七年级数学下册第五章相交线与平行线5.1相交线5.1.1相交线课时提升作业(含解析)(新版)新人教版
- 格式:doc
- 大小:771.50 KB
- 文档页数:5
第五章相交线与平行线5.1 相交线5分钟训练(预习类训练,可用于课前)1.如图5-1-1所示,∠1与∠2互为对顶角的是( )图5-1-1解析:因为对顶角的角的两边互为反向延长线,所以选项A、B、C都不正确,选项D正确.答案:D2.已知∠A=40°,则∠A的补角等于( )A.50°B.90°C.140°D.180°解析:∠A的补角是180°-∠A=140°.答案:C3.如图5-1-2,一条直线c分别与直线a、b相交(也说直线a、b被直线c____________).构成的八个角中,∠1与∠____________是同位角,∠3与∠____________是内错角,∠3与∠____________是同旁内角.图5-1-2 图5-1-3解析:同位角在截线的同旁且两条被截直线的同侧,内错角在截线的两侧且在两条被截直线的内部,同旁内角在截线的同旁且在两条被截直线内部;所以∠1与∠5是同位角,∠3与∠5是内错角,∠3与∠6是同旁内角.答案:所截 5 5 64.如图5-1-3所示,直线AB、CD、EF相交于O点,∠AOF=3∠FOB,∠AOC=90°,则∠EOC的度数为____________.解析:∠AOF=3∠FOB,又因为∠AOF+∠FOB=180°,所以∠FOB=45°.因为∠AOE=∠FOB(对顶角相等),∠AOC=90°,所以∠EOC=∠AOC-∠AOE=45°.答案:45°10分钟训练(强化类训练,可用于课中)1.下列说法中正确的是( )A.对顶角必相等B.相等的角是对顶角C.不是对顶角的角不相等D.有公共顶点的角叫做对顶角解析:因为当两个角的两边互为反向延长线时才构成对顶角,而相等的角、有公共顶点的角的两边不一定成互为反向延长线,所以选项B、D不正确;由对顶角的性质可知“对顶角相等”,但不是对顶角的两个角的大小可以相等,如等腰直角三角板中有两个角相等,所以选项A正确,选项C不正确.答案:A2.下列说法不正确的是( )A.钝角没有余角,但一定有补角B.两个角相等且互补,则它们都是直角C.锐角的补角比该锐角的余角大D.一个锐角的余角一定比这个锐角大 解析:设一个角为α,则其余角为90°-α,补角为180°-α.当α为钝角时, 90°-α<0°,所以其余角不存在,但补角一定存在,所以选项A 正确;当α=180°-α时,α=90°,所以选项B 正确;当α为锐角时,其补角为180°-α>90°>90°-α,所以选项C 正确;因为30°角与60°角互余,所以60°角的余角小于60°.所以选项D 错误. 答案:D3.如图5-1-4所示,∠AOC ,∠BO C ,∠DOE 都是直角,则相等的角有( )图5-1-4A.2对B.3对C.4对D.5对 解析:∵∠AOD 与∠COE 都是∠DOC 的余角,∴∠AOD=∠COE. ∵∠DOC 与∠BOE 都是∠COE 的余角, ∴∠DOC=∠BOE.∵∠AOC ,∠BOC ,∠DOE 都是直角, ∴∠AOC=∠BOC=∠DOE. 答案:D4.如图5-1-5,运动会上,甲、乙两名同学测得小明的跳远成绩分别为DA=4.5米,DB=4.15米,则小明的跳远成绩应该为_____________米.图5-1-5 图5-1-6解析:根据跳远规则及直线外一点与直线上各点连结的所有线段中垂线段最短,得小明的跳远成绩应是BD 的长. 答案:4.155.如图5-1-6,∠1和∠B 是直线_____________和直线_____________被直线_____________所截得到的_____________角;∠2和∠4是直线_____________和直线_____________被直线_____________所截得到的_____________角;∠D 和∠4是直线_____________和直线_____________被直线_____________所截得到的_____________角.解析:由同位角、内错角、同旁内角的概念,进行辨析. 答案:AD BC AB 同位 AB CD AC 同位 AC AD CD 同旁内 6.一个角的余角比这个角的补角的31还小10°,求这个角的余角及补角. 解:设该角为x ,由题意得90°-x=31(180°-x)-10°,解之,得x=60°. ∴90°-x=30°,180°-x=120°,即这个角的余角与补角分别是30°、120°. 30分钟训练(巩固类训练,可用于课后) 1.下列结论不正确的是( )A.互为邻补角的两个角的平分线所成的角为90°B.互不相等的两个角不是对顶角C.两直线相交,若有一个交角为90°,则这四个角中任取两个角都互为补角D.不是对顶角的两个角互不相等 解析:A 选项,如图所示,∵∠1=21∠BOD,∠2=21∠AOD,∴∠EOC=∠1+∠2=21(∠BOD+∠AOD)=90°. B 选项,由于对顶角必然相等,因此不相等的角自然不可能是对顶角,故正确. C 选项,两条直线相交形成的四个角中,如有一个为90°,则其余三个角均为90°,因此,任意两个角互为补角,故正确.D 选项,对顶角相等,但相等的角不一定是对顶角,比如等腰直角三角板的两个45°的角,故错误. 答案:D2.如图5-1-7,AB 与CD 为直线,图中共有对顶角( )图5-1-7A.1对B.2对C.3对D.4对 解析:图中只有两条直线AB 与CD 相交,所以对顶角共有2对. 答案:B3.(2010广西南宁模拟,2)如图5-1-8,已知AB 、CD 相交于O 点,OE ⊥AB ,∠EOC=28°,则∠AOD=______________.图5-1-8 图5-1-9解析:利用垂直求出∠AOD 的对顶角∠COB 即可. 答案:62°4.如图5-1-9所示,直线AB 、CD 相交于O 点,∠AOD=130°,则∠BOC=______________, ∠AOC=______________,∠BOD=______________. 解析:利用对顶角相等和邻补角的关系求解. 答案:130° 50° 50°5.如图5-1-10,直线AB 、CD 相交于O,作∠DOE=∠BOD,OF 平分∠AOE,∠AOC=28°,求∠EOF 的度数.图5-1-10解:由题知∠BOD=∠AOC=28°(对顶角相等), 因为∠DOE=∠BOD,所以∠BOE=2∠BOD=56°. 因为∠AOE+∠BOE=180°,所以∠AOE=124°. 因为OF 平分∠AOE, 所以∠EOF=21∠AOE=62°. 6.A 、B 两厂在公路同侧,拟在公路边建一货场C,若由B 厂独家兴建,并考虑B 厂的利益,则要求货物离B 厂最近,请在图5-1-11中作出此时货场C 的位置,并说出这样做的道理.图5-1-11解:如图所示,过B 作公路所在直线的垂线,垂足O 就是所求货场C 的位置.理由:根据“垂线段最短”,所以BO 是点B 到公路的最短线段. 7.如图5-1-12,直线AB 、CD 、EF 相交于点O.图5-1-12(1)写出∠AOD 、∠EOC 的对顶角(2)已知∠AOC=50°,求∠BOD 、∠COB 的度数.解:(1)∠AOD 的对顶角是∠COB;∠EOC 的对顶角是∠DOF. (2)∠BOD=∠AOC=50°(对顶角相等), ∠COB=180-∠AOC=180°-50°=130°(邻补角的定义).8.图5-1-13中的∠1和∠2,∠3和∠4分别是由哪两条直线被哪一条直线所截而成的?它们各是什么角?图5-1-13解:由题图(1)知∠1和∠2的公共边所在的直线是BD,则BD 是截线,所以∠1和∠2是由直线AB,CD 被直线BD 所截而形成的内错角;∠3和∠4的公共边所在的直线是BD,则BD 是截线,所以∠3和∠4是由直线AD,BC 被直线BD 所截而形成的内错角.由题图(2)知,∠1和∠2的公共边所在的直线是BC,则B C 是截线,所以∠1和∠2是由直线AB,CD 被直线BC 所截而形成的同旁内角;∠3和∠4的公共边所在的直线是AB,则AB 是截线,所以∠3和∠4是由直线AD,BC 被直线AB 所截而形成的同位角.9.如图5-1-14,一棵小树生长时与地面成80°角,它的主根深入泥土,如果主根和小树在同一条直线上,那么∠2等于多少度?图5-1-14解:∵∠1+80°=90°,∴∠1=10°.∵∠1=∠2(对顶角相等),∴∠2=10°.10.(1)如图5-1-15(1)所示,两条直线AB与CD相交成几对对顶角?(2)如图5-1-15(2)所示,三条直线AB、CD、EF相交呢?(3)试猜想n条直线相交会成多少对对顶角?图5-1-15解:(1)两条直线AB与CD相交成2对对顶角.(2)三条直线AB、CD、EF相交有6对对顶角.(3)因为3条不同直线相交所成的对顶角有(3×2)÷2×2=6(对);4条不同直线相交所成的对顶角有(4×3)÷2×2=12(对);则可推测:n条直线相交所成的对顶角有n×(n-1)÷2×2=n(n-1)(对).。
人教版七年级数学下册《平行线的性质》同步提升训练(附答案)1.如图,AB∥DE,BC∥EF,∠B=50°,则∠E的度数为( )A.50°B.120°C.130°D.150°2.如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠AED'=50°,则∠EFC等于( )A.65°B.110°C.115°D.130°3.如图,AB∥CD,与EF交于B,∠ABF=3∠ABE,则∠E+∠D的度数( )A.等于30°B.等于45°C.等于60°D.不能确定4.将一块直角三角尺ABC按如图所示的方式放置,其中点A、C分别落在直线a、b上,若a∥b,∠1=65°,则∠2的度数为( )A.75°B.65°C.35°D.25°5.下列说法中:①若两条直线相交所形成的四个角中有三个角相等,则这两条直线互相垂直;②若AC=BC,则C是线段AB的中点;③在同一平面内,不相交的两条线段必平行;④两点确定一条直线.其中说法正确的个数是( )A.1B.2C.3D.46.如图,AB∥CD,BE交AD于点E,若∠B=18°,∠D=32°,则∠BED的度数为( )A.18°B.32°C.50°D.60°7.如图,AB∥EF,∠C=90°,则α、β、γ的关系为( )A.β=α+γB.α+β﹣γ=90°C.α+β+γ=180°D.β+γ﹣α=90°8.如图,已知AE交CD于点O,AB∥CD,∠A=50°,∠E=15°,则∠C的度数为( )A.50°B.65°C.35°D.15°9.如图,已知AD⊥BC,FG⊥BC,∠BAC=90°,DE∥AC.则结论:①FG∥AD;②DE 平分∠ADB;③∠B=∠ADE;④∠CFG+∠BDE=90°.正确的是( )A.①②③B.①②④C.①③④D.②③④10.如图,∠ABC=∠ADC,AB∥CD,E为射线BC上一点,AE平分∠BAD,AE、CD交于点F,点E在线段BC延长线上时,连接DE,若∠DCB+2∠CDE=180°,∠B=24°,则∠DEF的度数为 .11.已知如图,AB∥CD,∠A=130°,∠D=25°,那么∠AED= °.12.如图,AB∥CD,AE⊥CE,∠EAF=∠EAB,∠ECF=∠ECD.(1)当a=2时,∠AFC= ;(2)当a=3时,∠AFC= .13.如图,已知a∥b,∠2=93°25′,∠3=140°,则∠1的度数为 .14.如图,AB∥CD∥EF,且CF平分∠AFE,若∠C=20°,则∠A的度数是 .15.两个角的两边两两互相平行,且一个角的等于另一个角的,则这两个角中较小角的度数为 °.16.如图,若AB∥CD,则α、β、γ之间的关系为 .17.如图,OP∥QR∥ST,若∠2=100°,∠3=120°,则∠1= .18.如图,已知AE∥BD,∠1=130°,∠2=30°,则∠C= .19.如图,已知AB∥CD,∠1:∠2:∠3=1:2:3,则∠EBA的度数为 .20.图1是一盏可折叠台灯.图2为其平面示意图,底座AO⊥OE于点O,支架AB,BC 为固定支撑杆,∠A是∠B的两倍,灯体CD可绕点C旋转调节.