关系求解概率,还可以推导经典的一维随机游走模型,即设数轴上一个点,它的位置只能位于整点处,在时刻t=0时,位于点X=i(i∈N∗)一个时刻,它将以概率α或者β(α∈(0,1),α+β=1)向左或者向右平移一个单位.若记状态X t=i表示在时刻t该点位于位置X=i(i∈N∗),那么由全概率公式可得P(X t+1=i)=P(X t=i−1)⋅P(X t+1=i∣X t=i−1)+P(X t=i+1)⋅P(X t+1=i∣X t=i+1).另一方面,由于P(X t+1=i∣X t=i−1)=β,P(X t+1=i∣X t=i+1)=α,代入上式可得P i=α⋅P i+1+β⋅P i−1.进一步,我们假设在x=0与x=m(m>0,m∈N∗)处各有一个吸收壁,当点到达吸收壁时被吸收,不再游走.于是P0=0,P m=1.随机游走模型是一个典型的马尔科夫过程.进一步,若点在某个位置后有三种情况:向左平移一个单位,其概率为a,原地不动,其概率为b,向右平移一个单位,其概率为c,那么根据全概率公式可得P i=aP i−1+bP i+cP i+1.三、应用举例1.药物试验问题例1(2019全国1卷21)为治疗某种欢病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,脱停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白贝治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得−1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈半分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列:(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1.⋯.8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p i=1,p i=ap i−1+bp i+cp i+1(i=1,2,⋯,7),其中a=P(X=−1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.(i)证明:{p i−1−p i}(i=0,1,2,⋯,7)为等比数列;(iii)求p c,并根据p c的值解释这种试验方案的合理性.解:(1)由超意知,X的所有可能取值为-1.0,1.P(X=−1)=(1−α)β,P(X=0)=αβ+(1−α)(1−β),P(X=1)=a(1−β),∴X的分布列为X−10 1P(1−α)βαβ+(1−α)(1−β)α(1−β)(2)(i)由(1)知,a=(1−0.5)×0.8=0.4,b=0.5×0.8+(1−0.5)(1−0.8)=0.5,c=0.5×(1−0.8=0.1.∴p i=0.4p i−1+0.5p i+0.1p i+1,∴0.1(p i+1−p i)=0.4(p i−p i−1),∴p i+1−p i=4(p i−p i−1),又p1−p0=p1≠0,∴{p i+1−p i}(i=0,1,2,⋯,7)是首项为p1,公比为4的等比数列. (ii)由(i)可得p i+1−p i=p1⋅4i,∴p8=p8−p7+p7−p6+⋯+p1−p0+p0=(p8−p7)+(p7−p6)+⋯+(p1−p0)=p1(47+46+⋯+4)=4(1−47) 1−4p1=48−4 3p1∵p8=1,∴48−43p1=1,∴p1=348−4.∴p4=(p4−p3)+(p3−p2)+(p2−p1)+(p1−p0)=p1(43+42+4+1)=1−44 1−4p1=44−13p1=44−13×348−4 =144+1=1257p4表示最终认为甲药更有效的概率.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为p4=1257≈0.0039,此时得出错误结论的概率非常小,说明这种试验注:虽然当时学生未学过全概率公式,但命题人直接把p i=ap i−1+bp i+cp i+1给出,并没有让考生推导这个递推关系,实际上,这就是一个一维随机游走模型。
第四章 马尔可夫链随机过程在不同时刻下的状态之间一般具有某种关系,马尔可夫(Markov )过程就是描述一类状态之间具有某种特殊统计联系的随机过程.Markov 过程在近代物理学、生物学、管理科学、信息处理与数字计算方法等领域都有重要的应用.按其状态和时间参数是连续的或离散的,它可分为三类:(1)时间、状态都是离散的Markov 过程,称为Markov 链;(2)时间连续、状态离散的Markov 过程,称为连续时间的Markov 链;(3)时间、状态都连续的Markov 过程.本章主要讨论Markov 链,有关连续时间的Markov 链的相关理论将在下章讨论.4.1 马尔可夫链的概念和例子独立随机试验模型最直接的推广就是Markov 链模型,早在1906年俄国数学家Markov 对它进行研究而得名,以后Kolmogorov 、Feller 、Doob 等数学家发展了这一理论.4.1 .1 Markov 链的定义假设Markov 过程{,}n X n T ∈的参数集T 是离散时间集合,即{0,1,2,}T =,相应n X 可能取值的全体组成的状态空间是离散状态集012{,,,}I i i i =.定义 4.1 设有一随机过程{,}n X n T ∈,若对于任意整数n T ∈和任意011,,,n i i i I +∈,条件概率满足11001111{|,,,}{|}n n n n n n n n P X i X i X i X i P X i X i ++++=======则称{,}n X n T ∈为离散时间的Markov 链,简称Markov 链(Markov chains )或马氏链.