层次分析法
- 格式:ppt
- 大小:690.00 KB
- 文档页数:52
(一)层次分析法1、层次分析法的概念“层次分析法的基本原理是将复杂系统中的各种因素,依据相互关联及隶属关系划分为一个递阶层次结构;依赖专家经验及直觉评判同一层次内因素的相对重要性,并用一致性准则检验评判的准确性;然后在递阶层次结构内进行合成;以得到决策因素相对于目标的重要性的总排序。
”12、层次分析法的主要步骤(1)构建层次分析的结构模型首先将复杂的问题进行条理化和层次化改造,构造出一个层次分析的结构模型,在该模型中,复杂问题被分解为目标层、准则层和方案层三类不同层次.其中目标层中只有一个元素,一般是分析问题的预定目标,其余每一层因素受上一层次因素支配。
准则层包括了实现目标的中间环节,它包括下一层次的子准则,即方案层,方案层为系统层次分析的最直接表现形式。
层次分析法的结构模型在上图所示模型中,A层次为目标层元素,B 层次为准则层元素,一般也称为一级指1张宏华、《AHP在公路BOT项目风险评价中的应用》、科技资讯、2009年标,C层次为方案层元素,也可称为二级指标。
(2)专家评分建立层次分析法判断矩阵为了建立指标权重评判标准和构造判断矩阵,Saaty提出相对重要性比例标度,即1~9 层次比例标度,相对重要性比例标度的含义如表2—3所示。
假设有n个元素C1、C2,。
,C n给定一个准则,利用上表所给的相对重要性比例标度方,对元素C i和C j做两两比较判断,获得相对重要度的值a ij,构成矩阵。
专家根据评判准则对各个因素的权重两两比较并进行了打分之后,经过整理,可以得到因素权重的判断矩阵A:矩阵 A 中的各元素a ij 表示行指标A i 对列指标A j 相对重要性的比例标度,则判断矩阵A 中指标两两比较的特点有a ij >0,a ij =1,a ij =1/a ji (i ,j=1,2,。
..。
..n )。
如果a ij <1,表示A j 比A i 重要; 如果a ij >1,表示A i 比A j 重要; 如果a ij =1,表示A j 与A i 同样重要.根据判断矩阵A 在选择上的一致性要求,理想情况下,a ik*a jk =a ij (代表相对重要性所具有的传递性原理,满足该性质的矩阵A 称为一致矩阵),虽然在构造判断矩阵A 时并不要求判断具有一致性,但判断偏离一致性过大也是不允许的。
层次分析法的概念层次分析法(Analytic Hierarchy Process,简称AHP)是一种多准则决策分析(Multi-Criteria Decision Analysis,简称MCDA)的方法,由美国运筹学家Thomas L. Saaty于20世纪70年代初提出。
AHP方法通过对多个准则进行层级划分和比较,并运用数学计算方法来确定各准则的重要性和不同方案的优先级,从而帮助决策者做出合理的决策。
AHP的基本思想是将复杂的决策问题分解为多个层次,从上到下逐级进行划分,形成一个层次结构模型。
在层次结构模型中,最顶层为目标层,下面的层次依次为准则层和方案层。
目标层描述了整体决策的目标,准则层描述了实现目标所需要的具体准则,方案层描述了可选方案。
每个层次都有若干个元素,分别构成了一个层次结构的树状图。
AHP方法的核心是构建准则间的判断矩阵,并计算出准则的权重。
判断矩阵用来比较和度量层次结构中的元素之间的重要性和优先级,它的维数等于层次中元素的个数,矩阵元素表示了两个元素之间的相对重要性。
决策者通过对每对元素进行两两比较,根据自己的主观判断,利用语义比例尺(由1到9的9个数值构成)对元素的相对重要性进行评价。
评价结果填入判断矩阵中,形成一个与层次结构对应的判断矩阵。
然后,通过计算判断矩阵的特征向量和最大特征值,可以得到准则的权重。
AHP方法还可以计算各个方案的优先级。
在方案层构建判断矩阵的过程中,同样可以通过两两比较不同方案,评价它们的优先级。