现把灯体CD从水平位置旋转到CD′位置(如图2中虚线所示),此时,灯体CD′所在的直线恰好垂直支架AB,且∠BCD﹣∠DCD′=126°,则∠DCD′= .21.已知,AB∥CD,E为直线AB上一点,F为直线CD上一点,EF交AD于点G,且∠AEF =∠C.(1)如图1,求证:∠C+∠ADC=∠AGF;(2)如图2,∠C、∠ADC和∠AGF的数量关系是 ;(3)图3,在(2)条件下,连接BF,DE相交于点H,∠AED和∠BFC的平分线交于P,若FC恰好平分∠BFG,∠C=60,∠P=2∠HEG,求∠EHF度数.22.如图,已知AB∥CD,∠1=∠2,试说明:∠E=∠F.23.如图,AC∥FE,∠1+∠3=180°.(1)判定∠FAB与∠4的大小关系,并说明理由;(2)若AC平分∠FAB,EF⊥BE于点E,∠4=78°,求∠BCD的度数.24.如图,已知∠1+∠2=180°,且∠3=∠B.(1)求证:∠AFE=∠ACB;(2)若CE平分∠ACB,且∠2=110°,∠3=50°,求∠ACB的度数.25.如图,在△ABC中,点D、F在BC边上,点E在AB边上,点G在AC边上,EF与GD 的延长线交于点H,∠CDG=∠B,∠1+∠FEA=180°.求证:(1)EH∥AD;(2)∠BAD=∠H.26.阅读下面材料:小亮同学遇到这样一个问题:已知:如图甲,AB∥CD,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D.(1)小亮写出了该问题的证明,请你帮他把证明过程补充完整.证明:过点E作EF∥AB,则有∠BEF= .∵AB∥CD,∴ ∥ ,∴∠FED= .∴∠BED=∠BEF+∠FED=∠B+∠D.(2)请你参考小亮思考问题的方法,解决问题:如图乙,已知:直线a∥b,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E.①如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数;②如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BED的度数(用含有α,β的式子表示).27.如图,已知AB∥CD,E是直线AB上的一点,CE平分∠ACD,射线CF⊥CE,∠1=32°,(1)求∠ACE的度数;(2)若∠2=58°,求证:CF∥AG.参考答案1.解:∵AB∥DE,∴∠1=∠B=50°,∵BC∥EF,∴∠E=180°﹣∠1=180°﹣50°=130°.故选:C.2.解:∵∠AED′=50°,∴∠DED′=180°﹣∠AED′=180°﹣50°=130°,∵长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,∴∠DEF=∠D′EF,∴∠DEF=∠DED′=×130°=65°.∵DE∥CF,∴∠EFC=180°﹣∠DEF=115°.故选:C.3.解:∵∠ABF=3∠ABE,∠ABF+∠ABE=180°,∴4∠ABE=180°,∴∠ABE=45°,∵AB∥CD,∴∠CFE=∠ABE=45°,∴∠E+∠D=∠CFE=45°.故选:B.4.解:如图,∵a∥b,∴∠3=∠2=65°,∵∠2+∠3=90°,∴∠2=90°﹣∠3=90°﹣65°=25°.故选:D.5.解:①两条直线相交成四个角,则这四个角中有2对对顶角.如果三个角相等,则这四个角相等,都是直角,所以这两条直线垂直.故正确;②若AC=BC且三点在同一条直线上,则C是线段AB的中点,故原说法不正确;③在同一平面内,不相交的两条线段所在的直线必平行,故原说法不正确;④两点确定一条直线,正确.说法正确的有2个,故选:C.6.解:如图,∵AB∥CD,∠D=32°,∴∠A=∠D=32°,∵∠B=18°,∴∠BED=∠A+∠B=18°+32°=50°.故选:C.7.解:延长DC交AB与G,延长CD交EF于H.直角△BGC中,∠1=90°﹣α;△EHD中,∠2=β﹣γ,∵AB∥EF,∴∠1=∠2,∴90°﹣α=β﹣γ,即α+β﹣γ=90°.故选:B.8.解:∵AB∥CD,∠A=50°,∴∠DOE=∠A=50°,∵∠E=15°,∴∠C=∠DOE﹣∠E=50°﹣15°=35°,故选:C.9.解:∵AD⊥BC,FG⊥BC,∴∠FGD=∠ADB=90°,∴FG∥AD,故①正确;∵DE∥AC,∠BAC=90°,∴DE⊥AB,不能证明DE为∠ADB的平分线,故②错误;∵AD⊥BC,∴∠B+∠BAD=90°,∵DE⊥AB,∴∠BAD+∠ADE=90°,∴∠B=∠ADE,故③正确;∵∠BAC=90°,DE⊥AB,∴∠CFG+∠C=90°,∠BDE+∠B=90°,∠C+∠B=90°,∴∠CFG+∠BDE=90°,故④正确,综上所述,正确的选项①③④,故选:C.10.解:设∠CDE=x,∵∠BCD+2∠CDE=180°,∴∠DCB=180°﹣2x,∵AB∥CD,∴∠ABC+∠BCD=180°,∵∠ABC=∠ADC,∴∠ADC+∠BCD=180°,∴AD∥BC,∠ABC=∠ADC=2x°,∵∠B=24°,∴x=12°,∴∠ADE=36°,∵AE平分∠BAD,AB∥CD,∠B=24°,∴∠DAE=78°,∴∠DEF=180°﹣∠DAE﹣∠ADE=180°﹣78°﹣36°=66°.故答案为:66°.11.解:如图:过E作EF∥AB,则AB∥EF∥CD,∵∠A=130°,∴∠1=180°﹣130°=50°,∵∠D=25°,∴∠2=∠D=25°,∴∠AED=50°+25°=75°,故答案为:75.12.解:(1)如图,连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=2x°,∠ECD=2y °,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠CAE+2x°+∠ACE+2y°=180°,∴∠CAE+∠ACE=180°﹣(2x°+2y°),∠FAC+∠FCA=180°﹣(x°+y°),∵∠AFC+∠FAC+∠FCA=180°,∴∠AFC=x°+y°,∵AE⊥CE,∴∠CAE+∠ACE=90°,∴180°﹣(2x°+2y°)=90°,∴x°+y°=45°,∴∠AFC=45°;故答案为:45°;(2)设∠EAF=x°,∠ECF=y°,∠EAB=3x°,∠ECD=3y°,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠CAE+3x°+∠ACE+3y°=180°,∴∠CAE+∠ACE=180°﹣(3x°+3y°),∠FAC+∠FCA=180°﹣(2x°+2y°),∴∠AFC=180°﹣(∠FAC+∠FCA)=180°﹣[180°﹣(2x°+2y°)]=2x°+2y°=2(x°+y°),∵AE⊥CE,∴∠CAE+∠ACE=90°,∴180°﹣(3x°+3y°)=90°,∴x°+y°=30°,∴∠AFC2(x°+y°)=60°.故答案为:60°.13.解:如图,∵∠3=140°,∠3+∠4=180°,∴∠4=40°,∵∠2=93°25′,∠2=∠5+∠4,∴∠5=53°25′,∵a∥b,∴∠1+∠5=180°,∴∠1=126°35′.故答案为:126°35′.14.解:∵CD∥EF,∠C=20°,∴∠CFE=∠C=20°.又∵CF平分∠AFE,∴∠AFE=2∠CFE=40°.∵AB∥EF,∴∠A=∠AFE=40°.故答案为:40°.15.解:∵一个角的等于另一个角的,∴这两个角不相等,设其中一个角的度数为x°,另一个角的度数为x=x°,∵两个角的两边两两互相平行,∴x+x=180,解得:x=72,即较小角的度数是72°,故选:72.16.解:如图,过点E作EF∥AB,∴∠α+∠AEF=180°(两直线平行,同旁内角互补),∵AB∥CD,∴EF∥CD,∴∠FED=∠EDC(两直线平行,内错角相等),∵∠β=∠AEF+∠FED,又∵∠γ=∠EDC,∴∠α+∠β﹣∠γ=180°.故答案为:∠α+∠β﹣∠γ=180°17.解:∵OP∥QR∥ST,∠2=100°,∠3=120°,∴∠2+∠PRQ=180°,∠3=∠SRQ=120°,∴∠PRQ=180°﹣100°=80°,∴∠1=∠SRQ﹣∠PRQ=40°,故答案是40°.18.解:∵AE∥BD,∠1=130°,∠2=30°,∴∠CBD=∠1=130°.∵∠BDC=∠2,∴∠BDC=30°.在△BCD中,∠CBD=130°,∠BDC=30°,∴∠C=180°﹣130°﹣30°=20°.故答案为:20°.19.解:∵∠1:∠2:∠3=1:2:3,∴设∠1=x°,∠2=2x°,∠3=3x°,∵AB∥CD,∴∠2+∠3=180°,∴2x+3x=180,∴x=36,即∠1=36°,∠2=72°,∠3=108°,∴∠EBA=180°﹣∠1﹣∠2=180°﹣36°﹣72°=72°,故答案为:72°.20.解:延长OA交CD于点F,延长D'C交AB于点G,∵CD∥OE,∴OA⊥CD,∵AO⊥OE,D'C⊥AB,∴∠AGC=∠AFC=90°,∴∠GCF+∠GAF=180°,∵∠DCD'+∠GCF=180°,∴∠DCD'=∠GAF,∴∠BAO=180°﹣∠DCD',∴∠B=(180°﹣∠DCD'),∵∠BCD﹣∠DCD'=126°,∴∠BCD=∠DCD'+126°,在四边形ABCF中,有∠GAF+∠B+∠BCD+∠AFC=360°,∴∠DCD'+(180°﹣∠DCD')+∠DCD'+126°+90°=360°,解得:∠DCD'=36°,故答案为:36°.21.(1)证明:∵AB∥CD,∴∠AEF=∠EFD,∵∠AEF=∠C,∴∠C=∠EFD,∵∠EFD+∠ADC=∠AGF,∴∠C+∠ADC=∠AGF;(2)解:∵AB∥CD,∴∠AEF=∠CFG,∵∠AEF=∠C,∴∠C=∠CFG,∵∠CFG+∠FDG+∠AGF=180°,∠FDG=∠ADC,∴∠C+∠ADC+∠AGF=180°;故答案为:180°;(3)解:设∠HEG=α,则∠P=2α,∵∠C=60°,∠AEF=∠C,∴∠AEF=60°,∴∠AED=60°﹣α,∵EP平分∠AED,∴∠PED=30°﹣α,∵∠AEF=60°,∵AB∥CD,∴∠CFG=60°,∵FC平分∠BFG,∴∠CFB=60°,∠BFE=60°,∵FP平分∠PFC,∴∠PFC=30°,∴∠PFE=90°,在△PEF中,∠EPF+∠PFE+∠PEF=180°,∴2α+α+30°﹣α+90°=180°,解得:α=24°,∴∠EHF=180°﹣∠DEF﹣∠BFE=180°﹣24°﹣60°=96°.22.解:∵AB∥CD,∴∠ABC=∠BCD,∵∠1=∠2,∴∠ABC﹣∠1=∠BCD﹣∠2,∴∠EBC=∠BCF,∴BE∥CF,∴∠E=∠F.23.解:(1)∠FAB=∠4,理由如下:∵AC∥EF,∴∠1+∠2=180°,又∵∠1+∠3=180°,∴∠2=∠3,∴FA∥CD,∴∠FAB=∠4;(2)∵AC平分∠FAB,∴∠2=∠CAD,∵∠2=∠3,∴∠CAD=∠3,∵∠4=∠3+∠CAD,∴,∵EF⊥BE,AC∥EF,∴AC⊥BE,∴∠ACB=90°,∴∠BCD=90°﹣∠3=51°.24.(1)证明:∵∠1+∠2=180°,∠1+∠FDE=180°,∴∠FDE=∠2,∵∠3+∠FEC+∠FDE=180°,∠2+∠B+∠ECB=180°,∠B=∠3,∴∠FEC=∠ECB,∴EF∥BC,∴∠AFE=∠ACB;(2)解:∵∠3=∠B,∠3=50°,∴∠B=50°,∵∠2+∠B+∠ECB=180°,∠2=110°,∴∠ECB=20°,∵CE平分∠ACB,∴∠ACB=2∠ECB=40°.25.证明:(1)∵∠CDG=∠B,∴DG∥AB,∴∠1=∠BAD,∵∠1+∠FEA=180°,∴∠BAD+∠FEA=180°,∴EH∥AD;(2)由(1)得:∠1=∠BAD,EH∥AD,∴∠1=∠H,∴∠BAD=∠H.26.解:(1)过点E作EF∥AB,则有∠BEF=∠B,∵AB∥CD,∴EF∥CD,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D;故答案为:∠B;EF;CD;∠D;(2)①如图1,过点E作EF∥AB,有∠BEF=∠EBA.∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=∠EBA+∠EDC.即∠BED=∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=∠ABC=30°,∠EDC=∠ADC=35°,∴∠BED=∠EBA+∠EDC=65°.答:∠BED的度数为65°;②如图2,过点E作EF∥AB,有∠BEF+∠EBA=180°.∴∠BEF=180°﹣∠EBA,∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=180°﹣∠EBA+∠EDC.即∠BED=180°﹣∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=∠ABC=,∠EDC=∠ADC=,∴∠BED=180°﹣∠EBA+∠EDC=180°﹣+.答:∠BED的度数为180°﹣.27.解:(1)∵AB∥CD,∴∠1=∠DCE=32°,∵CE平分∠ACD,∴∠ACE=∠DCE=32°;(2)∵CF⊥CE,∴∠FCE=90°,∴∠FCH=90°﹣32°=58°,∵∠2=58°,∴∠FCH=∠2,∴CF∥AG.。