从定义可以看出:Markov 链具有Markov 性(即无后效性),如果把时刻n 看作现在,那么,1n +是将来的时刻,而0,1,2,,1n -是过去的时刻.Markov 性表示在确切知道系统现在状态的条件下,系统将来的状况与过去的状况无关,而且Markov 链的统计特征完全由条件概率11{|}n n n n P X i X i ++==所决定. 因此,如何确定这个条件概率,是研究Markov 链理论和应用中十分重要的问题之一. 4.1.2 转移概率定义 4.2 称条件概率1(){|}ij n n p n P X j X i +=== (4.1)为Markov 链{,}n X n T ∈在时刻n 的一步转移概率,其中,i j I ∈,简称转移概率(transition probability ).一般地,转移概率()ij p n 不仅仅与状态,i j 有关,而且与时刻n 有关,如果()ij p n 不依赖时刻n 时,则称Markov 链具有平稳转移概率.定义 4.3 若对任意,i j I ∈,Markov 链{,}n X n T ∈的转移概率()ij p n 与n 无关,则称Markov 链是齐次的(或称时齐的)(time homogeneous -),并记()ij p n 为ij p . 下面只讨论齐次Markov 链,并且通常将“齐次”两字省去.定义 4.4 设P 表示一步转移概率ij p 所组成的矩阵,且状态空间{1,2,}I =,则1112121222...........................n n p p p P p p p ⎛⎫ ⎪= ⎪ ⎪⎝⎭称为系统状态的一步转移概率矩阵(transition probability matrix ),它具有性质: (1)0,,ij p i j I ≥∈; (2)1,ijj Ipi I ∈=∈∑.(2)式说明一步转移概率矩阵中任一行元素之和为1,通常称满足性质(1)(2)的矩阵为随机矩阵.定义 4.5 称条件概率(){|},n ij m n m p P X j X i +=== ,,0,1i j I m n ∈≥≥ (4.2)为Markov 链{,}n X n T ∈的n 步转移概率,并称()()()n n ij P p =为Markov 链{,}n X n T ∈的n 步转移矩阵.其中()()0,1n n ij ij j Ip p ∈≥=∑,即()n P 也是一个随机矩阵.特别地,当1n =时,(1)ij ij p p =,此时,一步转移矩阵(1)P P =.我们还规定(0)0,1,iji jpi j ≠⎧=⎨=⎩Markov 链n 步转移概率满足重要的Chapman Kolmogorov -方程(简称C K -方程)。
2025高考数学专项复习马尔科夫链含答案马尔科夫链1.(2024·高三·广东·开学考试)马尔科夫链因俄国数学家安德烈・马尔科夫得名,其过程具备“无记忆”的性质,即第n+1次状态的概率分布只跟第n次的状态有关,与第n-1,n-2,n-3,⋯次状态无关.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,在强化学习、自然语言处理、金融领域、天气预测等方面都有着极其广泛的应用.现有A,B两个盒子,各装有2个黑球和1个红球,现从A,B两个盒子中各任取一个球交换放入另一个盒子,重复进行n n∈N*次这样的操作后,记A盒子中红球的个数为X n,恰有1个红球的概率为p n.(1)求p1,p2的值;(2)求p n的值(用n表示);(3)求证:X n的数学期望E X n为定值.理、金融领域、天气预测等方面都有着极其广泛的应用.其数学定义为:假设我们的序列状态是⋯⋯X t-2,X t-1,X t,X t+1,⋯,那么X t+1时刻的状态的条件概率仅依赖前一状态X t,即P X t+1⋯,X t-2,X t-1,X t=P X t+1X t.现实生活中也存在着许多马尔科夫链,例如著名的赌徒模型.假如一名赌徒进入赌场参与一个赌博游戏,每一局赌徒赌赢的概率为50%,且每局赌赢可以赢得1元,每一局赌徒赌输的概率为50%,且赌输就要输掉1元.赌徒会一直玩下去,直到遇到如下两种情况才会结束赌博游戏:记赌徒的本金为A A∈N*,A<B一种是赌金达到预期的B元,赌徒停止赌博;另一种是赌徒输光本金后,赌徒可以向赌场借钱,最多借A元,再次输光后赌场不再借钱给赌徒.赌博过程如图的数轴所示.当赌徒手中有n元-A≤n≤B,n∈Z时,最终欠债A元(可以记为该赌徒手中有-A元)概率为P(n),请回答下列问题:(1)请直接写出P(-A)与P(B)的数值.(2)证明{P(n)}是一个等差数列,并写出公差d.(3)当A=100时,分别计算B=300,B=1500时,P(A)的数值,论述当B持续增大时,P(A)的统计含义.状态到另一个状态的转换的随机过程.该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关.甲、乙两口袋中各装有1个黑球和2个白球,现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复进行n n∈N*次这样的操作,记口袋甲中黑球的个数为X n,恰有1个黑球的概率为p n.(1)求p1,p2的值;(2)求p n的值(用n表示);(3)求证:X n的数学期望E X n为定值.4.(2024·高三·江西·开学考试)马尔科夫链是概率统计中的一个重要模型,其过程具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,即第n+1次状态的概率分布只与第n次的状态有关,与第n -1,n-2,n-3,⋯次的状态无关,即P(X n+1|X1,X2,⋯,X n-1,X n)=P(X n+1|X n).已知甲盒中装有1个白球和2个黑球,乙盒中装有2个白球,现从甲、乙两个盒中各任取1个球交换放入对方的盒中,重复n 次(n∈N∗)这样的操作,记此时甲盒中白球的个数为X n,甲盒中恰有2个白球的概率为a n,恰有1个白球的概率为b n.