第三章位置与坐标1确定位置
- 格式:ppt
- 大小:2.96 MB
- 文档页数:20
确定位置北师大数学八年级上第三章第一节一、教材分析与学情分析(一)教材分析:《确定位置》是八年级上册第三章《位置的确定》第一节内容。
本章是“图形与坐标”的主体内容,不仅呈现了“确定位置的多种方法、平面直角坐标系”等内容,而且也从坐标的角度使学生进一步体会图形平移、轴对称的数学内涵,同时又是一次函数的重要基础。
《确定位置》将现实生活中常用的定位方法呈现给学生,将进一步丰富学生的数学活动经验,提升学生观察、分析、归纳、概括的能力。
(二)学情分析:学生在小学已经接触了有关确定位置的知识,而对八年级学生而言,他们对新鲜事物特别有兴趣。
因此,教学过程中创设生动活泼、直观形象、且贴近他们生活的问题情境,会引起学生的极大关注,会有利于学生对内容的较深层次的理解;另一方面,学生已经具备了一定的学习能力,可多为学生创造自主学习、合作交流的机会,促使他们主动参与、积极探究。
二、教学目标:(一)知识技能1、通过丰富的现实情景,使学生感受确定物体位置的方法,进一步发展学生的数形结合意识、形象思维能力的和数学应用能力.2、通过例题、习题、以及生活中的实例,归纳出确定位置的条件和方法,并会用生动形象的语言概括总结的确定位置的方法.3、体会生活中平面物体位置的确定离不开两个数据,以及数学与生活的联系. (二)过程与方法1、通过学习与探究,学会确定物体位置的几种方法。
2、学会运用形象生动的语言归纳出确定位置的条件和方法。
3、学会比较灵活地选择和运用不同的方式确定物体的位置。
(三)情感态度1、通过体验实际情景,运用语言归纳概括确定物体的位置的方法,提高学生的语言表达能力,开拓学生的思路,发展学生的思维能力。
2、在与他人的合作过程中,培养学生敢于面对挑战和勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,培养学生的合作意识和团队精神.3、培养良好的数学观,增强数学的应用意识。
三、教学重点、难点(一)重点:1.探索用行列发在平面上确定物体位置的方法。
第三章位置与坐标知识点总结第三章位置与坐标知识点1 坐标确定位置知识链接平⾯内特殊位置的点的坐标特征(1)各象限内点P (a ,b )的坐标特征:①第⼀象限:a >0,b >0;②第⼆象限:a <0,b >0;③第三象限:a <0,b <0;④第四象限:a >0,b <0.(2)坐标轴上点P (a ,b )的坐标特征:①x 轴上:a 为任意实数,b=0;②y 轴上:b 为任意实数,a=0;③坐标原点:a=0,b=0.(3)两坐标轴夹⾓平分线上点P (a ,b )的坐标特征:①⼀、三象限:b a =;②⼆、四象限:b a -=.同步练习1.定义:直线l 1与l 2相交于点O ,对于平⾯内任意⼀点M ,点M 到直线l 1、l 2的距离分别为p 、q ,则称有序实数对(p ,q )是点M 的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是() A .2 B .3 C .4 D .52.如图,是⽤围棋⼦摆出的图案(⽤棋⼦的位置⽤⽤有序数对表⽰,如A 点在(5,1)),如果再摆⼀⿊⼀⽩两枚棋⼦,使9枚棋⼦组成的图案既是轴对称图形⼜是中⼼对称图形,则下列摆放正确的是()A .⿊(3,3),⽩(3,1)B .⿊(3,1),⽩(3,3)C .⿊(1,5),⽩(5,5)D .⿊(3,2),⽩(3,3)3.如图为⼩杰使⽤⼿机内的通讯软件跟⼩智对话的纪录.根据图中两⼈的对话纪录,若下列有⼀种⾛法能从邮局出发⾛到⼩杰家,则此⾛法为何?()A .向北直⾛700公尺,再向西直⾛100公尺B .向北直⾛100公尺,再向东直⾛700公尺C .向北直⾛300公尺,再向西直⾛400公尺D .向北直⾛400公尺,再向东直⾛300公尺4.如图是我市⼏个旅游景点的⼤致位置⽰意图,如果⽤(0,0)表⽰新宁莨⼭的位置,⽤(1,5)表⽰隆回花瑶的位置,那么城市南⼭的位置可以表⽰为()A.