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!人教版七年级下册数学《5.1.1相交线》课时练一、选择题1.三条共点直线都与第四条直线相交,一共有()对对顶角.A.8B.24C.7D.122.如图,点O在直线AB上,若∠1=40°,则∠2的度数是()A.50°B.60°C.140°D.150°Ð的度数为().3.如图,直线AB与CD相交于点O,12Ð=Ð,若140Ð= ,则AOCAOEA.40 B.60 C.80 D.1004.如图,直线AB、CD相交于点O,OE平分∠AOD,若∠COE=140°,则∠BOC=()A.50°B.60°C.70°D.80°5.如图,直线AB、CD相交于点O,OE平分∠AOD,若∠COE=140°,则∠BOC=()A.50°B.60°C.70°D.80°6.如图,已知直线AB和CD相交于O点,∠COE=90°,OF平分∠AOE,∠COF=34°,则∠BOD大小为()A.22°B.34°C.56°D.90°7.如图,三条直线l1,l2,l3相交于一点,则∠1+∠2+∠3等于()A.90°B.120°C.180°D.360°8.下列说法正确的是()A.大小相等的两个角互为对顶角B.有公共顶点且相等的两个角是对顶角C.两角之和为180°,则这两个角互为邻补角D.—个角的邻补角可能是锐角、钝角或直角9.如图,直线AB,AB相交于点O,OE,OF为射线,则对顶角有()A.1对B.2对C.3对D.4对10.如图,直线AB、CD、EF相交于点O,则∠1+∠2+∠3的度数为()A.90°B.120°C.180°D.360°二、填空题11.如图,∠1还可以用______表示,若∠1=62°,那么∠BCA=____度.12.如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=27°,则∠BOD的大小为_____.13.如图,过直线AB上一点O作射线OC,∠BOC=29°38′,OD平分∠AOC,则∠DOC 的度数为_____.14.如图,直线AB 和直线CD 相交于点O ,50AOC Ð=°,OE 平分BOD Ð,那么BOE Ð=_______度.15.如图,两直线交于点O ,134Ð=°,则2Ð的度数为_____________;3Ð的度数为_________.三、解答题16.直线AB 、CD 相交于点O ,OE 平分AOD Ð,90FOC Ð=°,50BOF Ð=°,求AOC Ð与AOE Ð的度数.17.如图,直线AB 与直线CD 相交于点O ,射线OE 在AOD Ð内部,OA 平分EOC Ð.(1)当OE CD ^时,写出图中所有与BOD Ð互补的角.(2)当:2:3EOC EOD ÐÐ=时,求BOD Ð的度数.18.如图1,直线AB 上任取一点O ,过点O 作射线OC (点C 在直线AB 上方),且∠BOC =2∠AOC ,以O 为顶点作∠MON =90°,点M 在射线OB 上,点N 在直线AB 下方,点D 是射线ON 反向延长线上的一点.(1)求∠COD 的度数;(2)如图2,将∠MON 绕点O 逆时针旋转α度(0°<α<180°),若三条射线OD 、OC 、OA ,当其中一条射线与另外两条射线所夹角的度数之比为1:2时,求∠BON 的度数.19.如图,直线AB 、CD 相交于点O ,OE 平分BOD Ð,OF 平分COE Ð,2AOD BOD =∠∠.(1)求DOE Ð的度数;(2)求BOF Ð的度数.20.如图,直线AB ,CD 相交于点O ,OA 平分EOC Ð.(1)若70EOC Ð=°,求BOD Ð的度数;(2)若:4:5ÐÐ=EOC EOD ,求BOC Ð的度数.21.如图,已知直线AB ,CD 相交于点O ,AOE Ð与AOC Ð互余.(1)若32BOD Ð=°,求AOE Ð的度数;(2)若:05:1AOD A C ÐÐ=,求ÐBOE 的度数.22.如图,直线AB 和CD 相交于点O ,OE 把∠AOC 分成两部分,且∠AOE ∶∠EOC =2∶5(1)如图,若∠BOD =70°,求∠BOE(2)如图,若OF 平分∠BOE ,∠BOF =∠AOC +10°,求∠EOF23.已知点O 为直线AB 上一点,将直角三角板MON 按如图所示放置,且直角顶点在O 处,在MON Ð内部作射线OC ,且OC 恰好平分BOM Ð.(1)若24CON Ð=°,求AOM ∠的度数;(2)若2BON CON Ð=Ð,求AOM ∠的度数参考答案1.D 2.C 3.C 4.D 5.D 6.A 7.C 8.D 9.B 10.C 11.BCE Ð118°12.36°13.7511¢°14.2515.146°34°16.40AOC Ð=°;70AOE Ð=°17.(1)AOD Ð、BOC Ð、ÐBOE ;(2)36°.18.(1)∠COD=30°;(2)40°或20°或30°19.(1)30°,(2)45°.20.(1)35BOD Ð=°;(2)140Ð=°BOC 21.(1)58°;(2)120°22.(1)160°;(2)80°23.(1)48°;(2)45°。
初中数学·人教版·七年级下册——第五章相交线与平行线5.1.2垂线测试时间:30分钟一、选择题1.如图,直线AB、CD相交于点O,EO⊥AB,垂足为O,∠EOC=55°,则∠AOD的度数为()A.115°B.125°C.135°D.145°2.如图,点P是直线a外的一点,点A、B、C在直线a上,且PB⊥a,垂足是B,PA⊥PC,则下列说法不正确的是()A.线段PB的长是点P到直线a的距离B.PA、PB、PC三条线段中,PB最短C.线段AC的长是点A到直线PC的距离D.线段PC的长是点C到直线PA的距离3.如图,要把小河里的水引到田地A处,则作AB⊥l,垂足为点B,沿AB挖水沟,水沟最短,理由是()A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.过一点可以作无数条直线4.点P为直线MN外一点,点A、B、C为直线MN上三点,PA=5厘米,PB=4厘米,PC=2厘米,则P 到直线MN的距离()A.等于4厘米B.等于2厘米C.小于2厘米D.不大于2厘米5.直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM.若∠AOC=70°,则∠CON的度数为()A.65°B.55°C.45°D.35°二、填空题6.如图,直线AB,CD相交于点O,EO⊥AB,垂足为点O,若∠AOD=132°,则∠COE=.7.如图,直线AB,CD相交于点O,若∠EOD=40°,∠BOC=130°,那么射线OE与直线AB的位置关系是.8.如图,直线AB与CD相交于点O,OE⊥CD,垂足为O,∠AOE=55°,则∠DOB的度数是.9.如图,点O为直线AB上一点,∠AOC=55°,过点O作射线OD,使得OD⊥OC,则∠BOD的度数是.三、解答题10.如图,O为直线AB上一点,OC⊥OD.已知∠AOC的度数比∠BOD的度数的2倍多6°.(1)求∠BOD的度数;(2)若OE平分∠BOD,OF平分∠BOC,求∠EOF的度数.11.如图,直线AB,CD相交于点O,OE⊥AB,OF⊥CD.(1)若OC恰好是∠AOE的平分线,则OA是∠COF的平分线吗?请说明理由;(2)若∠EOF=5∠BOD,求∠COE的度数.12.如图,直线AB、CD相交于点O,OE平分∠BOD.(1)若∠AOC=50°,求∠BOE的度数;(2)若OF平分∠COB,那么OE⊥OF吗?一、选择题1.答案D∵EO⊥AB,∴∠BOE=90°.又∵∠COE=55°,∴∠COB=∠COE+∠BOE=145°.∵∠AOD=∠COB(对顶角相等),∴∠AOD=145°.故选D.2.答案C A.点到直线的距离即点到这一直线的垂线段的长度,故此选项中说法正确;B.根据垂线段最短可知此选项中说法正确;C.线段AP的长是点A到直线PC的距离,故此选项中说法错误;D.点到直线的距离即点到这一直线的垂线段的长度,故此选项中说法正确.故选C.3.答案C由题意可知,理由是垂线段最短.故选C.4.答案D∵PA=5厘米,PB=4厘米,PC=2厘米,∴P到直线MN的距离不大于2厘米.故选D.5.答案B∵ON⊥OM,∴∠MON=90°,∵OM平分∠AOC,∠AOC=70°,∴∠MOC=12∠AOC=35°,∴∠CON=90°-35°=55°,故选B.二、填空题6.答案42°解析∵∠AOD=132°,∴∠COB=132°,∵EO⊥AB,∴∠EOB=90°,∴∠COE=132°-90°=42°.7.答案垂直解析∵∠BOC=130°,∴∠AOD=∠BOC=130°,∴∠AOE=∠AOD-∠EOD=130°-40°=90°.∴OE⊥AB,即射线OE与直线AB的位置关系是垂直.8.答案35°解析∵OE⊥CD,∴∠COE=90°,又∵∠AOE=55°,∴∠AOC=90°-55°=35°,∵直线AB与CD相交于点O,∴∠DOB=∠AOC=35°.9.答案35°或145°解析如图所示,OD的位置有两种情况,①∵OD⊥OC,∴∠COD=90°,∵∠AOC=55°,∴∠BOD=35°.②∵OD'⊥OC,∴∠BOD'=145°.∴∠BOD的度数是35°或145°.三、解答题10.解析(1)设∠BOD=x°,则∠AOC=2x°+6°,∵OC⊥OD,∴∠COD=90°.∵∠AOC+∠COD+∠BOD=180°,∴2x+6+90+x=180,解得x=28,即∠BOD=28°.(2)∵OE平分∠BOD,∴∠BOE=12∠BOD=14°,∵OF平分∠BOC,∴∠BOF=12∠BOC=12×(90°+28°)=59°,∴∠EOF=∠BOF-∠BOE=59°-14°=45°.11.解析(1)OA是∠COF的平分线.理由如下:∵OE⊥AB,∴∠AOE=90°,∵OC恰好是∠AOE的平分线,∴∠AOC=12∠AOE=45°,∵OF⊥CD,∴∠COF=90°,∴∠AOF=∠COF-∠AOC=90°-45°=45°,∴OA是∠COF的平分线.(2)设∠AOC=x,则∠BOD=x,∵∠AOE=90°,∴∠COE=∠AOE-∠AOC=90°-x,∴∠EOF=∠COE+∠COF=90°-x+90°=180°-x,∵∠EOF=5∠BOD,∴180°-x=5x,解得x=30°,∴∠COE=90°-30°=60°.12.解析(1)因为OE平分∠BOD,所以∠BOE=12∠BOD,因为∠BOD=∠AOC=50°,所以∠BOE=12∠BOD=25°.(2)OE⊥OF.因为OE平分∠BOD,所以∠BOE=12∠BOD,因为OF平分∠COB,所以∠BOF=12∠BOC,所以∠EOF=∠BOE+∠BOF=12(∠BOD+∠BOC)=90°,所以OE⊥OF.。