(1)求a1,b1和a2,b2.为等比数列.(2)证明:a n+2b n-65(3)求X n的数学期望(用n表示).5.在概率论中,马尔可夫不等式给出了随机变量的函数不小于某正数的概率的上界,它以俄国数学家安德雷·马尔可夫命名,由马尔可夫不等式知,若ξ是只取非负值的随机变量,则对∀a>0,都有Pξ≥a≤Eξa.某市去年的人均年收入为10万元,记“从该市任意选取3名市民,则恰有1名市民去年的年收入超过100万元”为事件A,其概率为P A.则P A的最大值为()A.271000B.2431000C.427D.496.(2024·广东肇庆·模拟预测)马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,为状态空间中经过从一个状态到另一个状态的转换的随机过程,该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关.甲口袋中各装有1个黑球和2个白球,乙口袋中装有2个黑球和1个白球,现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复进行n(n∈N*)次这样的操作,记口袋甲中黑球的个数为X n,恰有1个黑球的概率为p n,则p1的值是;X n的数学期望E X n是.7.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,为状态空间中经过从一个状态到另一个状态的转换的随机过程.该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关.甲乙两个口袋中各装有1个黑球和2个白球,现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复进行n n∈N∗次这样的操作,记甲口袋中黑球个数为X n,恰有1个黑球的概率为p n,则p1=;p n=.8.马尔科夫链是机器学习和人工智能的基石,其数学定义为:假设序列状态是...,X t-2,X t-1,X t,X t+1,⋯,那么X t+1时刻的状态的条件概率仅依赖前一状态X t,即P X t+1∣⋯,X t-2,X t-1,X t=P X t+1∣X t.著名的赌徒模型就应用了马尔科夫链:假如一名赌徒进入赌场参与一个赌博游戏,每一局赌徒赌赢的概率都为50%,每局赌赢可以赢得1金币,赌输就要输掉1金币.赌徒自以为理智地决定,遇到如下两种情况就会结束赌博游戏:一是输光了手中金币;二是手中金币达到预期的1000金币,出现这两种情况赌徒都会停止赌博.记赌徒的本金为70金币,求赌徒输光所有金币的概率.9.(2024·广东茂名·二模)马尔可夫链是因俄国数学家安德烈·马尔可夫得名,其过程具备“无记忆”的性质,即第n+1次状态的概率分布只跟第n次的状态有关,与第n-1,n-2,n-3,⋅⋅⋅次状态是“没有任何关系的”.现有甲、乙两个盒子,盒子中都有大小、形状、质地相同的2个红球和1个黑球.从两个盒子中各任取一个球交换,重复进行n n∈N*次操作后,记甲盒子中黑球个数为X n,甲盒中恰有1个黑球的概率为a n,恰有2个黑球的概率为b n.(1)求X1的分布列;(2)求数列a n的通项公式;(3)求X n的期望.10.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,为状态空间中经过从一个状态到另一个状态的转换的随机过程.该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关.甲、乙两口袋中各装有1个黑球和2个白球,现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复进行n n∈N*次这样的操作,记口袋甲中黑球的个数为X n,恰有1个黑球的概率为p n,恰有2个黑球的概率为q n,恰有0个黑球的概率为r n.(1)求p1,p2的值;(2)根据马尔科夫链的知识知道p n=a⋅p n-1+b⋅q n-1+c⋅r n-1,其中a,b,c∈0,1为常数,同时p n+q n+ r n=1,请求出p n;(3)求证:X n的数学期望E X n为定值.11.(2024·云南·模拟预测)材料一:英国数学家贝叶斯1701∼1763在概率论研究方面成就显著,创立了贝叶斯统计理论,对于统计决策函数、统计推断等做出了重要贡献.贝叶斯公式就是他的重大发现,它用来描述两个条件概率之间的关系.该公式为:设A1,A2,⋯,A n是一组两两互斥的事件,A1∪A2∪⋯∪A n=Ω,且P A i>0,i=1,2,⋯,n,则对任意的事件B⊆Ω,P B >0,有P A i∣B=P A iP B∣A iP(B)=P A iP B∣A i∑n k=1P A kP B∣A k,i=1,2,⋯,n.材料二:马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,在强化学习、自然语言处理、金融领域、天气预测等方面都有着极其广泛的应用.其数学定义为:假设我们的序列状态是⋯,X t-2,X t-1,X t,X t+1,⋯,那么X t+1时刻的状态的条件概率仅依赖前一状态X t,即P X t+1∣⋯,X t-2,X t-1,X t=P X t+1∣X t.请根据以上材料,回答下列问题.(1)已知德国电车市场中,有10%的车电池性能很好.W公司出口的电动汽车,在德国汽车市场中占比3%,其中有25%的汽车电池性能很好.现有一名顾客在德国购买一辆电动汽车,已知他购买的汽车不是W公司的,求该汽车电池性能很好的概率;(结果精确到0.001)(2)为迅速抢占市场,W公司计划进行电动汽车推广活动.