(2,1)B.(0,1)C.(-2,-1)D.(-2,1)5.⼩军从点O向东⾛了3千⽶后,再向西⾛了8千⽶,如果要使⼩军沿东西⽅向回到点O的位置,那么⼩明需要()A.向东⾛5千⽶B.向西⾛5千⽶C.向东⾛8千⽶D.向西⾛8千⽶6.在⼀次寻宝游戏中,寻宝⼈找到了如图所⽰的两个标志点A(2,1)、B(4,-1),这两个B(-3,-3)可认,⽽主要建筑C(3,2)破损,请通过建⽴直⾓坐标系找到图中C点的位置.11.如图是某台阶的⼀部分,如果A点的坐标为(0,0),B点的坐标为(1,1).(1)请建⽴适当的直⾓坐标系,并写出其余各点的坐标;(2)说明B,C,D,E,F的坐标与点A的坐标⽐较有什么变化?(3)现要给台阶铺上地毯,单位长度为1,请你算算要多长的单位长度的地毯?12.常⽤的确定物体位置的⽅法有两种.如图,在4×4个边长为1的正⽅形组成的⽅格中,标有A,B两点.请你⽤两种不同⽅法表述点B相对点A的位置.知识点2 平⾯直⾓坐标系知识链接1点的坐标(1)我们把有顺序的两个数a和b组成的数对,叫做有序数对,记作(a,b).(2)平⾯直⾓坐标系的相关概念①建⽴平⾯直⾓坐标系的⽅法:在同⼀平⾯内画两条有公共原点且垂直的数轴.②各部分名称:⽔平数轴叫x轴(横轴),竖直数轴叫y轴(纵轴),x轴⼀般取向右为正⽅向,y轴⼀般取象上为正⽅向,两轴交点叫坐标系的原点.它既属于x轴,⼜属于y轴.(3)坐标平⾯的划分建⽴了坐标系的平⾯叫做坐标平⾯,两轴把此平⾯分成四部分,分别叫第⼀象限,第⼆象限,第三象限,第四象限.坐标轴上的点不属于任何⼀个象限.(4)坐标平⾯内的点与有序实数对是⼀⼀对应的关系.2 两点间的距离公式:设有两点A(x1,y1),B(x2,y2),则这两点间的距离为AB=(x1-x2)2+(y1-y2)2.说明:求直⾓坐标系内任意两点间的距离可直接套⽤此公式.、有图形中⼀些点的坐标求⾯积时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题A .a=bB .2a+b=-1C .2a-b=1D .2a+b=15.如图,在平⾯直⾓坐标系中,有⼀矩形COAB ,其中三个顶点的坐标分别为C (0,3),O (0,0)和A (4,0),点B 在⊙O 上.(1)求点B 的坐标;(2)求⊙O 的⾯积.6.如图,在平⾯直⾓坐标系中,OABC 是正⽅形,点A 的坐标是(4,0),点P 在AB边上,且∠CPB=60°,将△CPB 沿CP 折叠,使得点B 落在D 处,则D 的坐标为()A .(2,32)B .(3 , 32-)C .(2,324-)D .(3,324-)A .(2 ,n )B .(m ,n )C .(m ,2)D .(2,2) *13.(2014?海港区⼀模)如图,在直⾓坐标系中,有16×16的正⽅形⽹格,△ABC 的顶点分别在⽹格的格点上.以原点O 为位似中⼼,放⼤△ABC 使放⼤后的△A′B′C′的顶点还在格点上,最⼤的△A′B′C′的⾯积是()A .8B .16C .32D .64知识点4 坐标与图形的变化知识链接1 坐标与图形变化---对称(1)关于x轴对称横坐标相等,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,-y).(2)关于y轴对称纵坐标相等,横坐标互为相反数.即点P(x,y)关于y轴的对称点P′的坐标是(-x,y).(3)关于直线对称①关于直线x=m对称,P(a,b)?P(2m-a,b)②关于直线y=n对称,P(a,b)?P(a,2n-b)2 坐标与图形变化---平移(1)平移变换与坐标变化向右平移a个单位,坐标P(x,y)?P(x+a,y)向左平移a个单位,坐标P(x,y)?P(x-a,y)向上平移b个单位,坐标P(x,y)?P(x,y+b)向下平移b个单位,坐标P(x,y)?P(x,y-b)(2)在平⾯直⾓坐标系内,把⼀个图形各个点的横坐标都加上(或减去)⼀个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)⼀个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)3 坐标与图形变化---旋转(1)关于原点对称的点的坐标.