《5﹒1﹒1 相交线》同步提升试卷精选2021-2022学年人教版数学七年级下册(含答案)一、精心选一选1. 下列说法中正确的是().A.两条直线相交所成的角是对顶角B.两点之间,直线最短C.一个角的补角比它的余角大90°D.若AB BC,则点B是线段AC的中点2. 如图,直线AB、CD、EF相交于一点,∠1=50°,∠2=64°,则∠COF=()度.A.66 B.50 C.64 D.763. 观察下列图形并阅读图形下方的文字,像这样,20条直线相交,交点的个数最多为()A.185 B.190C.200 D.2104. 下面四个图中,∠1=∠2是对顶角的是( )A.B.C.D.5. 如图,当光线从空气射入水中,光线的传播发生了改变,这就是折射现象,∠1的对顶角是()A.∠AOB B.∠BOC C.∠AOC D.∠OAB6. 下列命题是真命题的有()个①对顶角相等;②一个角的补角大于这个角;③互为邻补角的两个角的平分线互相垂直;④若两个实数的和是正数,则这两个实数都是正数.A.1个B.2个C.3个D.4个7. 下列图形中∠1和∠2是对顶角的是()A.B.C.D.8. 三条直线相交于一点,则A.90°B.120°C.140°D.180°9. 下列各图中,∠1,∠2是对顶角的是()A.B.C.D.10. 如图,直线AB、CD相交于点O,OE平分∠BOC,若∠AOD=68°,则∠COE的度数是()A.32°B.34°C.36°D.38°11. 下列各图中,∠1和∠2是对顶角的是()A.B.C.D.二、细心填一填12. 同一平面内有3条直线a,b,c,如果b∥c,a⊥c,那么a________b.13. 若∠1的对顶角是∠2,∠2的邻补角是∠3,∠3=45°,则∠1的度数为______.14. 如图,直线AB、CD相交于点O,OE平分∠BOD,若∠AOD=2∠DOB,则∠EOB= .15. 如图,已知直线AB,CD,MN相交于O,若∠1=21°,∠2=47°,则∠3的度数为__________16. 如图,直线AB、CD相交于点O,100∠=__________.∠=︒,那么BOCAOD17. 如图,直线AB 、CD 相交于O ,对顶角有__对,它们是__,∠AOD 的邻补角是__.三、用心做一做18. 如图,直线AB ,CD 和EF 相交于点O ,(1)写出AOC ∠,BOF ∠的对顶角;(2)如果70AOC ∠=︒,20BOF ∠=︒,求BOC ∠和DOE ∠的度数.19. 如图,直线a ,b 相交,∠1=40°,求∠2、∠3、∠4的度数.20. 如图,直线AB 和CD 相交于点O ,35BOD ∠=︒,OA 平分EOC ∠,求EOD ∠的度数.21. 观察图形,回答下列各题:(1)图A 中,共有____对对顶角;(2)图B 中,共有____对对顶角;(3)图C 中,共有____对对顶角;(4)探究(1)--(3)各题中直线条数与对顶角对数之间的关系,若有n 条直线相交于一点,则可形成________对对顶角;22. 如图所示,已知∠AOC=160°,OC 平分∠BOD ,OE 平分∠AOD ,求∠BOE 的度数.23. 如图,己知直线AB CD .相交于点O ,EO AB ⊥.(1)若OC 平分EOA ∠,求BOD ∠的度数;(2)若:3:7AOC BOC ∠∠=,则AOC ∠=______°,DOE ∠=_____°.(直接写出答案)24. 如图,点A ,O ,B 在同一条直线上,OD 、OE 分别平分∠AOC 和∠BOC .(1)求∠DOE 的度数;(2)如果∠COD =70°,求∠AOE 的度数.25. 如图,三条直线AB 、CD 、EF 相交于点O ,若∠3=3∠2、∠2=2∠1,求∠1、∠2、∠3的度数.26. 如图,直线AB 与CD 相交于点O ,OP 是∠BOC 的平分线,OF ⊥CD ,∠AOD=50°,求∠DOP 的度数.参考答案一、精心选一选1. C【分析】根据对顶角的定义,线段的性质,余角与补角的关系,线段中点的定义分别判断即可.【详解】解:A、两条直线相交所成的角是对顶角或邻补角,故错误;B、两点之间,线段最短,故错误;C、一个角的补角比它的余角大90°,故正确;D、在同一条直线上,若AB BC,则点B是线段AC的中点,故错误;故选C.【点睛】本题考查了对顶角的定义,线段的性质,余角与补角的关系,线段中点的定义,是基础知识要熟练掌握.2. A【分析】先根据平角求出∠DOE,再根据对顶角相等求出即可.【详解】∵∠1=50°,∠2=64°∴∠DOE=180°−∠1−∠2=66°∴∠COF=∠DOE=66°故选A.【点睛】本题主要考查了对顶角、邻补角的性质,熟练掌握对顶角、邻补角的性质是关键.3. B【分析】结合所给的图形找出交点个数的计算公式.【详解】设直线有n 条,交点有m 个.有以下规律:直线n 条 交点m 个2 13 1+24 1+2+3…n m=1+2+3+…+(n-1)=(1)2n n - , 20条直线相交有2020(21)-=190个.故选:B .【点睛】此题考查了相交线,解题关键是找出直线条数与交点个数的计算公式. 4. D【解析】【分析】根据对顶角的定义,对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角,据此即可判断.【详解】解:A 、不具备一个角的两边分别是另一个角的两边的反向延长线,故不是对顶角,故此选项错误;B 、不具备一个角的两边分别是另一个角的两边的反向延长线,故不是对顶角,故此选项错误;C 、不具备一个角的两边分别是另一个角的两边的反向延长线,故不是对顶角,故此选项错误;D 、是对顶角,故此选项正确;故选D .【点睛】本题考查对顶角的定义,理解定义是解题关键.5. A【解析】根据折射的规律以及图形可知OC 是折射光线,OA 是入射光线的延长线,所以∠1的对顶角是∠AOB ;故选A.点睛:本题考查对顶角的定义及性质,注意对顶角的定义中的关键词,如:一个公共顶点,反向延长线等.能正确地识图并能应用是解题的关键.6. B【分析】根据对顶角的性质、补角的定义、邻补角的定义与垂直的定义、有理数的加法逐个判断即可.【详解】对顶角相等,则命题①是真命题当这个角是钝角时,它的补角小于这个角,则命题②是假命题如图,AOC ∠和BOC ∠互为邻补角,,OD OE 是,AOC BOC ∠∠的角平分线 AOC ∠和BOC ∠互为邻补角180AOC BOC ∴∠+∠=︒,OD OE 是,AOC BOC ∠∠的角平分线 11,22COD AOC COE BOC ∴∠=∠∠=∠ 111()90222DOE COD COE AOC BOC AOC BOC ∴∠=∠+∠=∠+∠=∠+∠=︒ 即OD OE ⊥,则命题③是真命题若两个实数的和是正数,则这两个实数不一定都是正数反例:121-+=,但实数1-是负数则命题④是假命题综上,真命题的有2个故选:B .【点睛】本题考查了对顶角的性质、补角的定义、邻补角的定义与垂直的定义、有理数的加法,熟记各定义与性质是解题关键.7. D【分析】根据对顶角的定义“两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角”判断即可.【详解】根据对顶角的概念可知,A、B、C中的∠1与∠2都不符合对顶角的特征,而D图中的∠1与∠2只有一个公共顶点且两个角的两边互为反向延长线,属于对顶角.故选D.【点睛】本题主要考查了对顶角的概念,解题时要紧扣概念中的关键词语,如:两条直线相交,有一个公共顶点,反向延长线等.8. D【解析】【分析】根据对顶角相等和平角的定义,即可得到答案.【详解】解:如图:∵∠AOF与∠3是对顶角,∴∠AOF=∠3,∵,∴,故选择:D.【点睛】 本题考查了对顶角相等的性质,解题的关键是掌握对顶角相等和平角的定义. 9. B【分析】根据对顶角的定义:两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角,对各项进行分析即可.【详解】解:A 中∠1和∠2顶点不在同一位置,不是对顶角;B 中∠1和∠2是对顶角;C 中∠1和∠2角度不同,不是对顶角;D 中∠1和∠2不存在公共顶点,不是对顶角;故选:B .【点睛】本题考查了对顶角的定义,熟记对顶角的定义是解题的关键.10. B【分析】根据对顶角的性质得到∠BOC =∠AOD =68°,再根据角平分线的定义得到∠COE 的度数.【详解】解:∵∠BOC 与∠AOD 互为对顶角,∴∠BOC =∠AOD ,∵∠AOD =68°,∴∠BOC =68°,∵OE 平分∠BOC ,11683422COE BOC ∴∠=∠=⨯︒=︒ 故选:B .【点睛】本题考查了角平分线的定义、对顶角的性质,解题关键是掌握角平分线的定义,对顶角的性质.11. D【分析】根据对顶角的两边互为反向延长线对各图形分析判断后进行解答.【详解】解:根据对顶角的定义可得,D是对顶角,故选D.【点睛】本题主要考查了对顶角的定义,熟记对顶角的定义是解决本题的关键.二、细心填一填12. ⊥【解析】试题解析:a,b,c是同一平面内有的3条直线,如果b∥c,a⊥c,那么a⊥b.故答案为:⊥.13. 135°【分析】根据邻补角的定义,可得∠2+∠3=180°,再根据对顶角的相等求解即可.【详解】∵∠l的对顶角是∠2∴∠1=∠2∵∠2的邻补角是∠3∴∠2+∠3=180°∵∠3=45°∴∠1=∠2=135°.故答案为135°.【点睛】此题主要考查了邻补角的性质和对顶角的性质,关键是明确领补角的性质:互为邻补角的两角的和为180°.14. 30°【解析】试题分析:根据∠AOD+∠BOD=180°,∠AOD=2∠BOD,则∠BOD=60°,根据角平分线的性质可得:∠EOB=60°÷2=30°.考点:角度的计算15. 112°【分析】已知∠1=21°,∠2=47°,可以求出∠COB的度数,而∠3与∠COB是对顶角,所以∠3的度数可求.【详解】解:∵∠1=21°,∠2=47°,∴∠COB=∠180°-21°-47°=112°,∴∠3=112°.故答案为:112°.【点睛】本题考查了对顶角相等的性质,平角等于180°,是基础题,准确计算是解题的关键.16. 100︒【分析】根据两直线相交,对顶角相等即可得出答案.【详解】∠是对顶角,∠与BOCAOD∴AOD∠=100︒∠=BOC故答案为:100︒【点睛】本题考查了对顶角的定义,熟练掌握对顶角相等是解题的关键.17. 两、∠AOD和∠BOC,∠AOC与∠BOD、∠AOC与∠BOD【解析】对顶角有两对:∠AOC和∠BOD、∠AOD和∠BOC;∠AOD 的邻补交是:∠AOC 与∠BOD .故答案为(1). 两;(2). ∠AOC 和∠BOD 、∠AOD 和∠BOC ;(3). ∠AOC 与∠BOD . 点睛:掌握邻补交、对顶角的概念.三、用心做一做18. (1)AOC ∠的对顶角是BOD ∠;BOF ∠的对顶角是AOE ∠;(2)110BOC ∠=°,90DOE ∠=︒【分析】(1)根据对顶角的概念即可解答;(2)直接利用根据邻补角互补、对顶角相等可得答案.【详解】解:(1)AOC ∠的对顶角是BOD ∠BOF ∠的对顶角是AOE ∠(2)∵70AOC ∠=︒180AOC BOC ∠+∠=︒∴110BOC ∠=°∵20BOF ∠=︒∴90DOF ∠=︒∴90DOE ∠=︒【点睛】此题主要考查了邻补角和对顶角,关键是掌握邻补角和对顶角的定义和性质.19. 140°; 40°; 140°. 【分析】根据对顶角的性质和邻补角的定义求解即可.【详解】解:∵∠1=40°,∴∠3=∠1=40°,∴∠2=∠4=180°-∠1=180°-40°=140° 【点睛】本题考查了对顶角的性质及邻补角的定义,对顶角相等,邻补角之和等于180°,熟记性质和定义是解答本题的关键.20. 110EOD ∠=︒.【分析】根据对顶角相等先求出∠AOC的度数,然后根据角平分线的定义求出∠COE的度数,最后根据∠OCE与∠EOD互为邻补角即可得出答案.【详解】∠=︒,35BOD35∴∠=︒AOC∠,OA平分EOC∴∠=∠=⨯︒=︒COE AOC223570∴∠=︒-∠=︒.EOD COE180110【定睛】本题主要考查了角的和差运算,根据对顶角相等和角平分线的定义求出∠COE 是解决此题的关键.21. (1)2对;(2)6对;(3)12对;(4)n(n-1) (n≥2).