活动规则如下:有11个排成一行的格子,编号从左至右为0,1,⋯,10,有一个小球在格子中运动,每次小球有34的概率向左移动一格;有14的概率向右移动一格,规定小球移动到编号为0或者10的格子时,小球不再移动,一轮游戏结束.若小球最终停在10号格子,则赢得6百欧元的购车代金券;若小球最终停留在0号格子,则客户获得一个纪念品.记P i为以下事件发生的概率:小球开始位于第i个格子,且最终停留在第10个格子.一名顾客在一次游戏中,小球开始位于第5个格子,求他获得代金券的概率.马尔科夫链1.(2024·高三·广东·开学考试)马尔科夫链因俄国数学家安德烈・马尔科夫得名,其过程具备“无记忆”的性质,即第n +1次状态的概率分布只跟第n 次的状态有关,与第n -1,n -2,n -3,⋯次状态无关.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,在强化学习、自然语言处理、金融领域、天气预测等方面都有着极其广泛的应用.现有A ,B 两个盒子,各装有2个黑球和1个红球,现从A ,B 两个盒子中各任取一个球交换放入另一个盒子,重复进行n n ∈N * 次这样的操作后,记A 盒子中红球的个数为X n ,恰有1个红球的概率为p n .(1)求p 1,p 2的值;(2)求p n 的值(用n 表示);(3)求证:X n 的数学期望E X n 为定值.【解析】(1)设第n n ∈N * 次操作后A 盒子中恰有2个红球的概率为q n ,则没有红球的概率为1-p n -q n .由题意知p 1=C 12C 12+C 11C 11C 13C 13=59,q 1=C 12C 11C 13C 13=29,p 2=p 1⋅C 12C 12+C 11C 11C 13C 13+q 1⋅C 12C 13C 13C 13+1-p 1-q 1 ⋅C 13C 12C 13C 13=4981.(2)因为p n =p n -1⋅C 12C 12+C 11C 11C 13C 13+q n -1⋅C 12C 13C 13C 13+1-p n -1-q n -1 ⋅C 13C 12C 13C 13=-19p n -1+23.所以p n -35=-19p n -1-35 .又因为p 1-35=-245≠0,所以p n -35 是以-245为首项,-19为公比的等比数列.所以p n -35=-245×-19 n -1,p n =-245×-19 n -1+35.(3)因为q n =C 12C 11C 13C 13p n -1+C 11C 13C 13C 13q n -1=29p n -1+13q n -1,①1-q n -p n =C 11C 12C 13C 13p n -1+C 13C 11C 13C 131-q n -1-p n -1 =29p n -1+131-q n -1-p n -1 ,②.所以①一②,得2q n +p n -1=132q n -1+p n -1-1 .又因为2q 1+p 1-1=0,所以2q n +p n -1=0,所以q n =1-p n 2.X n 的可能取值是0,1,2,P X n =0 =1-p n -q n =1-p n 2,P X n =1 =p n ,P X n =2 =q n =1-p n 2.所以X n 的概率分布列为X n012p 1-p n2p n 1-p n2所以E X n =0×1-p n 2+1×p n +2×1-p n 2=1.2.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,在强化学习、自然语言处理、金融领域、天气预测等方面都有着极其广泛的应用.其数学定义为:假设我们的序列状态是⋯⋯X t -2,X t -1,X t ,X t +1,⋯,那么X t +1时刻的状态的条件概率仅依赖前一状态X t ,即P X t +1⋯,X t -2,X t -1,X t =P X t +1X t .现实生活中也存在着许多马尔科夫链,例如著名的赌徒模型.假如一名赌徒进入赌场参与一个赌博游戏,每一局赌徒赌赢的概率为50%,且每局赌赢可以赢得1元,每一局赌徒赌输的概率为50%,且赌输就要输掉1元.赌徒会一直玩下去,直到遇到如下两种情况才会结束赌博游戏:记赌徒的本金为A A ∈N *,A <B 一种是赌金达到预期的B 元,赌徒停止赌博;另一种是赌徒输光本金后,赌徒可以向赌场借钱,最多借A 元,再次输光后赌场不再借钱给赌徒.赌博过程如图的数轴所示.当赌徒手中有n 元-A ≤n ≤B ,n ∈Z 时,最终欠债A 元(可以记为该赌徒手中有-A 元)概率为P (n ),请回答下列问题:(1)请直接写出P (-A )与P (B )的数值.(2)证明{P (n )}是一个等差数列,并写出公差d .(3)当A =100时,分别计算B =300,B =1500时,P (A )的数值,论述当B 持续增大时,P (A )的统计含义.【解析】(1)当n =-A 时,赌徒已经欠债-A 元,因此P (-A )=1.当n =B 时,赌徒到了终止赌博的条件,不再赌了,因此输光的概率P (B )=0;(2)记M :赌徒有n 元最后输光的事件,N :赌徒有n 元上一场赢的事件,P M =P N P M N +P N P M N ,即P (n )=12P (n -1)+12P (n +1),所以P (n )-P (n -1)=P (n +1)-P (n ),所以{P (n )}是一个等差数列,设P (n )-P (n -1)=d ,则P (n -1)-P (n -2)=d ,⋯,P (-A +1)-P (-A )=d ,累加得P (n )-P (-A )=(n +A )d ,故P (B )-P (-A )=(A +B )d ,得d =-1A +B ;(3)A =100,由(2)P (n )-P (-A )=(n +A )d =-n +A A +B ,代入n =A 可得P (A )-P (-A )=-2A A +B ,即P (A )=1-2A A +B ,当B =300时,P A =12,当B =1500时,P (A )=78,当B 增大时,P (A )也会增大,即输光欠债的可能性越大,因此可知久赌无赢家,即便是一个这样看似公平的游戏,只要赌徒一直玩下去就会100%的概率输光并负债.3.