根据方案的判断矩阵,结合准则的权重,运用数学计算方法,可以得到每个方案的优先级权重。
这样,决策者可以根据方案的优先级权重,评估和比较各个方案的可行性和优劣程度,作出决策。
AHP方法的主要优势在于能够将复杂的决策问题进行层次化的细分,从而使决策问题更加清晰和可操作。
它考虑了决策者的主观权重评估和相对重要性比较,充分考虑了不同准则和方案之间的相互关系。
此外,AHP方法还能够处理不确定性和模糊性的问题,对决策者的专业知识和经验有较高的要求,同时也可以用来解决多个决策者之间的决策问题。
层次分析法经典案例层次分析法(Analytic Hierarchy Process, AHP)是一种常用的多准则决策方法,被广泛应用于企业管理、工程项目评估、市场调研等领域。
本文将通过一个经典案例,介绍层次分析法的基本原理和应用过程。
一、案例背景某企业计划购买新设备,以提升生产效率和质量。
然而,在众多可选设备中,如何选择最适合企业发展的设备成为了业主面临的难题。
为了解决这一问题,业主决定应用层次分析法进行设备选择。
二、层次分析法基本原理层次分析法基于一个重要思想,即将复杂的决策问题拆解为具有层次结构的多个因素,并通过层次化的比较和综合分析,最终得出决策结果。
1. 构建层次结构首先,我们需要将决策问题划分为不同的层次,并构建层次结构。
在这个案例中,可以将设备选择问题划分为三个层次:目标层、准则层和备选方案层。
目标层代表企业的最终目标,即实现高效生产;准则层包括影响设备选择的各种准则,如设备价格、性能指标、售后服务等;备选方案层包括具体的设备选项。
2. 建立判断矩阵接下来,我们需要对不同层次的因素进行两两比较,建立判断矩阵。
通过专家主观判断,给出两个因素之间的相对重要性,采用1-9的尺度,其中1代表两者具有相同重要性,9代表一个因素相对于另一个因素极端重要。
比如,在准则层中,设备性能指标对设备价格的重要性为6。
3. 计算权重向量利用判断矩阵,我们可以计算出每个层次的权重向量。
通过对判断矩阵进行归一化处理,可获得各因素的权重。
权重向量表示了各因素对当前决策的贡献程度,可作为后续分析的依据。
例如,计算准则层中各因素的权重向量。
4. 一致性检验为了保证判断矩阵的合理性,我们需要进行一致性检验。
通过计算一致性指标和一致性比率,评估判断矩阵是否存在较大的一致性问题。
若一致性比率超过一定阈值,需要检查和修正判断矩阵。
5. 优先级排序最后,结合各层次的权重,我们可以进行优先级排序,得出对不同备选方案的排序结果。
根据排序结果,我们可以选择最合适的备选方案。
1. 层次分析法(The analytic hierarchy process, 简称AHP)用于解决评价类问题,例如:选择那种方案最好、哪位运动员或者员工表现的更优秀。
评价类问题可以用打分解决。
层次分析法 (The Analytic Hierarchy Process即 AHP)是由美国运筹学家、匹兹堡大学教授T. L. Saaty于20世纪70年代创立的一种系统分析与决策的综合评价方法, 是在充分研究了人类思维过程的基础上提出来的, 它较合理地解决了定性问题定量化的处理过程。
AHP的主要特点是通过建立递阶层次结构, 把人类的判断转化到若干因素两两之间重要度的比较上, 从而把难于量化的定性判断转化为可操作的重要度的比较上面。
在许多情况下, 决策者可以直接使用AHP进行决策, 极大地提高了决策的有效性、可靠性和可行性, 但其本质是一种思维方式, 它把复杂问题分解成多个组成因素, 又将这些因素按支配关系分别形成递阶层次结构, 通过两两比较的方法确定决策方案相对重要度的总排序。
整个过程体现了人类决策思维的基本特征,即分解、判断、综合,克服了其他方法回避决策者主观判断的缺点。