【详解】试题分析:(1)图A中,共有2对对顶角;(2)图B中,共有6对对顶角;(3)图C中,共有12对对顶角;(4)找出对顶角的对数与直线的条数n之间的关系式为:n(n-1)(n≥2).试题解析:(1)2对;(2)6对;(3)12对;(4)2条直线相交时,对顶角对数为:1×2=2对;3条直线相交时,对顶角对数为:3×2=6对;4条直线相交时,对顶角对数为:4×3=12对;…n条直线相交时,对顶角对数为:n(n-1)(n≥2)对.点睛:本题关键在于找出直线的条数与对顶角对数的关系式.22. 110°【分析】先利用平角的概念求出∠BOC的度数,然后利用角平分线的定义即可求出∠BOD的度数和∠EOD的度数,最后利用∠BOE=∠EOD+∠BOD即可求解.【详解】∵∠AOC=160°,∠AOC+∠BOC=180°,∴∠BOC=180°-160°=20°.∵OC平分∠BOD,∴∠BOD=2∠BOC=40°.又∵∠AOD+∠BOD=180°,∴∠AOD=180°-40°=140°.∵OE平分∠AOD,∴∠EOD=12∠AOD=70°,∴∠BOE=∠EOD+∠BOD=70°+40°=110°.【点睛】本题主要考查角平分线的定义,平角的定义和角的和与差,掌握角平分线的定义是解题的关键.23. (1)45°;(2)54°,144°【分析】(1)根据垂直得到∠AOE,根据角平分线的定义得到∠AOC,再根据对顶角相等得到∠BOD;(2)设∠AOC=3x,利用邻补角的性质得出方程,解之得到∠AOC的度数,从而得到∠DOE.【详解】解:(1)∵EO⊥AB,∴∠AOE=∠BOE=90°,∵OC平分∠EOA,∴∠AOC=∠EOC=45°,∴∠BOD=45°;(2)∵∠AOC:∠BOC=3:7,∴设∠AOC=3x,则∠BOC=7x,∵∠AOC+∠BOC=180°,∴3x+7x=180°,解得:x=18°,∴∠AOC=54°,∵∠BOD=∠AOC,∴∠BOD=54°,∴∠DOE=∠BOE+∠BOD=90°+54°=144°.【点睛】此题主要考查了角平分线的定义,对顶角以及邻补角,根据邻补角列出方程是解题关键.24. (1)90°;(2)160°【分析】(1)利用角平分线的定义解答即可;(2)利用角平分线的定义和角的和差的意义解答即可.【详解】解:(1)∵OD、OE分别平分∠AOC和∠BOC,∴∠DOC=12∠AOC,∠COE=12∠BOC,∴∠DOE=∠DOC+∠COE=12(∠AOC+∠BOC).∵点A,O,B在同一条直线上,∴∠AOC+∠BOC=180°.∴∠DOE=12×180°=90°;(2))∵OD、OE分别平分∠AOC和∠BOC,∴∠DOC=12∠AOC,∠COE=12∠BOC,∵∠COD=70°,∴∠AOC=140°.∴∠BOC=180°-∠AOC=40°.∴∠COE=12∠BOC=20°.∴∠AOE=∠AOC+∠COE=140°+20°=160°.【点睛】本题主要考查了角的计算,角平分线的定义,邻补角的意义.熟练应用角平分线的意义是解题的关键.25. ∠1=20°,∠2=40°,∠3=120°【分析】利用对顶角相等,再利用平角180°,列方程计算解答.【详解】解:由图可知∠FOD=∠2,∴∠1+∠2+∠3=180°,∵∠3=3∠2,∠2=2∠1,∴可得:∠1=20°,∠2=40°,∠3=120°.【点睛】此题主要考查了对顶角相等,根据平角180°列方程是解题关键.26. 155°【分析】注意到∠AOD与∠BOC为对顶角,OP平分∠BOC,则只要求得∠POC即可求∠DOP【详解】解:∵∠AOD=∠BOC,∠AOD=50°∴∠BOC=50°∵OP平分∠BOC∴∠POB=∠POC=1122BOC∠=×50°=25°∴∠DOP=180°﹣∠POC=180°﹣25°=155°【点睛】本题利用平角的定义,对顶角和互补的性质进行计算.。
一、选择题1.如图,若1234//,//l l l l ,则图中与1 互补的角有( )A .1个B .2个C .3个D .4个D解析:D【分析】 直接利用平行线的性质得出相等的角以及互补的角进而得出答案.【详解】解:解:∵1234//,//l l l l ,∴∠1+∠2=180°,∠2=∠4,∵∠4=∠5,∠2=∠3,∴图中与∠1互补的角有:∠2,∠3,∠4,∠5共4个.故选:D .【点睛】本题主要考查了平行线的性质,注意不要漏角是解题的关键.2.在下列命题中,为真命题的是( )A .相等的角是对顶角B .平行于同一条直线的两条直线互相平行C .同旁内角互补D .垂直于同一条直线的两条直线互相平行B解析:B【分析】根据对顶角、平行公理的推论、平行线的判定、同旁内角逐项判断即可得.【详解】A 、相等的角不一定是对顶角,此项是假命题;B 、平行于同一条直线的两条直线互相平行,此项是真命题;C 、两直线平行,同旁内角互补,此项是假命题;D 、在同一平面内,垂直于同一条直线的两条直线互相平行,此项是假命题; 故选:B .【点睛】本题考查了命题与定理、平行线的判定与性质等知识点,熟练掌握平行线的判定与性质是解题关键.3.下列语句中不是命题的有()(1)两点之间,线段最短;(2)连接A、B两点;(3)鸟是动物;(4)不相交的两条直线叫做平行线;(5)无论a为怎样的有理数,式子a2+1的值都是正数吗?A.1个B.2个C.3个D.4个C解析:C【分析】根据命题的定义对各语句进行判断.【详解】两点之间,线段最短,所以(1)为命题;连接A、B两点,它为描述性语言,所以(2)不是命题;鸟是动物,所以(3)为命题;不相交的两条直线叫做平行线,所以(4)为命题;无论a为怎样的有理数,式子a2+1的值都是正数吗?它为疑问句,所以(5)不是命题.故选:C.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.4.如图,将周长为7的△ABC沿BC方向向右平移2个单位得到△DEF,则四边形ABFD的周长为()A.8 B.9 C.10 D.11D解析:D【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC即可得出答案.【详解】解:根据题意,将周长为7的△ABC沿BC方向向右平移2个单位得到△DEF,∴AD=2,BF=BC+CF=BC+2,DF=AC;又∵AB+BC+AC=7,∴四边形ABFD 的周长=AD+AB+BF+DF=2+AB+BC+2+AC=11.故选:D .【点睛】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD ,DF=AC 是解题的关键.5.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是( ) A .∠1=50°,∠2=40°B .∠1=50°,∠2=50°C .∠1=∠2=45°D .∠1=40°,∠2=40°C 解析:C【分析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.【详解】A 、满足条件∠1+∠2=90°,也满足结论∠1≠∠2,故A 选项错误;B 、不满足条件,故B 选项错误;C 、满足条件,不满足结论,故C 选项正确;D 、不满足条件,也不满足结论,故D 选项错误.故选:C .【点睛】此题考查了命题与定理的知识,理解能说明它是假命题的反例的含义是解决本题的关键. 6.下列命题中,属于真命题的是( )A .相等的角是对顶角B .一个角的补角大于这个角C .绝对值最小的数是0D .如果a b =,那么a=b C 解析:C【分析】根据对顶角、补角、绝对值的定义与性质逐项判断即可得.【详解】A 、相等的角不一定是对顶角,此项是假命题;B 、一个角的补角不一定大于这个角,如这个角为130︒,其补角为50︒,小于这个角,此项是假命题;C 、由绝对值的非负性得:绝对值最小的数是0,此项是真命题;D 、如果a b =,那么a b =或=-a b ,此项是假命题;故选:C .【点睛】本题考查了对顶角、补角、绝对值、真命题与假命题,熟练掌握各定义与性质是解题关键.7.如图,A 是直线l 外一点,过点A 作AB l ⊥于点B ,在直线l 上取一点C ,连接AC ,使2AC AB =,P 在线段BC 上,连接AP .若3AB =,则线段AP 的长不可能是( )A .4B .5C .2D .5.5C解析:C【分析】 根据题意计算出AC 的长度,由垂线段最短得出AP 的范围,选出AP 的长度不可能的选项即可.【详解】3AB =,26AC AB cm ∴==,结合垂线段最短,得:36AP ≤≤.故选:C .【点睛】本题主要考查直线外一点与直线上各点连接的所有线段中,垂线段最短,熟记概念并求出对应线段的范围是解题关键.8.如图,给出下列条件:①∠1=∠2:②∠3=∠4:③AB ∥CE ,且∠ADC =∠B :④AB ∥CE ,且∠BCD =∠BAD .其中能推出BC ∥AD 的条件为( )A .①②B .②④C .②③D .②③④D解析:D【分析】 根据平行线的判定条件,逐一判断,排除错误答案.【详解】解:①∵∠1=∠2,∴AB ∥CD ,不符合题意;②∵∠3=∠4,∴BC ∥AD ,符合题意;③∵AB ∥CD ,∴∠B+∠BCD =180°,∵∠ADC=∠B,∴∠ADC+∠BCD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;④∵AB∥CE,∴∠B+∠BCD=180°,∵∠BCD=∠BAD,∴∠B+∠BAD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;故能推出BC∥AD的条件为②③④.故选:D.【点睛】本题考查了平行线的判定,关键是掌握判定定理:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.9.如图,△ABC经平移得到△EFB,则下列说法正确的有()①线段AC的对应线段是线段EB;②点C的对应点是点B;③AC∥EB;④平移的距离等于线段BF的长度.A.1 B.2 C.3 D.4D解析:D【分析】根据平移的特点分别判断各选项即可.【详解】∵△ABC经平移得到△EFB∴点A、B、C的对应点分别为E、F、B,②正确∴BE是AC的对应线段,①正确∴AC∥EB,③正确平移距离为对应点连线的长度,即BF的长度,④正确故选:D【点睛】本题考查平移的特点,注意,在平移过程中,一定要把握住对应点,仅对应点的连线之间才有平行、相等的一些关系.10.如图是郝老师的某次行车路线,总共拐了三次弯,最后行车路线与开始的路线是平行的,已知第一次转过的角度120︒,第三次转过的角度135︒,则第二次拐弯的角度是()A.75︒B.120︒C.135︒D.无法确定A解析:A【解析】分析:根据两直线平行,内错角相等,得到∠BFD的度数,进而得出∠CFD的度数,再由三角形外角的性质即可得到结论.详解:如图,延长ED交BC于F.∵DE∥AB,∴∠DFB=∠ABF=120°,∴∠CFD=60°.∵∠CDE=∠C+∠CFD,∴∠C=∠CDE-∠CFD=135°-60°=75°.故选A.点睛:本题考查了平行线的性质及三角形外角的性质.解题的关键是理解题意,灵活应用平行线的性质解决问题,属于中考常考题型.二、填空题11.如图,点A在直线m上,点B在直线l上,点A到直线l的距离为a,点B到直线m 的距离为b,线段AB的长度为c,通过测量等方法可以判断在a,b,c三个数据中,最大的是_____________.【分析】过点A作AD垂直于垂足为D过点B作BH垂直于垂足为H连接AB根据点到直线垂线段最短可知AB >ADAB>BH可得最大【详解】过点A作AD垂直于垂足为D过点B作BH垂直于垂足为H连接AB由题意得解析:c【分析】过点A作AD垂直于l垂足为D,过点B作BH垂直于m垂足为H,连接AB,根据点到直线垂线段最短,可知AB>AD,AB>BH,可得c最大.【详解】过点A作AD垂直于l垂足为D,过点B作BH垂直于m垂足为H,连接AB,由题意得:AD=a, BH=b,AB=c;根据点到直线垂线段最短,可知AB>AD,AB>BH∴c>a,c>b;∴c最大故答案:c【点睛】本题主要考查了垂线段最短的性质,熟记性质是解题的关键.