上海证券:障碍期权的定价和希腊字母风险
- 格式:pdf
- 大小:1.04 MB
- 文档页数:18
期权定价风险参数/希腊字母计算公式一览一、Black —Scholes 期权定价模型Black —Scholes 期权定价模型适用于无红利欧式期权的定价,看涨期权定价公式如下:)()(2)(1d N Ke d SN C t T r ---=其中:t T t T r K S d --++=σσ))(2()ln(21;t T d d --=σ12。
二、风险参数/希腊字母Delta :对标的物价格进行一阶求导,反映的是期权价格对标的物价格的敏感程度。
)(1d N Delta C =;1-)(1d N Delta P =Gamma对标的物价格进行二阶求导,反映的是期权价格对Delta 的敏感度。
t T s d N Gamma Gamma P C -)(1σ'==Vega对波动率进行一阶求导,反映的是期权价格对标的物波动率的敏感程度。
t T S d N Vega Vega P C -'==)(1Theta对时间进行一阶求导,反映的是期权价格对时间流逝的敏感程度。
)(2)(2)(1d N rKe tT S d N Theta t T r C ----'-=σ )-(2)(2)(1d N rKe tT S d N Theta t T r P --+-'-=σ Pho对无风险收益率进行一阶求导,反映的是期权价格对无风险收益率的敏感程度。
)()(2)(d N e t T K ho t T r C ---=ρ)-()(-2)(d N et T K ho t T r P ---=ρ 此外,极值波动率的计算公式为: ∑==N i i i l h N 12)ln(2ln 41σ。
「期权系列」期权的风险管理利器—希腊字母一般的期权定价模型是由以下因素决定:相当资产的当前价格、波动率、无风险利率、期权到期时间以及行使价等。
在这些变数中,除了行使价是固定的,其他任何一个因素的变化都会造成相应期权价值的不断变化,这也给期权带来了相应的投资风险。
希腊字母作为度量期权风险的金融指标,常常被专业投资者所关注。
所以, 本文主要介绍以下几个主要希腊字母的含义及用途。
Delta值(Δ)1).含义Delta值又称对冲值,是衡量相关资产价格变动时期权价格的变化幅度,即Delta=期权价格变化/相关资产现货价格变化。
相关资产价格、行使价格、利率、波动率和距离到期日的天数等变数均对Delta 值有影响。
2).性质1、认购期权的Delta值为正数(0-1),认沽期权的Delta值为负数(-1-0),因为股价上升等价认购期权的Delta值会接近0.5,而等价认沽期权的则接近-0.5。
2、在其他条件条件不变时,认购期权的Delta值均随着相关资产价格的上升而增大; 相反认沽期权的Delta值均随着相关资产价格的下降而减少;3、随着到期日的减少,实值认购(认沽)期权Delta收敛到1(-1);平值认购(认沽)期权Delta收敛到0.5(-0.5);虚值认购(认沽)期权Delta收敛到0;3).应用Delta均值常用于中性套期保值,如果投资者想要对冲掉期权仓位风险,Delta值就是套期保值比率。
若头寸的Delta值持续为0,就建立了一个中性套期策略。
简单来讲,以做空认购期权为例假设一份长期认购期权的delta是0.8,则卖掉一份认购期权需要买入delta(0.8)份股票来做对冲,达到套期保值的效果。
Gamma 值(γ)1).含义Gamma值反映期权价格对delta值的影响程度,即delta变化量与期货价格变化量之比。
另外的,现在的Delta值将约等于之前的Delta值加上或减去Gamma 值。
2).性质1、对于长仓,无论认购期权或是认沽期权的gamma值均为正值。
二、市场风险计量方法(一)缺口分析• 缺口分析(Gap Analysis)用来衡量利率变动对银行当期收益的影响。