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,为状态空间中经过从一个状态到另一个状态的转换的随机过程.该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关.甲、乙两口袋中各装有1个黑球和2个白球,现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复进行n n∈N*次这样的操作,记口袋甲中黑球的个数为X n,恰有1个黑球的概率为p n.(1)求p1,p2的值;(2)求p n的值(用n表示);(3)求证:X n的数学期望E X n为定值.【解析】(1)设恰有2个黑球的概率为q n,则恰有0个黑球的概率为1-p n-q n.由题意知p1=C12C12+C11C11C13C13=59,q1=C12C11C13C13=29,所以p2=C12C12+C11C11C13C13p1+C12C13C13C13q1+C13C12C13C131-p1-q1=4981.(2)因为p n=C12C12+C11C11C13C13p n-1+C12C13C13C13q n-1+C13C12C13C131-p n-1-q n-1=-19p n-1+23,所以p n-35=-19p n-1-35.又因为p1-35=-245≠0,所以p n-35是以-245为首项,-19为公比的等比数列.所以p n-35=-245×-19n-1,p n=-245×-19n-1+35.(3)因为q n=C12C11C13C13p n-1+C11C13C13C13q n-1=29p n-1+13q n-1①,1-q n-p n=C11C12C13C13p n-1+C13C11C13C131-q n-1-p n-1=29p n-1+131-q n-1-p n-1②.所以①-②,得2q n+p n-1=132q n-1+p n-1-1.又因为2q1+p1-1=0,所以2q n+p n-1=0.所以q n=1-p n 2.所以X n的概率分布列为:X n012p1-p n-1-p n2p n1-p n2所以E X n=0×1-p n-1-p n 2+1×p n+2×1-p n2=1.所以X n的数学期望E X n为定值1.4.(2024·高三·江西·开学考试)马尔科夫链是概率统计中的一个重要模型,其过程具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,即第n+1次状态的概率分布只与第n次的状态有关,与第n -1,n-2,n-3,⋯次的状态无关,即P(X n+1|X1,X2,⋯,X n-1,X n)=P(X n+1|X n).已知甲盒中装有1个白球和2个黑球,乙盒中装有2个白球,现从甲、乙两个盒中各任取1个球交换放入对方的盒中,重复n 次(n∈N∗)这样的操作,记此时甲盒中白球的个数为X n,甲盒中恰有2个白球的概率为a n,恰有1个白球的概率为bn.(1)求a1,b1和a2,b2.(2)证明:a n+2b n-65为等比数列.(3)求X n的数学期望(用n表示).【解析】(1)若甲盒取黑球、乙盒取白球,互换,则甲盒中的球变为2白1黑,乙盒中的球变为1白1黑,概率a1 =23;若甲盒取白球、乙盒取白球,互换,则甲盒中的球仍为1白2黑,乙盒中的球仍为2白,概率b1=1 3,研究第2次交换球时的概率,根据第1次交换球的结果讨论如下:①当甲盒中的球为2白1黑,乙盒中的球为1白1黑时,对应概率为a1=2 3,此时,若甲盒取黑球、乙盒取黑球,互换,则甲盒中的球仍为2白1黑,乙盒中的球仍为1白1黑,概率为a1×13×12=16a1;若甲盒取黑球、乙盒取白球,互换,则甲盒中的球变为3白,乙盒中的球变为2黑,概率为a1×13×12=16a1;若甲盒取白球、乙盒取黑球,互换,则甲盒中的球变为1白2黑,乙盒中的球变为2白,概率为a1×23×12=13a1;若甲盒取白球、乙盒取白球,互换,则甲盒中的球仍为2白1黑,乙盒中的球仍为1白1黑,概率为a1×23×12=13a1,②当甲盒中的球为1白2黑,乙盒中的球为2白时,对应概率为b1=1 3,此时,若甲盒取黑球、乙盒取白球,互换,则甲盒中的球变为2白1黑,乙盒中的球变为1白1黑,概率为b1×23=23b1若甲盒取白球,乙盒取白球,互换,则甲盒中的球仍为1白2黑,乙盒中的球仍为2白,概率为b1×13=13b1,综上,a2=16a1+13a1+23b1=59,b2=13a1+13b1=13.(2)依题意,经过n次这样的操作,甲盒中恰有2个白球的概率为a n,恰有1个白球的概率为b n,则甲盒中恰有3个白球的概率为1-a n-b n,研究第n+1次交换球时的概率,根据第n次交换球的结果讨论如下:①当甲盒中的球为2白1黑,乙盒中的球为1白1黑时,对应概率为a n,此时,若甲盒取黑球、乙盒取黑球,互换,则甲盒中的球仍为2白1黑,乙盒中的球仍为1白1黑,概率为a n×13×12=16a n;若甲盒取黑球、乙盒取白球,互换,则甲盒中的球变为3白,乙盒中的球变为2黑,概率为a n×13×12=16a n;若甲盒取白球、乙盒取黑球,互换,则甲盒中的球变为1白2黑,乙盒中的球变为2白,概率为a n×23×12=13a n;若甲盒取白球、乙盒取白球,互换,则甲盒中的球仍为2白1黑,乙盒中的球仍为1白1黑,概率为a n×23×12=13a n,②当甲盒中的球为1白2黑,乙盒中的球为2白时,对应概率为b n,此时,若甲盒取黑球、乙盒取白球,互换,则甲盒中的球变为2白1黑,乙盒中的球变为1白1黑,概率为b n×2 3=23b n;若甲盒取白球、乙盒取白球,互换,则甲盒中的球仍为1白2黑,乙盒中的球仍为2白,概率为b n ×13=13b n ,③当甲盒中的球为3白,乙盒中的球为2黑时,对应概率为1-a n -b n ,此时,甲盒只能取白球、乙盒只能取黑球,互换,则甲盒中的球变为2白1黑,乙盒中的球变为1白1黑,概率为1-a n -b n ,综上,a n +1=13a n +16a n +23b n +1-a n -b n =1-12a n -13b n ,b n +1=13a n +13b n 则a n +1+2b n +1-65=1-12a n -13b n +23a n +23b n -65=16a n +13b n -15,整理得a n +1+2b n +1-65=16a n +2b n -65 ,又a 1+2b 1-65=215>0,所以数列a n +2b n -65 是公比为16的等比数列.