即点P(x,y)关于原点O的对称点是P′(-x,-y).(2)旋转图形的坐标图形或点旋转之后要结合旋转的⾓度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊⾓度如:30°,45°,60°,90°,180°.同步练习1.在平⾯直⾓坐标系中,将点(2,3)向上平移1个单位,所得到的点的坐标是()A.(1,3)B.(2,2)C.(2,4)D.(3,3)2.将点A(-2,-3)向右平移3个单位长度得到点B,则点B所处的象限是()A.第⼀象限B.第⼆象限C.第三象限D.第四象限3.如图,把ABC经过⼀定的变换得到△A′B′C′,如果△ABC上点P的坐标为(x,y),那么这个点在△A′B′C′中的对应点P′的坐标为()A.(-x,y-2)B.(-x,y+2)C.(-x+2,-y)D.(-x+2,y+2)4.如图,已知正⽅形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正⽅形ABCD先沿x轴翻折,再向左平移1个单位”为⼀次变换,如此这样,连续经过2014次变换后,正⽅形ABCD的对⾓线交点M的坐标变为()A.(-2012,2)B.(-2012,-2)C.(-2013,-2)D.(-2013,2)5.如图,在平⾯直⾓坐标系中,点A坐标为(1,3),将线段OA向左平移2个单位长度,得到线段O′A′,则点A的对应点A′的坐标为.。
第三章位置与坐标 1 确定位置教学目标1.明确确定位置的必要性,掌握确定位置的基本方法.2.经历生活中确定位置实例认识过程,培养学生观察问题、解决问题的能力.3.让学生主动地参与观察、操作与活动,感受丰富的现实背景,体验形式多样的确定位置的方式,增强学习的兴趣.重点感受确定物体位置的多种方式与方法.难点能比较灵活地运用不同的方式确定物体的位置.教学用具教学环节二次备课新课导入一、创设情境,引入新课教师出示以下几个情景,并请学生思考它们的共同之处.1.一位居民打电话供电部门“卫星路第8根电线杆的路灯坏了”,维修人员很快修好了路灯.2.地质部门在某地埋下一标志桩,上面写着“北纬44.2°,东经125.7°”.3.某人买了一张6排3号的电影票,很快找到了自己的座位.分析以上情景中,他们都是利用哪些数据找到位置的?课程讲授1.教师出示问题展示生活中确定物体位置的几种常见方法.问题1:如图点A表示3街与5大道的十字路口,点B表示5街与3大道的十字路口,如果用(3,5)→(4,5)→(5,5)→(5,4)→(5,3)表示由A到B的一条路径,那么你能用同样的方法写出由A到B的其他几条路径吗?AB2大道1大道1街2街3街4街5街6街分析、寻找规律,确定路线.图中确定点用前一个数表示街,后一个数表示大道.解:其他的路径可以是:(3,5)→(4,5)→(4,4)→(5,4)→(5,3);(3,5)→(4,5)→(4,4)→(4,3)→(5,3);(3,5)→(3,4)→(4,4)→(5,4)→(5,3);(3,5)→(3,4)→(4,4)→(4,3)→(5,3);(3,5)→(3,4)→(3,3)→(4,3)→(5,3).根据所学的知识,请同学们观察自己在班级里的位置,思考应该怎样表示.小结:利用有序数对,表示一个确定的位置.问题2:如图是某次海战中敌我双方舰艇对峙示意图(图中1 cm表示20n mile).对我方潜艇O来说:(1)北偏东40°的方向上有哪些目标?要想确定敌舰B的位置,还需要什么数据?(2)距离我方潜艇20n mile的敌舰有哪几艘?(3)要确定每艘敌舰的位置,各需要几个数据?