∠=∠=∠=︒,则∠4的度数是___________.12.已知:如图,12354126°【分析】由∠1=∠2及对顶角相等可得出∠1=∠5利用同位角相等两直线平行可得出l1∥l2利用两直线平行同旁内角互补可求出∠6的度数再利用对顶角相等可得出∠4的度数【详解】解:给各角标上序号如解析:126°.【分析】由∠1=∠2及对顶角相等可得出∠1=∠5,利用“同位角相等,两直线平行”可得出l1∥l2,利用“两直线平行,同旁内角互补”可求出∠6的度数,再利用对顶角相等可得出∠4的度数.【详解】解:给各角标上序号,如图所示.∵∠1=∠2,∠2=∠5,∴∠1=∠5,∴l1∥l2,∴∠3+∠6=180°.∵∠3=54°,∴∠6=180°-54°=126°,∴∠4=∠6=126°.故答案为:126°.【点睛】本题考查了平行线的判定与性质,牢记平行线的各判定与性质定理是解题的关键.13.阅读下面材料:在数学课上,老师提出如下问题:如图,需要在A、B两地和公路l之间修地下管道.请你设计一种最节省材料的修路方案:小丽设计的方案如下:如图,(1)连接AB;(2)过点A画线段AC⊥直线l于点C,所以线段BA和线段AC即为所求.老师说:“小丽的画法正确”请回答:小丽的画图依据是___.两点之间线段最短;直线外一点到这条直线上所有点连结的线段中垂线段最短(或垂线段最短)【分析】根据线段的概念和垂线的性质即可求解【详解】由垂线段最短可知点A到直线l的最短距离为AC由两点之间线段最短可解析:两点之间线段最短;直线外一点到这条直线上所有点连结的线段中,垂线段最短(或垂线段最短)【分析】根据线段的概念和垂线的性质即可求解.【详解】由垂线段最短可知,点A 到直线l 的最短距离为AC ,由两点之间线段最短可知,点B 到点A 的最短距离为AB .故答案为:两点之间线段最短;直线外一点到这条直线上所有点连结的线段中,垂线段最短(或垂线段最短);【点睛】本题考察线段的概念和垂线的性质,熟练掌握其概念和性质是解题的关键.14.如图,长8米宽6米的草坪上有一条弯折的小路(小路进出口的宽度相等,且每段小路均为平行四边形),小路进出口的宽度均为1米,则绿地的面积为__平方米.42【分析】利用平移表示出草坪的长和宽然后根据长方形的面积公式列式计算即可得解【详解】解:由平移的性质得:草坪的长为8﹣1=7(米)宽为6米草坪的面积=7×6=42(平方米)故答案为:42【点睛】本 解析:42【分析】利用平移表示出草坪的长和宽,然后根据长方形的面积公式列式计算即可得解.【详解】解:由平移的性质,得:草坪的长为8﹣1=7(米),宽为6米,草坪的面积=7×6=42(平方米).故答案为:42.【点睛】本题考查了平移的性质,熟记性质并理解求出与草坪的面积相当的长方形的长和宽是解题的关键.15.如图,把直角梯形ABCD 沿AD 方向平移到梯形EFGH ,28HG cm =,5MG cm =,4MC cm =,则阴影部分的面积是___ 130cm2【分析】根据平移的性质可知梯形EFGH ≌梯形ABCD 那么GH=CDBC=FG 观察可知梯形EFMD 是两个梯形的公共部分那么阴影部分的面积就等于梯形MGHD 再根据梯形的面积计算公式计算即可【解析:130cm 2.【分析】根据平移的性质可知梯形EFGH≌梯形ABCD,那么GH=CD,BC=FG,观察可知梯形EFMD 是两个梯形的公共部分,那么阴影部分的面积就等于梯形MGHD,再根据梯形的面积计算公式计算即可.【详解】解:∵直角梯形EFGH是由直角梯形ABCD平移得到的,∴梯形EFGH≌梯形ABCD,∴GH=CD,BC=FG,∵梯形EFMD是两个梯形的公共部分,∴S梯形ABCD-S梯形EFMD=S梯形EFGH-S梯形EFMD,∴S阴影=S梯形MGHD=12(DM+GH)•GM=12(28-4+28)×5=130(cm2).故答案是130cm2.【点睛】本题考查了图形的平移,解题的关键是知道平移前后的两个图形全等.16.把命题“等角的余角相等”改写成“如果…,那么…”的形式为______.如果两个角相等那么这两个角的余角相等【分析】把命题的题设写在如果的后面把命题的结论部分写在那么的后面即可【详解】解:命题等角的余角相等写成如果…那么…的形式为:如果两个角是相等角的余角那么这两个角相解析:如果两个角相等,那么这两个角的余角相等【分析】把命题的题设写在如果的后面,把命题的结论部分写在那么的后面即可.【详解】解:命题“等角的余角相等”写成“如果…,那么….”的形式为:如果两个角是相等角的余角,那么这两个角相等.故答案为:如果两个角是相等角的余角,那么这两个角相等.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.17.用反证法证明“三角形中至少有一个内角不大于60°,应先假设这个三角形中____________________.三角形的三个内角都大于60°【分析】根据反证法的步骤先假设结论不成立即否定命题即可【详解】根据反证法的步骤第一步应假设结论的反面成立即三角形的三个内角都大于60°故答案为:三角形的三个内角都大于60解析:三角形的三个内角都大于60°【分析】根据反证法的步骤,先假设结论不成立,即否定命题即可.【详解】根据反证法的步骤,第一步应假设结论的反面成立,即三角形的三个内角都大于60°.故答案为:三角形的三个内角都大于60°.【点睛】本题考查了反证法的知识,掌握反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立是解题的关键.18.如图是某公园里一处矩形风景欣赏区ABCD ,长AB=50米,宽BC=30米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那么小明沿着小路的中间出口A 到出口B 所走的路线(图中虚线)长为______米.98【解析】∵利用已知可以得出此图形可以分为横向与纵向分析水平距离等于AB 铅直距离等于(AD-1)×2又∵长AB=50米宽BC=25米∴小明沿着小路的中间出口A 到出口B 所走的路线(图中虚线)长为50解析:98【解析】∵利用已知可以得出此图形可以分为横向与纵向分析,水平距离等于AB ,铅直距离等于(AD -1)×2,又∵长AB =50米,宽BC =25米,∴小明沿着小路的中间出口A 到出口B 所走的路线(图中虚线)长为50+(25-1)×2=98米,故答案为98.19.如图,AD 平分,34BDF ∠∠=∠,若150,2130∠=︒∠=︒,则CBD ∠=________︒.65【分析】利用平行线的判定定理和性质定理等量代换可得∠CBD=∠EBC 可得结果【详解】∵∠1=50°∴∠DBE=180°-∠1=180°-50°=130°∵∠2=130°∴∠DBE=∠2∴AE ∥C解析:65【分析】利用平行线的判定定理和性质定理,等量代换可得∠CBD=∠EBC ,可得结果.【详解】∵∠1=50°,∴∠DBE=180°-∠1=180°-50°=130°,∵∠2=130°,∴∠DBE=∠2,∴AE∥CF,∴∠4=∠ADF,∵∠3=∠4,∴∠EBC=∠4,∴AD∥BC,∵AD平分∠BDF,∴∠ADB=∠ADF,∵AD∥BC,∴∠ADB=∠CBD,∴∠4=∠CBD,∴∠CBD=∠EBC=12∠DBE=12×130°=65°.故答案为:65.【点睛】本题主要考查了平行线的判定定理和性质定理,角平分线的定义等,熟练掌握定理是解答此题的关键.20.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到三角形DEF的位置,AB=10,DH=4,平移距离为8,则阴影部分的面积是_______________.64【分析】根据平移变化只改变图形的位置不改变图形的形状可得出两个三角形大小一样阴影部分面积等于梯形ABEH的面积;DE=AB根据线段的和差关系可求出HE的长度再根据梯形的面积公式即可得答案【详解】解析:64【分析】根据平移变化只改变图形的位置,不改变图形的形状,可得出两个三角形大小一样,阴影部分面积等于梯形ABEH的面积;DE=AB,根据线段的和差关系可求出HE的长度,再根据梯形的面积公式即可得答案.【详解】∵两个三角形大小一样,∴S△ABC=S△DEF,∴S△ABC-S△HEC=S△DEF-S△HEC,∴S阴影=S梯形ABEH,∵其中一个三角形沿着点B到点C的方向平移到三角形DEF的位置,AB=10,∴DE=AB=10,∵DH=4,∴HE=DE-DH=6,∵平移距离是8,∴BE=8,∴S阴影=S梯形ABEH=12(HE+AB)·BE=12×(10+6)×8=64,故答案为:64【点睛】本题主要考查了平移的性质,通过观察图形把阴影部分的面积转化为熟知图形的面积是关键的一步.三、解答题21.在一张地图上有、、A B C三地,但地图被墨迹污染,C地具体位置看不清楚,但知道C地在A地的北偏东30°方向,在B地南偏东45°方向.(1)根据以上条件,在地图上画出C地的位置;(2)直接写出ACB的度数.解析:(1)见详解;(2)105°.【分析】(1)过点A、B作正北方向,再据方位角的含义画射线BX和AY,两射线之交点即是C 地;(2)记过点A的正北方向线与射线BX之交点为D,先求得∠CDA的度数,最后由三角形内角和为180°计算得∠ACB的度数.【详解】(1)如下图,第一步过B作m的平行线BS,以B为顶点作射线BX,使∠SBX=45°;第二步过A作m的平行线AN交BX于点D,以A为顶点作射线AY,使∠NAY=30°;则射线BX与射线AY的交点就是C地.(2)如上图,由C 地在B 地南偏东45°方向得∠SBX=45°∵SB ∥m ,AN ∥m∴SB ∥AN∴∠ADC=∠SBX=45°由C 地在A 地的北偏东30°方向得∠NAY=30°,∴∠ACB=180°-∠ADC-∠NAY=180°-45°-30°=105°.【点睛】此题考查方位角、平行线等知识,其中理解方位角正确画出图形是关键.22.如图,有三个论断:①12∠=∠;②B C ∠=∠;③A D ∠=∠,请你从中任选两个作为条件,另一个作为结论构成一个命题,并证明该命题的正确性.解析:答案见解析【分析】先从①②③中任选两个作为条件,另一个作为结论构成一个命题,然后根据平行线的判定和性质及对顶角相等进行证明即可.【详解】已知:12∠=∠,B C ∠=∠求证:A D ∠=∠证明:如图:13∠=∠ 又12∠=∠32∴∠=∠//EC BF ∴AEC B ∴∠=∠又B C ∠=∠AEC C ∴∠=∠//AB CD ∴A D ∴∠=∠.【点睛】本题主要考查了平行线的判定与性质以及命题与定理的证明问题,证明的一般步骤包括写出已知、求证、画出图形和证明.23.如图,DE 平分∠ADF ,DF ∥BC ,点E ,F 在线段AC 上,点A ,D ,B 在一直线上,连接BF .(1)若∠ADF =70°,∠ABF =25°,求∠CBF 的度数;(2)若BF 平分∠ABC 时,求证:BF ∥DE .解析:(1)∠CBF =45°;(2)见解析.【分析】(1)根据平行线的性质和已知条件即可求出∠CBF 的度数;(2)根据平行线的性质可得∠ABC =∠ADF ,再根据BF 平分∠ABC ,DE 平分∠ADF ,可得∠ADE =∠ABF ,再根据同位角相等,两直线平行即可证明BF ∥DE .【详解】解:(1)∵DF ∥BC ,∴∠ABC =∠ADF =70°,∵∠ABF =25°,∴∠CBF =70°﹣25°=45°;(2)证明:∵DF ∥BC ,∴∠ABC =∠ADF ,∵BF 平分∠ABC ,DE 平分∠ADF ,∴∠ADE 12=∠ADF ,∠ABF 12=∠ABC , ∴∠ADE =∠ABF ,∴BF ∥DE .【点睛】 本题考查了平行线的判定与性质,解决本题的关键是掌握平行线的判定与性质.24.如图,//,//DE BC EF AB ,图中与∠BFE 互补的角有几个,请分别写出来.解析:∠EFC 、∠DEF 、∠ADE 、∠B .