(3)由(2)知a n +2b n -65=215×16 n -1,则a n +2b n =65+215×16n -1,随机变量X n 的分布列为X n123P b n a n 1-a n -b n所以E (X n )=b n +2a n +3-3b n -3a n =3-(a n +2b n )=95-215×16 n -1.5.在概率论中,马尔可夫不等式给出了随机变量的函数不小于某正数的概率的上界,它以俄国数学家安德雷·马尔可夫命名,由马尔可夫不等式知,若ξ是只取非负值的随机变量,则对∀a >0,都有P ξ≥a ≤E ξ a.某市去年的人均年收入为10万元,记“从该市任意选取3名市民,则恰有1名市民去年的年收入超过100万元”为事件A ,其概率为P A .则P A 的最大值为()A.271000 B.2431000 C.427 D.49【答案】B【解析】记该市去年人均收入为X 万元,从该市任意选取3名市民,年收入超过100万元的人数为Y .设从该市任选1名市民,年收入超过100万元的概率为p ,则根据马尔可夫不等式可得p =P X ≥100 ≤E X 100=10100=110,∴0≤p ≤110,因为Y ~B (3,p ),所以P A =P Y =1 =C 13p 1-p 2=3p 1-p 2=3p 3-6p 2+3p ,令f (p )=3p 3-6p 2+3p ,则f (p )=9p 2-12p +3=3(3p -1)(p -1),∵0≤p ≤110,∴3p -1<0,p -1<0,即f (p )>0,∴f (p )在0,110上单调递增.∴f (p )max =f 110 =3×110×1-110 2=2431000,即P (A )max =2431000.故选:B6.(2024·广东肇庆·模拟预测)马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关.甲口袋中各装有1个黑球和2个白球,乙口袋中装有2个黑球和1个白球,现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复进行n (n ∈N *)次这样的操作,记口袋甲中黑球的个数为X n ,恰有1个黑球的概率为p n ,则p 1的值是;X n 的数学期望E X n 是.【答案】4932-1213 n【解析】考虑到乙袋中拿出的球可能是黑的也可能是白的,由全概率公式可得p 1=13×23+23×13=49;记X n -1取0,1,2,3的概率分别为p 0,p 1,p 2,p 3,推导X n 的分布列:P X n =1 =p 0+49p 1+49p 2,P X n =2 =49p 1+49p 2+p 3,P X n =3 =19p 2,则E X n =0⋅P X n =0 +1⋅P X n =1 +2⋅P X n =2 +3⋅P X n =3 =p 0+43p 1+53p 2+2p 3=1+13p 1+2p 2+3p 3 =1+13E X n -1 ,则E X n -32=13E X n -1 -32,故E X n -32=E X 1 -32 ×13n -1给合E X 1 =43,可知E X n =32-1213 n .故答案为:49;32-1213n .7.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,为状态空间中经过从一个状态到另一个状态的转换的随机过程.该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关.甲乙两个口袋中各装有1个黑球和2个白球,现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复进行n n ∈N ∗ 次这样的操作,记甲口袋中黑球个数为X n ,恰有1个黑球的概率为p n ,则p 1=;p n =.【答案】5925⋅-19 n +35【解析】由题意,p 1=C 12C 12+C 11C 11C 13C 13=59;当n ≥2n ∈N ∗ 时,p n =C 12C 12+C 11C 11C 13C 13p n -1+C 12C 13C 13C 13P X n -1=0 +C 13C 12C 13C 13P X n -1=2 =59p n -1+23P X n -1=0 +P X n -1=2 =59p n -1+231-p n -1 =-19p n -1+23,整理得p n -35=-19p n -1-35 ,p 1-35=59-35=-245,故可知p n -35 是以-245为首项,以-19为公比的等比数列,所以p n =25⋅-19 n +35.故答案为:59;25⋅-19 n +358.马尔科夫链是机器学习和人工智能的基石,其数学定义为:假设序列状态是...,X t -2,X t -1,X t ,X t +1,⋯,那么X t +1时刻的状态的条件概率仅依赖前一状态X t ,即P X t +1∣⋯,X t -2,X t -1,X t =P X t +1∣X t .著名的赌徒模型就应用了马尔科夫链:假如一名赌徒进入赌场参与一个赌博游戏,每一局赌徒赌赢的概率都为50%,每局赌赢可以赢得1金币,赌输就要输掉1金币.