解:(1)如图,对我方潜艇来说,北偏东40°的方向上有两个目标:敌舰B和小岛.要想确定敌舰B的位置,仅用北偏东40°的方向是不够的,还需要知道敌舰B距我方潜艇的距离.(2)距离我方潜艇20n mile的敌舰有两艘:敌舰A和敌舰C.(3)要确定每艘敌舰的位置,各需要两个数据:距离和方位角.例如,对我方潜艇来说,敌舰A在正南方向,距离为20n mile处,敌舰B在北偏东40°的方向,距离为28n mile处;敌舰C在正东方向,距离为20n mile处.小结:利用距离和方位角来确定位置.问题3:(1)据新华社报道,2008年5月12日14:28,我国四川省发生里氏8.0级强烈地震,震中位于阿坝洲汶川县境内,即北纬31.4°,东经103.6°.在这次地震中有69 142人遇难,17 551人失踪.这是新中国成立以来破坏性最强、波及范围最大的一次地震.地震重创约50万km2的中国大地!你能在图(1)中找到震中的大致位置吗?(2)图(2)是广州市地图简图的一部分,如何向同伴介绍“广州起义烈士陵园”所在的区域?“广州火车站”呢?解:(1)先找出北纬31.4°所在的横线,然后找到东经103.6°所在的竖线,地震的位置在横线和竖线相交的地方.(2)“广州起义烈士陵园”在C4区,“广州火车站”在B3区.小结:类似于有序数对的方法,将平面分成若干个小正方形的方格,利用点所在行与列的位置来确定点的位置.2.议一议.在平面内,确定一个物体的位置一般需要几个数据?(2个)三、巩固练习仿照前面的方法确定位置关系,学生尝试描述位置.1.如图是某城市市区的一部分示意图,对市政府来说:(1)北偏东60°的方向有哪些单位?要想确定单位的位置,还需要哪些数据?(2)火车站与学校分别位于市政府的什么方向?怎样确定它们的位置?2.如图,“马”所处的位置为(2,3).(1)你能表示出“象”的位置吗?(2)写出“马”下一步可以到达的位置.教师提示:可以变化出其他的象棋盘上的位置,也可以引申到围棋盘或其他棋类.小结师:本节课主要学习了几种常用的表示物体的位置的方法?作业布置57页1.2题板书设计在平面内,确定一个物体的位置一般需要两个数据。
第三章位置与坐标1 确定位置教学目标教学反思1.理解在平面内确定一个物体的位置一般需要两个数据,灵活运用不同的方式确定物体的位置.2.经历在现实生活中确定物体位置的过程,感受确定物体位置的多种方法.3.体验生活中处处有确定位置,感受现实生活中确定位置的必要性.教学重难点重点:理解在平面内确定一个物体的位置一般需要两个数据.难点:灵活运用不同的方式确定物体的位置.教学过程导入新课提出问题:1.在数轴上,确定一个点的位置需要几个数据呢?学生:一个,例如A点表示-2,B点表示3,则由-2和3就可以在数轴上找到A点和B点的位置.2.在平面内,又如何确定一个点的位置呢?小明父子二人周末去电影院看电影,座位号分别是3排6座和6排3座.怎样才能既快又准地找到座位?设计意图:利用学生感兴趣的生活知识,贴近学生的生活,培养学生的学习兴趣,激发学生的求知欲,让学生在不知不觉中感受学习数学的乐趣,以愉快的心情开始一节课的学习,激发学习数学的积极性.探究新知一、预习新知让学生自主预习课本54~56页,并思考下面的问题:1.在电影院内如何找到电影票上指定的位置?2.在电影票上,“3排6座”与“6排3座”中的“6”的含义有什么不同?3.如果将“3排6座”简记作(3,6),那么“6排3座”如何表示?(5,6)表示什么含义呢?(教师巡视)学生独立思考,然后小组内讨论,最后学生代表发表各小组的见解.设计意图:这样能较好地体现数学的实践性,可以形成良好的数学观.二、合作探究在电影院内,确定一个位置一般需要几个数据?两个数据,排数和座位号数.教师总结:我们称这种方法为行列定位法.“3排6座”可以记作(3,6),“6排3座” 可以记作(6,3),它们的前后顺序可以交换吗?这两个数据各自表示的意义不同,不能交换前后顺序,我们把这样的这样的数据叫做有序实数对.(学生总结,教师点评)在平面内,确定一个物体的位置一般需要两个数据.