1.1模型介绍1.1.1引例高考结束了,小明该选择华科还是五武大?小明最关心四个方面:学习氛围0.4、就业前景0.3、男女比例0.2、校园景色0.19(权重和为1)(1)学习氛围:经查阅资料查到“学在华工,玩在武大,爱在华师”一句话,因此在学习氛围方面给华科0.7,给武汉大学0.3.(2)就业前景:搜索两所学校就业率差不多,因此在就业前景方面对两所学校均赋予0.5的权重。
(3)男女比例:经查询,华科男女比例2:1,武大1.35:1,因此武大0.7分,华科0.3分(4)校园景色:华科0.25分,武大0.75分整理权重表格:指标权重华科武大学习氛围0.40.70.3就业前景0.30.50.5男女比例0.20.30.7校园景色0.10.250.75华科最终的得分:0.7*0.4+0.5*0.3+0.3*0.2+0.25+*0.1=0.515分武大最终得分:0.3*0.4+0.5*0.3+0.7*0.2+0.75*0.1=0.485分1.1.2 模型1、关键词:打分法、确定评价指标、形成评价体系2、解决评价类问题,首先确定以下三个问题:(1)评价的目标是什么(2)为了达到这个目标有哪几种可选的方案(3)评价的准则或者说指标是什么(我们根据什么东西来评价好坏)。
层次分析法1. 简介层次分析法(Analytic Hierarchy Process,AHP)是一种常用的定性与定量相结合的多标准决策分析方法。
它由美国学者托马斯·L·萨亨于1970年提出,被广泛应用于各种决策问题中。
2. 原理层次分析法的基本思想是将复杂的决策问题分解为一系列具有层次结构的子问题,然后通过对这些子问题的比较与权重评估,最终得出整体问题的决策结果。
2.1 层次结构在层次分析法中,决策问题被组织成一个层次结构。
层次结构通常包括三个层次:目标层、准则层和方案层。
•目标层:表示决策问题的最终目标,通常只有一个。
•准则层:用于评价方案的一组准则,通常包括两个或更多的准则。
•方案层:表示可选择的方案,每个方案都和准则层有关联。
每个层次下面还可以有更多的子层次,形成一个完整的层次结构。
2.2 权重评估层次分析法通过对准则层的权重评估,来确定各个准则的重要性。
权重评估通常采用两两比较的方式,即对准则层中的两个准则进行比较,判断它们的相对重要性。
对两个准则的比较通常使用1至9的九分比较法,其中1表示相同重要性,3表示轻微重要性差异,5表示中等重要性差异,7表示强烈重要性差异,9表示极端重要性差异。
通过两两比较得到的比较矩阵可以利用特征向量法计算权重向量,从而确定准则层的权重。
2.3 方案评估在确定了准则层的权重后,可以利用这些权重对方案进行评估和排序。
通常使用两两比较法将方案与准则进行比较,得到方案层的比较矩阵。
然后,利用准则层的权重和方案层的比较矩阵计算加权矩阵,最终得到方案层的权重。
3. 应用场景层次分析法在各个领域中都有广泛的应用,尤其适用于以下情况:•多准则决策问题:当决策问题涉及到多个准则时,层次分析法可以帮助决策者合理权衡各个准则的重要性,从而做出最佳决策。
•项目评估与选择:当需要评估和选择多个候选项目时,层次分析法可以通过对项目的多个准则进行比较和权重评估,为项目选择提供科学依据。
层次分析法层次分析法是一种应用广泛的决策分析方法,它通过构建层次结构和比较矩阵,来对不同因素进行排序和权重分配,帮助决策者做出合理的决策。
本文将介绍层次分析法的基本原理、应用领域以及一些实际案例。
一、层次分析法的基本原理层次分析法由美国运筹学家托马斯·L·塞蒂提出,它是一种定性和定量相结合的分析方法,能够综合考虑多个因素的重要性和相互关系。
它的基本原理如下:1. 层次结构:将决策问题分解成多个层次,从上至下逐级细化。
顶层是目标层,中间层是准则层,最底层是方案层。
2. 比较矩阵:在每个层次内,通过构建比较矩阵来判断各因素之间的重要性。
比较矩阵是一个n×n的正互反矩阵,其中n是该层次因素的个数。
通过对各因素进行两两比较,得出相对重要性的判断。
3. 加权优先向量:通过对比较矩阵进行特征向量的计算,可以得到各个因素的权重。
特征向量是对比较矩阵的主特征值对应的特征向量,也称为特征向量法。