【分析】根据平行的性质得EFC DEF ADE B ∠=∠=∠=∠,由180BFE EFC ∠+∠=︒,可知这些角与BFE ∠都互补.【详解】解:180BFE EFC ∠+∠=︒,∵//DE BC ,∴DEF EFC ∠=∠,∴180BFE DEF ∠+∠=︒,∵//EF AB ,∴DEF ADE ∠=∠,∴180BFE ADE ∠+∠=︒,∵//DE BC ,∴ADE B ∠=∠,∴180BFE B ∠+∠=︒,与∠BFE 互补的角有4个,分别为:∠EFC 、∠DEF 、∠ADE 、∠B .【点睛】本题考查平行线的性质,解题的关键利用平行线的性质找相等的角.25.如图,在△ABC 中,CD ⊥AB ,垂足为D ,点E 在BC 上,EF ⊥AB ,垂足为F . (1)CD 与EF 平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,∠A=30°,求∠B 的度数.解析:(1)CD 与EF 平行.理由见解析;(2)∠B=35°【分析】(1)先根据垂直的定义得到∠CDB=∠EFB=90°,然后根据同位角相等,两直线平行可判断EF ∥CD ;(2)由EF ∥CD ,根据平行线的性质得∠2=∠BCD ,而∠1=∠2,所以∠1=∠BCD ,根据内错角相等,两直线平行得到DG ∥BC ,所以∠ACB=∠3=115°,根据三角形的内角和即可得到结论.【详解】(1)CD 与EF 平行.理由如下:∵CD ⊥AB ,EF ⊥AB ,∴∠CDB=∠EFB=90°,∴EF ∥CD ;(2)∵EF ∥CD ,∴∠2=∠BCD ,∵∠1=∠2,∴∠1=∠BCD ,∴DG ∥BC ,∴∠ACB=∠3=115°,∵∠A=30°,∴∠B=35°.【点评】本题考查了平行线的判定与性质,注意:同位角相等,两直线平行;内错角相等,两直线平行;两直线平行,同位角相等.26.把一块含60°角的直角三角尺()0090,60EFG EFG EGF ∠=∠=放在两条平行线,AB CD 之间.(1)如图1,若三角形的60°角的顶点G 放在CD 上,且221∠=∠,求1∠的度数; (2)如图2,若把三角尺的两个锐角的顶点,E G 分别放在AB 和CD 上,请你探索并说明AEF ∠与FGC ∠间的数量关系;(3)如图3,若把三角尺的直角顶点F 放在CD 上,30°角的顶点E 落在AB 上,请直接写出AEG ∠与CFG ∠的数量关系.解析:(1)40°;(2)∠AEF+∠FGC=90°;(3)AEG ∠+CFG ∠=300°【分析】(1)根据平行线的性质得:1=∠EGD ,结合∠2=2∠1和平角的定义,即可求解; (2)过点F 作FP ∥AB ,根据平行线的性质和直角的意义,即可求解;(3)根据平行线的性质得∠AEF+∠CFE=180°,结合条件,即可求解.【详解】(1)∵AB ∥CD ,∴∠1=∠EGD ,∵∠2+∠FGE+∠EGD=180°,∠2=2∠1,∴2∠1+60°+∠1=180°,解得∠1=40°;(2)如图,过点F 作FP ∥AB ,∵CD ∥AB ,∴FP ∥AB ∥CD ,∴∠AEF=∠EFP ,∠FGC=∠GFP .∴∠AEF+∠FGC=∠EFP+∠GFP=∠EFG ,∵∠EFG=90°,∴∠AEF+∠FGC=90°;(3) AEG ∠+CFG ∠=300°,理由如下:∵AB ∥CD ,∴∠AEF+∠CFE=180°,即AEG ∠−30°+CFG ∠−90°=180°,整理得:AEG ∠+CFG ∠=300°.【点睛】本题主要考查平行线的性质,添加辅助线,构造相等的角,是解题的关键27.如图所示,在平面直角坐标系中,已知A (0,1)、B (2,0)、C (4,3).(1)在平面直角坐标系中画出△ABC ,作出△ABC 向下平移3格后的△A 1B 1C 1; (2)求△ABC 的面积;(3)已知点Q 为y 轴上一点,若△ACQ 的面积为8,求点Q 的坐标.解析:(1)见解析;(2)4;(3)(0,5)或(0,-3).【分析】(1)先在平面直角坐标系中描点,再连接,然后分别作出平移后的对应点,再顺次连接即可得;(2)利用割补法求解可得;(3)根据三角形面积公式求出AQ 的长,即可确定点Q 的坐标.【详解】解:(1)如图所示,(2)△ABC 的面积=111342421234222⨯-⨯⨯-⨯⨯-⨯⨯= (3)∵Q 为y 轴上一点,△ACQ 的面积为8, ∴1||482AQ ⨯⨯=, ∴AQ=4 ∴点Q 的纵坐标为:4+1=5或1-4=-3,故Q 点坐标为:(0,5)或(0,-3).【点睛】本题主要考查的是作图-平移变换、点的坐标与图形的性质,明确△ABC 的面积=四边形的面积-3个直角三角形的面积是解题的关键.28.如图,直线AB ,CD 相交于点O ,OE 平分∠BOC ,FO ⊥CD 于点O ,若∠BOD ∶∠EOB=2∶3,求∠AOF 的度数.解析:45︒.【分析】设2BOD x ∠=,从而可得3EOB x ∠=,先根据角平分线的定义3EOC EOB x ∠=∠=,再根据平角的定义可得求出x 的值,然后根据垂直的定义可得90DOF ∠=︒,最后根据平角的定义即可得.【详解】设2BOD x ∠=,则3EOB x ∠=,∵OE 平分BOC ∠,∴3EOC EOB x ∠=∠=,180BOD EOB EOC ∠+∠+∠=︒,233180x x x ∴++=︒,解得22.5x =︒,45BOD ∴∠=︒,FO CD ⊥,90DOF ∴∠=︒,又180BOD DOF AOF ∠+∠+∠=︒,4590180AOF ∴︒+︒+∠=︒,解得45AOF ∠=︒.【点睛】本题考查了角平分线的定义、平角的定义、垂直的定义等知识点,熟练掌握并理解各定义是解题关键.。
相交线知识要点:1.定义:两个角有一条公共边,它们的另一条边互为反向延长线,具有这种关系的两个角,互为邻补角.2.邻补角是成对出现的,单独的一个角不能称为邻补角,两条直线相交形成四对邻补角.3.性质:邻补角互补4.定义:两个角有一个公共的顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种关系的两个角,互为对顶角.5.性质:对顶角相等.但相等的角不一定是对顶角.注意:识别对顶角时,要抓住两个关键要素:一是顶点,二是边.先看两个角是否有公共顶点,再看两个角的两边是否分别互为反向延长线.两条直线相交形成两对对顶角.一、单选题1.如图,对于直线AB,线段CD,射线EF,其中能相交的图是()A.B.C.D.2.如图,已知直线AB、CD相交于点O,OA平分∠EOC,∠EOC=110°,则∠BOD的度数是( )A.25°B.35°C.45°D.55°3.如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于( ).A.35°B.70°C.110°D.145°4.如图,∠1=100°,∠2=145°,那么∠3=( ).A.55°B.65°C.75°D.85°5.如图,直线AB、CD相交于点O,且∠AOD+∠BOC=100°,则∠AOC是( )A.150°B.130°C.100°D.90°6.如图,直线AB,CD交于O,EO⊥AB于O,∠1与∠3的关系是()A.互余B.对顶角C.互补D.相等7.如图所示,∠1和∠2是对顶角的是()A.B.C.D.8.下面四个图形中,∠1与∠2是邻补角的是( )A.B.C.D.9.如图,下列各组角中,互为对顶角的是()A.∠1和∠2 B.∠1和∠3 C.∠2和∠4 D.∠2和∠5 10.10.如图所示,下列判断正确的是( )A.图⑴中∠1和∠2是一组对顶角 B.图⑵中∠1和∠2是一组对顶角C.图⑶中∠1和∠2是一对邻补角 D.图⑷中∠1和∠2互为邻补角二、填空题11.如图所示,AB∥CD,EF与AB,CD相交,EF与AB交于点_____,EF与CD交于______.12.两条直线相交,只有_____个交点.13.平面内四条直线共有三个交点,则这四条直线中最多有________ 条平行线.14.探究题:(1)三条直线相交,最少有__________个交点,最多有__________个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数;(2)四条直线相交,最少有__________个交点,最多有__________个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数;(3)依次类推,n条直线相交,最少有__________个交点,最多有__________个交点,对顶角有_________对,邻补角有__________对.三、解答题15.平面上两条直线相交于一点,三条直线俩两相交,每个交点都不经过第三条直线.(1)5条直线的交点为_____个.(2)请探索n条直线的交点个数.16.如图所示,已知直线AB和CD相交于点O,OM平分∠BOD,∠MON=90°,∠AOC=50°.(1)求∠AON的度数.(2)写出∠DON的余角.17.如图,直线AB与CD相交于点O,∠AOC∶∠AOD=1∶2.求∠BOD的度数.18.如图,三条直线AB,CD,EF交于一点,若∠1=30°,∠2=70°,求∠3的度数.答案1.B2.D3.C4.B5.B6.A7.C8.D9.A10.D11.M N 12. 1.13.三14.(1)1,3;(2)1,6;(3)1,(1)2n n,n(n-1),2n(n-1)15.(1)如图所示:我们发现:2条直线相交有1个交点;3条直线相交有1+2=3个交点;4条直线相交有1+2+3=6个交点,则5条直线的交点为1+2+3+4=10;(2)图(n):1+2+3+…+n-1=(1)2n n.16.(1)∵∠AOC+∠AOD=∠AOD+∠BOD=180°,∴∠BOD=∠AOC=50°,∵OM平分∠BOD,∴∠BOM=∠DOM=25°,又由∠MON=90°,∴∠AON=180°﹣(∠MON+∠BOM)=180°﹣(90°+25°)=65°;(2)由∠DON+∠DOM=∠MON=90°知∠DOM为∠DON的余角,∵∠AON+∠BOM=90°,∠DOM=∠MOB,∴∠AON+∠DOM=90°,∴∠NOD+∠BOM=90°,故∠DON的余角为:∠DOM,∠BOM.17.由邻补角的性质,得∠AOC+∠AOD=180°.由∠AOC∶∠AOD=1∶2,得∠AOD=2∠AOC,∠AOC+2∠AOC=180°,解得∠AOC=60°.由对顶角相等,得∠BOD=∠AOC=60°.故答案为:60°.18.解:如图,∵∠4=∠2=70°(对顶角相等),∴∠3=180°-∠1-∠4=180°-30°-70°=80°.3. 有理数的加减混合运算【知识与技能】1.正确理解加法交换律,结合律,能利用运算律简化运算.2.熟练掌握有理数的加法和减法运算法则.3.能进行有理数的加减混合运算,培养学生的计算能力,向学生渗透归纳、转化等数学思想;在合作学习解决问题的过程中,体会合作交流的重要性.【过程与方法】从学生熟悉的生活实例得出“有理数的加减混合运算”,并通过各种师生活动加深学生对“运算律”和“加减混合运算”的理解;使学生在经历有理数混合运算的过程中,体验数学中的转化思想.【情感态度】通过有理数加减的学习,让学生在学习的过程中通过观察、比较、思考等体验数学的创新思维和发散思维,学会与人交流,培养实事求是的科学态度,使学生养成认真、细致的计算习惯.【教学重点】重点是运用加法运算律简化计算,在有理数的混合运算中,将加减统一成加法的省略括号的形式.【教学难点】难点是将加减统一成加法的省略括号的形式.一、情境导入,初步认识【情境1】实物投影,并呈现问题:计算:(1)①5+(-13)(-13)+5;②(-4)+(-8)(-8)+(-4);(2)①8+(-5)+(-4)8+(-5)+(-4);②(-6)+(-12)+15(-6)+(-12)+15.思考观察第一组两题,比较它们有什么异同点?第二组两题呢?由此你能得出什么结论?【情境2】实物投影,并呈现问题:2014年北京一个冬天的早晨只有—7℃,中午气温上升了11℃,到半夜又下降了9℃,那么半夜的温度是多少?你能列出算式吗?【教学说明】学生独立思考后,小组讨论,教师注意引导学生观察、比较、讨论与归纳,感受运算律的意义和作用.