根据有序实数对怎样确定教室里每个人的位置?我们把竖行叫做列,确定第几列一般从左往右数,引导学生按列报数,把横行叫做排,确定第几排一般从前往后数,引导学生按排报数.做游戏教学反思(1)第二列同学拍拍肩,第五排同学站起来,谁做了两次动作,请说说你的位置.(2)第四列同学举手,第三排同学拍拍手,谁做了两次动作,请说说你的位置.在生活中,确定物体的位置还有其他方法吗?与同伴交流.方向定位法、经纬度定位法、区域定位法.巩固练习电影院的3排6座表示为(3,6),如果某同学的座位号为(7,5),那么该同学所坐的位置是()A.5排7座B.7排5座C.5座7层D.7排5层答案:B典型例题【例1】观察如图所示象棋盘,回答问题:(1)请你说出“将”与“帅”的位置;(2)说出“马3 进4”(即第3 列的马前进到第4列)后的位置.【问题探索】只要把每个棋子所在的行和列表示清楚本题就解决了.【解】(1)(5,9),(5,1)(注:第一个数字是列数,第二个数字是行数);(2)(4,7).【总结】利用有序数对表示点的位置的“三步法”:(1)明确有序数对中行与列的表示顺序;(2)由已知点确定起始行与列;(3)用有序数对表示所求各点的位置.【例2】一家超市的位置如图,则学校在这家超市的什么位置?【问题探索】用方向定位法确定物体的位置时,一般先考虑什么?再确定什么?【解】学校在超市的南偏西60°方向,且距离超市500米处.【总结】确定位置的方法有多种,但都需要两个数据.方向定位法所需的两个数据:一是方向角;二是距离.要避免出现缺少其中一个数据的错解.课堂练习1.七(2)班有45人参加学校运动会的入场式,队伍共9排5列.如果用(2,4)表示第2排从左至右第4列的同学,那么在队伍最中间的同学应表示为()A.(15,4)B.(2,3)C.(3,0)D.(5,3)2.生态园位于县城东北方向5公里处,下列选项中表示准确的是()A BC D3.现规定向东、向北走为正.小林向东走5米,再向南走8米,记作(5,-8),那么,(-3,6)表示______.4.如图,棋子B在(2,1)处,用有序数对表示出图中另外六枚棋子的位置.参考答案1.D2.B3.向西走3米,再向北走6米4.解:A(0,0),C(3,3),D(1,2),E(4,1),F(2,4),G(5,4).课堂小结(学生总结,老师点评)在平面内,确定一个物体的位置一般需要两个数据,也就是有序实数对.确定位置的方法:行列定位法、方向定位法、经纬度定位法、区域定位法.布置作业随堂练习第1题,习题3.1第2题板书设计1 确定位置在平面内,确定一个物体的位置一般需要两个数据.教学反思。
第三章位置与坐标
1.确定位置
在同一平面内确定一个物体的位置一般需要两个数据
2.平面直角坐标系
【定义】:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。
水平的数轴叫做x轴或横轴;铅直的数轴叫做y轴或纵轴,x轴和y轴统称坐标轴,他们的公共原点O称为直角坐标系的原点。
【确定一个点在坐标心中的位置】:对于平面内任意一点P,过点P分别向x 轴和y轴上对应的数a,b分别叫做点P的横坐标和纵坐标;有序实数对(a,b)叫做点P的坐标。
3.象限的划分
在平面直角坐标系中,两条坐标轴将坐标平面分成了四部分:右上方的部分叫做第一象限;其他三部分按逆时针方向依次叫做第二象限;第三象限;第四象限。
坐标轴上的点不在任何一个象限内。
在直角坐标系中,对于平面上的任意一点,都有唯一的一个有序实数对(即点的坐标)与它对应;反过来。
对于任意一个有序实数对,都有平面上唯一的点与它对应。
4.坐标轴的对称与变化
关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数。
关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数。
关于原点对称的两个点的坐标,横坐标和纵坐标都互为相反数。