赌徒自以为理智地决定,遇到如下两种情况就会结束赌博游戏:一是输光了手中金币;二是手中金币达到预期的1000金币,出现这两种情况赌徒都会停止赌博.记赌徒的本金为70金币,求赌徒输光所有金币的概率.【答案】93100/0.93【解析】设当赌徒手中有n 元0≤n ≤1000,n ∈N 时,最终输光的概率为P (n ),当n =0时,赌徒已经输光了,所以P (0)=1,当n =1000时,赌徒到了终止赌博的条件,不再赌了,因此输光的概率为P (1000)=0,记M :赌徒有n 元最后输光的事件,N :赌徒有n 元下一次赢的事件,所以P M =P N P (M |N )+P N P (M |N ),即P (n )=12P (n -1)+12P (n +1),所以P (n +1)-P (n )=P (n )-P (n -1),所以P (n ) 为等差数列,设P (n )-P (n -1)=d ,由于P (1000)=P (0)+1000d =1+1000d =0,所以d =-11000,所以P (n )=P (0)+nd =1-n 1000,故P (70)=1-701000=93100故答案为:931009.(2024·广东茂名·二模)马尔可夫链是因俄国数学家安德烈·马尔可夫得名,其过程具备“无记忆”的性质,即第n +1次状态的概率分布只跟第n 次的状态有关,与第n -1,n -2,n -3,⋅⋅⋅次状态是“没有任何关系的”.现有甲、乙两个盒子,盒子中都有大小、形状、质地相同的2个红球和1个黑球.从两个盒子中各任取一个球交换,重复进行n n ∈N * 次操作后,记甲盒子中黑球个数为X n ,甲盒中恰有1个黑球的概率为a n ,恰有2个黑球的概率为b n .(1)求X 1的分布列;(2)求数列a n 的通项公式;(3)求X n 的期望.【解析】(1)(1)由题可知,X 1的可能取值为0,1,2.由相互独立事件概率乘法公式可知:P X 1=0 =13×23=29;P X 1=1 =13×13+23×23=59;P X 1=2 =23×13=29,故X 1的分布列如下表:X 1012P 295929(2)由全概率公式可知:P X n +1=1=P X n =1 ⋅P X n +1=1X n =1 +P X n =2 ⋅P X n +1=1X n =2 +P X n =0 ⋅P X n +1=1X n =0=13×13+23×23 P X n =1 +23×1 P X n =2 +1×23 P X n =0 =59P X n =1 +23P X n =2 +23P X n =0 ,即:a n +1=59a n +23b n +231-a n -b n ,所以a n +1=-19a n +23,所以a n +1-35=-19a n -35 ,又a 1=P X 1=1 =59,所以,数列a n -35 为以a 1-35=-245为首项,以-19为公比的等比数列,所以a n -35=-245⋅-19 n -1=25⋅-19 n ,即:a n =35+25⋅-19n .(3)由全概率公式可得:P X n +1=2 =P X n =1 ⋅P X n +1=2X n =1 +P X n =2 ⋅P X n +1=2X n =2 +P X n =0 ⋅P X n +1=2X n =0=23×13 ⋅P X n =1 +13×1 ⋅P X n =2 +0⋅P X n =0 ,即:b n +1=29a n +13b n ,又a n =35+25⋅-19 n ,所以b n +1=13b n +2935+25-19 n ,所以b n +1-15+15-19 n +1=13b n -15+15-19 n,又b 1=P X 1=2 =29,所以b 1-15+15×-19 =29-15-145=0,所以b n -15+15-19 n =0,所以b n =15-15-19n ,所以E X n =a n +2b n +01-a n -b n =a n +2b n =1.10.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,为状态空间中经过从一个状态到另一个状态的转换的随机过程.该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关.甲、乙两口袋中各装有1个黑球和2个白球,现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复进行n n ∈N * 次这样的操作,记口袋甲中黑球的个数为X n ,恰有1个黑球的概率为p n ,恰有2个黑球的概率为q n ,恰有0个黑球的概率为r n .(1)求p 1,p 2的值;(2)根据马尔科夫链的知识知道p n =a ⋅p n -1+b ⋅q n -1+c ⋅r n -1,其中a ,b ,c ∈0,1 为常数,同时p n +q n +r n =1,请求出p n ;(3)求证:X n 的数学期望E X n 为定值.【解析】(1)由题意恰有0个黑球的概率为1-p n -q n .由题意知p 1=C 12C 12+C 11C 11C 13C 13=59,q 1=C 12C 11C 13C 13=29,所以p2=C12C12+C11C11C13C13p1+C12C13C13C13q1+C13C12C13C131-p1-q1=4981.(2)因为p n=C12C12+C11C11C13C13p n-1+C12C13C13C13q n-1+C13C12C13C131-p n-1-q n-1=-19p n-1+23,所以p n-35=-19p n-1-35.又因为p1-35=-245≠0,所以p n-35是以-245为首项,-19为公比的等比数列.所以p n-35=-245×-19n-1,p n=-245×-19n-1+35.