具体而言,就是将银行的所有生息资产和付息负债按照重新定价的期限划分到不同的时间段(如1个月以内、1至3个月、3个月至1年、1至5年、5年以上等)。
• 在每个时间段内,将利率敏感性资产减去利率敏感性负债,再加上表外业务头寸,就得到该时间段内的重新定价“缺口”。
以该缺口乘以假定的利率变动,即得出这一利率变动对净利息收入变动的大致影响。
• 当某一时段内的资产大于负债时,就产生了正缺口,即资产敏感性缺口,此时市场利率下降,会导致银行的净利息收入下降。
相反,当某一时段内的负债大于资产,是就产生了负缺口,即负债敏感性缺口,此时,市场利率上升,会导致银行的净利息收入下降。
• 缺口分析是对银行资产负债利率敏感度进行分析的重要方法之一,是银行业较早采用的利率风险计量方法。
因其计算简便,清晰易懂,目前仍广泛应用于利率风险管理领域。
• 但缺口分析也存在一定的局限性,缺口分析,只是一种相对初级并且粗略的利率风险计量方法。
(二)久期分析• 久期分析(Duration Analysis)也称为持续期分析或期限弹性分析,也是对银行资产负债利率敏感度进行分析的重要方法,主要用于衡量利率变动对银行整体经济价值的影响。
• 具体而言,就是对各时段的缺口赋予相应的敏感性权重,得到加权缺口,然后对所有时段的加权缺口进行汇总,以此估算某一给定的小幅(通常小于1%)利率变动可能会对银行经济价值产生的影响。
• 与缺口分析相比较,久期分析是一种更为先进的利率风险计量方法。
但久期分析同样存在一定的局限性。
(三)外汇敞口分析• 外汇敞口分析(Foreign Currency E×posure Analysis)是衡量汇率变动对银行当期收益的影响的一种方法。
• 外汇敞口主要来源于银行表内外业务中的货币金额和期限错配。
1.根据业务活动,外汇敞口大致可以分为以下两类:(1)交易性外汇敞口交易性外汇敞口通常为银行自营、为执行客户买卖委托或做市,或为对冲以上交易而持有的外汇敞口。
希腊字母在期权中的应用在衡量期权组合风险的时候,若用希腊字母来表示期权的风险指标,原本繁多复杂的期权交易和持仓就会显得简洁明了。
在交易中,投资者不仅要关注做多做空多少手不同的期权合约,而且还要注意所有持仓的Delta、Gamma等参数。
选择策略以最简单的买入标的和单腿策略为例,预计标的价格上涨,想要做多Delta,有买入期货、买入看涨期权和卖出看跌期权三种方法,但预计标的价格上涨的同时波动率下跌,即需要做多Delta、做空Vega,那么卖出看跌期权则是相对有利的策略。
对冲期权对于同一个品种的期货和期权,希腊字母都可以直接相加减。
当投资者利用跨式策略、价差策略、蝶式策略等多腿策略来交易期权时,有时候固定的策略并不能完美贴合投资者的交易需求,此时就可以根据叠加后的希腊字母总和去对冲存在风险的部分。
例如,当预计市场有重大消息披露、标的价格可能有大幅变化、波动率将会变大时,通常可以利用买入平值跨式期权策略来做多波动率。
比如说,当豆粕期货1901合约价格为3111元/吨时,同时买入行权价为3100元/吨的看涨期权和看跌期权构建买入跨式期权策略。
可以看到这个策略中,两个期权的Delta并没有完全对冲掉,还存在一小部分方向上的风险,当标的价格下跌时,会对这个跨式组合策略造成不利影响。
此时可以做空0.073倍的期货,得到-0.073个Delta,使得期权部位的总Delta为零。
管理持仓由于希腊字母可以直接相加减,当持有的期权合约类型、行权价、数量等各不相同时,可以通过计算持仓部位的希腊字母来管理持仓风险。
因此,即使持仓的头寸繁多复杂,利用希腊字母的叠加,持仓的风险状况就会变得更直观明了,分析起来也更方便。
下面以铜期权2018年9月21日收盘时的风险参数为例,假设同时持有数量不一、行权价不同的若干期权,结果如下表所示:那么仓位全部的风险参数总和计算如下:仓位的风险指标汇总如下:每新增或者减少一个期权,都能很清楚地观察到仓位变化。
Delta值概述期权的风险指标通常用希腊字母来表示,包括:delta值、gamm值、theta 值、vega值、rho值等。