4. 一致性检验:通过一致性指标和一致性比率的计算,判断构建的比较矩阵是否合理。
一致性指标表示了矩阵的内部一致性程度,一致性比率则是对一致性指标进行归一化,判断是否满足一致性。
5. 综合评价:通过计算得出的权重,进行乘积运算和累加运算,得到方案的综合评价值。
综合评价值越高,方案越优。
二、层次分析法的应用领域层次分析法在许多领域都有广泛的应用,包括经济学、管理学、环境科学、社会科学等。
下面是一些常见的应用领域:1. 投资决策:在投资决策中,可以将不同的投资方案作为方案层,通过比较各个方案的风险性、收益性等因素,来确定投资方向。
2. 供应链管理:在供应链管理中,可以将供应商的价格、质量、交货周期等因素作为准则层,通过比较不同供应商的重要性,来选择合适的供应商。
3. 项目评估:在项目评估中,可以将项目的成本、时限、风险等因素作为准则层,通过比较各个因素的重要性,来评估项目的可行性和优先级。
4. 人才选拔:在人才选拔中,可以将候选人的学历、工作经验、专业技能等因素作为准则层,通过比较各个因素的重要性,来确定最佳人选。
层次分析法(Analytic Hierarchy Process,简称AHP)是将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。
该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。
1简介2定义3优缺点▪优点▪缺点4基本步骤5注意事项6应用实例简介编辑层次分析法的特点是在对复杂的决策问题的本质、影响因素及其内在关系等进行深入分析的基础上,利用较少的定量信息使决策的思维过程数学化,从而为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法。
尤其适合于对决策结果难于直接准确计量的场合。
在现实世界中,往往会遇到决策的问题,比如如何选择旅游景点的问题,选择升购物层次分析模型学志愿的问题等等。
在决策者作出最后的决定以前,他必须考虑很多方面的因素或者判断准则,最终通过这些准则作出选择。
比如选择一个旅游景点时,你可以从宁波、普陀山、浙西大峡谷、雁荡山和楠溪江中选择一个作为自己的旅游目的地,在进行选择时,你所考虑的因素有旅游的费用、旅游的景色、景点的居住条件和饮食状况以及交通状况等等。
这些因素是相互制约、相互影响的。
我们将这样的复杂系统称为一个决策系统。
这些决策系统中很多因素之间的比较往往无法用定量的方式描述,此时需要将半定性、半定量的问题转化为定量计算问题。
层次分析法是解决这类问题的行之有效的方法。
层次分析法将复杂的决策系统层次化,通过逐层比较各种关联因素的重要性来为分析以及最终的决策提供定量的依据。
定义编辑所谓层次分析法,是指将一个复杂的多目标决策问题作为一个系统,将目标分解为多个目标或准则,进而分解为多指标(或准则、约束)的若干层次,通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法。
层次分析法简介层次分析法(Analytic Hierarchy Process,AHP)这是一种定性和定量相结合的、系统的、层次化的分析方法。
这种方法的特点就是在对复杂决策问题的本质、影响因素及其内在关系等进行深入研究的基础上,利用较少的定量信息使决策的思维过程数学化,从而为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法。
是对难以完全定量的复杂系统做出决策的模型和方法。
层次分析法的原理:层次分析法根据问题的性质和要达到的总目标,将问题分解为不同的组成因素,并按照因素间的相互关联影响以及隶属关系将因素按不同的层次聚集组合,形成一个多层次的分析结构模型,从而最终使问题归结为最低层(供决策的方案、措施等)相对于最高层(总目标)的相对重要权值的确定或相对优劣次序的排定。