(3)因为q n=C12C11C13C13p n-1+C11C13C13C13q n-1=29p n-1+13q n-1①,1-q n-p n=C11C12C13C13p n-1+C13C11C13C131-q n-1-p n-1=29p n-1+131-q n-1-p n-1②所以①-②,得2q n+p n-1=132q n-1+p n-1-1 .又因为2q1+p1-1=0,所以2q n+p n-1=0.所以q n=1-p n 2.所以X n的概率分布列为:X n012p1-p n-1-p n2p n1-p n2所以E X n=0×1-p n-1-p n 2+1×p n+2×1-p n2=1.所以X n的数学期望E X n为定值1.11.(2024·云南·模拟预测)材料一:英国数学家贝叶斯1701∼1763在概率论研究方面成就显著,创立了贝叶斯统计理论,对于统计决策函数、统计推断等做出了重要贡献.贝叶斯公式就是他的重大发现,它用来描述两个条件概率之间的关系.该公式为:设A1,A2,⋯,A n是一组两两互斥的事件,A1∪A2∪⋯∪A n=Ω,且P A i>0,i=1,2,⋯,n,则对任意的事件B⊆Ω,P B >0,有P A i∣B=P A iP B∣A iP(B)=P A iP B∣A i∑n k=1P A kP B∣A k,i=1,2,⋯,n.材料二:马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,在强化学习、自然语言处理、金融领域、天气预测等方面都有着极其广泛的应用.其数学定义为:假设我们的序列状态是⋯,X t-2,X t-1,X t,X t+1,⋯,那么X t+1时刻的状态的条件概率仅依赖前一状态X t,即P X t+1∣⋯,X t-2,X t-1,X t=P X t+1∣X t.请根据以上材料,回答下列问题.(1)已知德国电车市场中,有10%的车电池性能很好.W公司出口的电动汽车,在德国汽车市场中占比3%,其中有25%的汽车电池性能很好.现有一名顾客在德国购买一辆电动汽车,已知他购买的汽车不是W公司的,求该汽车电池性能很好的概率;(结果精确到0.001)(2)为迅速抢占市场,W公司计划进行电动汽车推广活动.活动规则如下:有11个排成一行的格子,编号从左至右为0,1,⋯,10,有一个小球在格子中运动,每次小球有34的概率向左移动一格;有14的概率向右移动一格,规定小球移动到编号为0或者10的格子时,小球不再移动,一轮游戏结束.若小球最终停在10号格子,则赢得6百欧元的购车代金券;若小球最终停留在0号格子,则客户获得一个纪念品.记P i 为以下事件发生的概率:小球开始位于第i 个格子,且最终停留在第10个格子.一名顾客在一次游戏中,小球开始位于第5个格子,求他获得代金券的概率.【解析】(1)记事件A 为一辆德国市场的电车性能很好,事件B 为一辆德国市场的车来自W 公司.由全概率公式知:P A =P A |B P B +P A |B P B ,故:P A |B =P A -P A |B ⋅P B P B=10%-0.25×3%97%≈0.095.(2)记事件A i i =0,1,⋯,10 表示小球开始位于第i 个格子,且最终停留在第10个格子,事件C 表示小球向右走一格.小球开始于第i 格,此时的概率为P i ,则下一步小球向左或向右移动,当小球向右移动,即可理解为小球始于P i +1,当小球向左移动,即可理解为小球始于P i -1,即P i =14P i +1+34P i -1.由题知P 0=0,P 10=1,又4P i =3P i -1+P i +1,故P i +1-P i =3P i -P i -1 ,所以P i -P i -1 是以P 1-P 0为首项,3为公比的等比数列,即:P i -P i -1=3i -1P 1-P 0 ,即:P 10-P 9=39P 1-P 0 ,P 9-P 8=38P 1-P 0 ,⋯P 1-P 0=30P 1-P 0 ,故P 10=39+38+⋯+30P 1-P 0 =310-12P 1,P 5=34+33+⋯+30 P 1-P 0 =35-12P 1,则P 5=P 5P 10=35-1310-1=135+1=1244,故这名顾客获得代金券的概率为1244.。
随机过程的马尔可夫链知识点汇总什么是马尔可夫链?马尔可夫链是一种数学模型,描述了一系列随机事件,其中每个事件的概率只依赖于当前事件发生的状态。
换句话说,未来的状态只与当前状态有关,而与过去的状态无关。
马尔可夫链的性质1. 马尔可夫性质(Markov Property):在一个马尔可夫链中,给定当前状态,未来的状态与过去的状态无关。
2. 状态空间(State Space):马尔可夫链的所有可能状态的集合。
3. 转移概率(Transition Probability):描述了从一个状态转移到另一个状态的概率。
4. 长程行为(Long-term Behavior):马尔可夫链在长时间的演化中,会逐渐趋向于稳定的概率分布。
马尔可夫链的应用1. 模拟和预测:马尔可夫链可以用于模拟和预测各种随机事件的概率分布,如天气预测、股票市场等。
2. 自然语言处理:马尔可夫链可以用于自然语言处理中的文本生成和自动语音识别等任务。
3. 统计学:马尔可夫链在统计学中有广泛的应用,如随机抽样和蒙特卡洛模拟等。
马尔可夫链的改进1. 高阶马尔可夫链(Higher-order Markov Chains):考虑当前和前几个状态的组合,以改进模型的准确性。
2. 隐马尔可夫模型(Hidden Markov Model, HMM):在马尔可夫链的基础上引入隐藏状态,用于处理有观测数据和隐藏状态的问题。
3. 非时齐马尔可夫链(Non-homogeneous Markov Chains):考虑转移概率随时间变化的情况,用于更复杂的应用。
总结马尔可夫链是一种重要的随机过程模型,具有简单的数学结构和丰富的应用。
通过理解马尔可夫链的基本概念和性质,可以更好地应用于各种问题的建模和解决。