Delta值(S),又称对冲值:是衡量标的资产价格变动时,期权价格的变化幅度。
用公式表示:Delta=期权价格变化/期货价格变化所谓Delta ,是用以衡量选择权标的资产变动时,选择权价格改变的百分比,也就是选择权的标的价值发生变动时,选择权价值相应也在变动。
公式为:Delta =外汇期权费的变化/外汇期权标的即期汇率的变化关于Delta值,可以参考以下三个公式:1.选择权Delta加权部位二选择权标的资产市场价值x选择权之Delta值;2.选择权Delta加权部位x各标的之市场风险系数=Delta风险约当金额;加权部位价值=选择权Delta加权部位价值+现货避险部位价值。
二、Delta值的特性Delta具有以下特性:买权的Delta 一定要是正值;卖权的Delta 一定要是负值;Delta 数值的范围介乎0到1之间;价平选择权的Delta为;Delta 数值可以相加,假设投资组合内两个选择权的Delta数值分别为及,整个组合的Delta数值将会是。
对于看涨期权来说,期货价格上涨(下跌),期权价格随之上涨(下跌),二者始终保持同向变化。
因此看涨期权的delta为正数。
而看跌期权价格的变化与期货价格相反,因此,看跌期权的delta为负数。
风险指标的正负号均是从买入期权的角度来考虑的。
|因此,交易者一定要注意期权的指标与部位的指标之区别。
对于delta,期权部位的符号如下表。
表1期权部位的delta值部位看涨期权看跌期权多头+ -空头- +期权的delta值介于-1到1之间。
对于看涨期权,delta的变动范围为0 到1,深实值看涨期权的delta趋增至1,平值看涨期权delta为,深虚值看涨期权的delta则逼近于0。
对于看跌期权,delta变动范围为-1到0,深实值看跌期权的delta趋近-1,平值看跌期权的delta 为,深虚值看跌期权的delta 趋近于0。
期权价值敏感性希腊字母公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]第三章期权敏感性(希腊字母)顾名思义,期权敏感性是指期权价格受某些定价参数的变动而变动的敏感程度,本章主要介绍期权价格对其四个参数(标的资产市场价格、到期时间、波动率和无风险利率)的敏感性指标,这些敏感性指标也称作希腊值(Greeks)。
每一个希腊值刻画了某个特定风险,如果期权价格对某一参数的敏感性为零,可以想见,该参数变化时给期权带来的价格风险就为零。
实际上,当我们运用期权给其标的资产或其它期权进行套期保值时,一种较常用的方法就是分别算出保值工具与保值对象两者的价值对一些共同的变量(如标的资产价格、时间、标的资产价格的波动率、无风险利率等)的敏感性,然后建立适当数量的证券头寸,组成套期保值组合,使组合中的保值工具与保值对象的价格变动能相互抵消,也就是说让套期保值组合对该参数变化的敏感性变为零,这样就能起到消除相应风险的套期保值的目的。
本章将主要介绍Delta、Gamma、Vega、Theta、Rho五个常用希腊字母。
符号风险因素量化公式Delta 变化/标的证券价格变化GammaΓ化Vegaν波动率变化权利金变化/波动率变化ThetaΘ到期时间变化权利金变化/到期时间变化本章符号释义:T 为期权到期时间S 为标的证券价格,0S 为标的证券现价,T S 为标的证券行权时价格K 为期权行权价格 r 为无风险利率σ 为标的证券波动率 t π 为资产组合在t 时刻的价值()N 为标准正态分布的累积密度函数,可以查表或用计算机(如 Excel)求得'()N为标准正态分布的密度函数,22'()x N -=第一节 Delta (德尔塔,∆)定义Delta 衡量的是标的证券价格变化对权利金的影响,即标的证券价格变化一个单位,权利金相应产生的变化。
新权利金=原权利金+Delta ×标的证券价格变化公式从理论上,Delta 准确的定义为期权价值对于标的证券价格的一阶偏导。