通过实际问题引出有理数加减混合运算,并归纳出加减混合运算的一般步骤.情境1中第一组两题的两个加数相同,加数的位置不同,结果相同.两数相加,交换加数的位置,和不变.第二组两题中三个加数相同,运算顺序不同,结果相等.三个数相加,先把前两个数相加再加第三个数或把后两个数相加再加第一个数,其和不变.情境2中算式为:(-7)+11-9.【教学说明】通过现实情景再现,让学生体会数学知识与实际生活的联系.学生通过前面的情景引入,在老师的引导下,通过自己的观察,归纳出结论,进而体验到成功的喜悦,同时,也激发了学生学习的兴趣.二、思考探究,获取新知1.有理数加法的运算律问题1用语言叙述加法的交换律和结合律?问题2用字母表示加法的交换律和结合律?【教学说明】学生通过回顾旧知识,在经过观察、分析、类比后能得出结论.【归纳结论】加法运算律:加法的交换律:a+b=b+a;加法的结合律:(a+b)+c =a+(b+c).在有理数的计算中,运用运算律可以简化运算.2.加减混合运算问题1有理数加减运算的一般顺序是什么?问题2有理数加减运算的一般步骤是什么?【教学说明】学生通过回顾旧知识,在经过观察、分析、类比后能得出结论.【归纳结论】有理数加减法混合运算的一般步骤为:(1)减法转化成加法;(2)省略加号及括号;(3)运用加法交换律使相加可得到整数的先相加;分母相同或易于通分的分数可先相加;互为相反数的可先相加.注意:在交换加数的位置时,要连同加数的符号一起交换.三、运用新知,深化理解1.不改变原式的值,将6-(+3)-(-7)+(-2)中括号去掉的形式是()A.-6-3+7-2B.6-3-7-2C.6-3+7-2D.6+3-7-22.-17-8-16+7的不正确读法是()A.负17、负8、负16、正7的和B.减17减8减16加7C.负17减8减16加7D.负17加负8加负16加73.计算:(1)3+4.4+[(+334)+(-8.4)]+(-114)+6;(2)0.5+(-32)-(+2.75)-(-134).4.计算:-24+3.2-16-3.5+0.3.5.列式计算:(1)-0.3与-13的和减去-1310的差;(2)-313与-1.2的差与-212的和.【教学说明】通过新课的讲解以及学生的练习,充分做到讲练结合,让学生更好巩固新知识.通过本环节的讲解与训练,让学生对有理数的加减混合运算有了更加明确的认识,同时也尽量让学生明白知识点不是孤立的,需要前后联系,才能更好地处理问题.【答案】1.C 2.B3.解:(1)原式=712;(2)原式=-2.4.解:原式=-24-16+3.2+0.3-3.5 =-40+3.5-3.5=-40+0=-405.解:(1)[(-0.3)+(-13)]-(-1310)=(-3310)+(-13)+(+1310)=[(-310)+(+1310)]+(-13)=1+(-13)=23.(2)[(-313)-(-1.2)]+(-212)=[(-313)+(+115)]+(-212)=-2215+(-212)=-41930四、师生互动,课堂小结1.有理数加法的运算律是什么?有理数加减混合运算的一般步骤是什么?2.通过这节课的学习,你还有哪些疑惑,大家交流.【教学说明】引导学生自己小结本节课的知识要点及数学方法,从而将本节知识点进行很好的回顾以加深学生的印象,同时使知识系统化.1.布置作业:从教材第25页“练习”和教材第26页“习题1.4”中选取.2.完成同步练习册中本课时的练习.在本节的教学中,通过观察、对比、归纳得出有理数加法的运算律,过程中充分发挥了学生的主动性,培养学生的语言表达能力,让学生体会学习数学的快乐和成就感,进而增强学习数学的信心.有理数的混合运算又加强了学生的思维和运用技巧的能力.去括号与添括号(30分钟50分)一、选择题(每小题4分,共12分)1.下列去括号中,正确的是( )A.x2-(2xy-y2)=x2-2xy-y2B.x2+(-2xy-y2)=x2-2xy+y2C.a-[b-(c-d)]=a-b+c-dD.-(a+b)-(c-d)=-a-b-c-d2.下列等式恒成立的是( )A.-a+b=-(a+b)B.2a+8=2(a+8)C.3-5a=-(5a-3)D.12a-4=8a3.不改变代数式3a-(2a-b)的值,将括号前面的符号变为“+”号,正确的是( )A.3a+(2a-b)B.3a+(2a+b)C.3a+(-2a-b)D.3a+(-2a+b)二、填空题(每小题4分,共12分)4.2m2-n2-m+3n=2m2+(__________)=2m2-(____________).5.(2012·扬州中考)已知2a-3b2=5,则10-2a+3b2的值是________.6.有一长方形花坛,其周长为(14x+2y)米,长为(3x+y)米,则它的宽为________.三、解答题(共26分)7.(8分)先化简,再求值:x-(2x+y2)+2(-x+y2),其中x=-2,y=.8.(8分)天平的左边挂重为2m2-4m+3,右边挂重为m2-4m+2,请你猜一猜,天平会倾斜吗?如果出现倾斜,将向哪边倾斜?【拓展延伸】9.(10分)规定:=a- b+c-d,试计算.答案解析1.【解析】选C.a-[b-(c-d)]=a-(b-c+d)=a-b+c-d.选项C正确.2.【解析】选C.因为-(5a-3)=-5a+3=3-5a.3.【解析】选D.因为3a-(2a-b)=3a-2a+b=3a+(-2a+b).4.【解析】2m2-n2-m+3n=2m2+(-n2-m+3n);2m2-n2-m+3n=2m2-(n2+m-3n).答案:-n2-m+3n n2+m-3n5.【解析】10-2a+3b2=10-(2a-3b2)=10-5=5.答案:56.【解析】因为长方形花坛的周长为(14x+2y)米,所以长+宽为(14x+2y)米.所以花坛的宽为(14x+2y)-(3x+y)=7x+y-3x-y=4x(米).答案:4x米7.【解析】x-(2x+y2)+2(-x+y2) =x-2x-y2-3x+y2=(-2-3)x+(-+)y2=-x.当x=-2,y=时,原式=-×(-2)=9.8.【解析】因为(2m2-4m+3)-(m2-4m+2) =2m2-4m+3-m2+4m-2=m2+1>0.所以天平会倾斜,向左边倾斜.9.【解析】=(xy-3x2)-(-2xy-x2)+(-2x2-3)-(-5+xy) =xy-3x2+2xy+x2-2x2-3+5-xy=(1+2-1)xy+(-3+1-2)x2+(-3+5)=2xy-4x2+2.。
相交线
(30分钟50分)
一、选择题(每小题4分,共12分)
1.(2017·泰兴市月考)如果∠α与∠β是邻补角,且∠α>∠β,那么∠β的余角是( )
A.(∠α+∠β)
B.∠α
C.(∠α-∠β)
D.不能确定
【解析】选C.因为∠α与∠β是邻补角,
所以∠α+∠β=180°,
所以(∠α+∠β)=90°,
所以∠β的余角是:90°-∠β=(∠α+∠β)-∠β=(∠α-∠β).
2.(2017·襄城区月考)直线AB,CD,EF相交于O,则∠1+∠2+∠3=( )
A.90°
B.120°
C.180°
D.140°
【解析】选C.如图,∠4=∠3,
因为∠2+∠1+∠4=180°,
所以∠1+∠2+∠3=180°.
3.已知∠AOB与∠BOC互为邻补角,且∠BOC>∠AOB,OD平分∠AOB,射线OE使∠BOE=∠EOC,当∠DOE=72°时,则∠EOC的度数为( )
A.72°
B.108°
C.72°或108°
D.以上都不对
【解题指南】先根据题意画出图形,设∠AOD=∠DOB=x°,∠BOE=y°,则∠EOC=
2y°,根据题意,x+y=72,再根据补角的定义即可得出y的值,故可得出结论.
【解析】选A.如图,设∠AOD=∠DOB=x°,∠BOE=y°,则∠EOC=2y°,
根据题意,x+y=72,
因为2x+3y=2x+2y+y=2(x+y)+y=180,
所以2×72+y=180,所以y=180-144=36,
所以∠EOC=36°×2=72°.
【知识归纳】邻补角与对顶角的区别
(1)从图形上看:互为邻补角的两个角只有一条边互为反向延长线,互为对顶角的两个角的两边都互为反向延长线.(2)从数量上看:邻补角的和等于180°,而对顶角相等.
二、填空题(每小题4分,共12分)
4.如图,已知∠α与∠β共顶点O,∠α+∠β<180°,∠α=∠β.若∠β的邻补角等于∠α,则∠β=________度.
【解题指南】设∠α=x,则∠β=3x,
利用邻补角的性质构造方程得到答案.
【解析】设∠α=x,则∠β=3x,根据题意得:
180°-3x=x,解得:x=40°,所以∠β=3x=120°.
答案:120
5.如图,直线AB,CD相交于点O,OE平分∠AOB,OB平分∠DOF,若∠DOE=
50°,则∠DOF的度数为______.
【解析】因为AB为直线,OE平分∠AOB,
所以∠AOE=∠BOE=90°.
因为∠DOE=50°,
所以∠DOB=∠BOE-∠DOE=40°.
因为OB平分∠DOF,
所以∠DOF=2∠DOB=80°.
答案:80°
6.如图,直线AB,CD,EF相交于同一点O,而且∠BOC=∠AOC,∠DOF=∠AOD,那么
∠FOC=__________.
【解题指南】根据邻补角互补:∠BOC+∠AOC=180°→把∠BOC=∠AOC代入→求出∠BOC→由对顶角相等:∠BOC=∠AOD→再结合∠DOF=∠AOD→求∠DOF的度数→由邻补角的定义可得∠FOC的度数.
【解析】因为∠BOC+∠AOC=180°,∠BOC=∠AOC,所以∠BOC=72°,所以∠BOC=∠AOD=72°.因为∠DOF=
∠AOD=24°,
所以∠FOC=180°-∠DOF=156°.
答案:156°
【变式训练】如图所示,直线AB与CD交于点O,∠BOD=31°36′,OE平分
∠BOC,则∠AOD+∠COE=____________.
【解析】根据∠BOD=31°36′,结合邻补角互补:∠BOC+∠BOD=180°,易求
∠AOD=∠BOC=148°24′,而OE是∠BOC的平分线,易求∠COE=74°12′,进而可求∠AOD+∠COE=148°24′+74°12′=222°36′.
答案:222°36′
三、解答题(共26分)
7.(8分)(2017·海安县月考)如图,直线AB,CD,EF相交于点O.
(1)写出∠COE的邻补角.
(2)分别写出∠COE与∠BOE的对顶角.
(3)如果∠BOD=60°,∠BOF=90°,求∠AOF和∠FOC的度数.
【解析】(1)∠COE的邻补角为∠COF和∠EOD.
(2)∠COE和∠BOE的对顶角分别为∠DOF和∠AOF.
(3)因为∠BOF=90°,
所以∠AOF=90°,
又因为∠AOC=∠BOD=60°
所以∠FOC=∠AOF+∠AOC=90°+60°=150°.
8.(8分)如图,直线AB,CD相交于点O.
(1)若∠AOC+∠BOD=100°,求各角的度数.
(2)若∠BOC比∠AOC的2倍多33°,求各角的度数.
【解析】(1)由对顶角相等且∠AOC+∠BOD=100°可得∠AOC=∠BOD=50°,
由邻补角的定义可得∠AOD=∠BOC=130°.
(2)∠BOC比∠AOC的2倍多33°,则∠BOC-2∠AOC=33°且∠BOC+∠AOC=180°.
所以∠AOC=∠BOD=49°,∠AOD=∠BOC=131°.
【培优训练】
9.(10分)(1)三条直线相交,最少有____个交点;最多有____个交点,画出图形,并数出图形中的对顶角和邻补角的对数.
(2)四条直线相交,最少有______个交点;最多有______个交点,画出图形,并数出图形中的对顶角和邻
补角的对数.
(3)依次类推,n条直线相交,最少有______个交点;最多有______个交点,对顶角有______对,邻补角有______对.
【解析】(1)最少有1个交点,最多有3个交点,如图:,对顶角有6对,邻补角有12对.
(2)最少有1个交点,最多有6个交点,如图:,对顶角有12对,邻补角有24对.
(3)n条直线相交,最少有1个交点,最多有个交点,对顶角有n(n-1)对,邻补角有2n(n-1)对.。