层次分析法的步骤,运用层次分析法构造系统模型时,大体可以分为以下四个步骤:(1)建立层次结构模型:将决策的目标、考虑的因素(决策准则)和决策对象按他们之间的相互关系分成最高层、中间层和最低层,绘制层次结构图。
最高层(目标层):决策的目的、要解决的问题;中间层(准则层或指标层):考虑的因素、决策的准则;最低层(方案层):决策时的备选方案;(2)构造判断(成对比较)矩阵;表指标之间比较量化值规定因素i比因素j量化值同等重要 1.00稍微重要 3.00较强重要 5.00强烈重要7.00极端重要9.00稍微不重要0.33较强不重要0.20强烈不重要0.14极端不重要0.11两相邻判断的中间值2、4、6、8(3)层次单排序及其一致性检验;(4)层次总排序及其一致性检验;举例:某市中心有一座商场,由于街道狭窄,人员车流量过大,经常造成交通堵塞。
市政府决定解决这个问题,经过有关专家会商研究,制订三个可行方案:a1:在商场附近修建一座环形天桥;a2:在商场附近修建地下人行通道;a3:搬迁商场决策的总目标是改善市中心交通环境,根据当地具体条件和情况,专家组织拟定五个目标作为对可行方案的评价准则:C1:通车能力;C2:方便群众;C3:基建费用不宜过高;C4:交通安全;C5:市容美观。
层次分析法分析方法简介层次分析法(Analytic Hierarchy Process,简称AHP)是一种常用的多标准决策分析方法,由美国运筹学家托马斯·L·赛蒂尔于20世纪70年代提出。
它通过将复杂的决策问题分解为层次结构,对各层次标准进行定量评估和权重分配,最终得到综合的决策结果。
层次分析法是一种基于专家经验和主观判断的定性与定量相结合的决策方法,适用于复杂的多因素多目标决策问题。
它以一种系统化和结构化的方式帮助决策者进行决策分析,提高决策的科学性和准确性。
方法步骤层次分析法主要包括以下几个步骤:1.建立层次结构:首先,需要将决策问题进行逐层分解,形成一个层次结构模型。
层次结构由目标层、准则层和方案层构成,决策问题从目标层开始,经过准则层逐步分解,最终得到方案层。
目标层表示整个决策问题的目标或要达到的结果,准则层表示实现目标所涉及的关键因素,方案层表示可行的解决方案。
2.构造判断矩阵:在层次结构的每一层中,需要对各个元素之间进行两两比较,得到一个判断矩阵。
判断矩阵的每个元素表示两个层次因素之间的相对重要性。
比较的方式可以是定性的,也可以是定量的。
常用的比较方法有9点量表法和1-9标度法。
3.确定权重向量:通过计算判断矩阵的特征向量,可以得到每个层次因素的权重。
特征向量即为判断矩阵的最大特征值对应的特征向量。
通常需要进行一致性检验,判断矩阵的一致性可以通过一致性指标和一致性比率来衡量。
4.计算综合评估值:根据各个层次因素的权重和方案的评价指标,可以计算得到每个方案的综合评估值。
综合评估值可以表示方案的优劣程度。
5.灵敏度分析:层次分析法可以进行灵敏度分析,通过改变判断矩阵中的比较数据,可以检测到不同因素权重发生变化时对决策结果的影响。
优点和应用范围层次分析法具有以下优点:•结构化:通过将决策问题分解成层次结构,使得问题更加清晰和易于理解。
•定量化:通过构造判断矩阵和计算权重向量,将主观因素定量化,提高了决策的科学性。
层次分析法层次分析法(Analytic Hierarchy Process,AHP)是美国运筹学家T.L.Saaty教授于20世纪70年代初期提出的一种简便、灵活而又实用的多准则决策方法,它是一种定性和定量相结合的、系统化、层次化的分析方法,它把一个复杂决策问题分解成组成因素,并按其相互关系(主要考虑支配关系)分解成包括目标、准则、方案等层次的层次结构,然后应用两两比较的方法确定决策方案的相对重要性.层次分析法特别适用于对决策结果难于直接准确计量的无结构问题的建模。
由于层次分析法在在处理复杂的决策问题上的实用性和有效性,目前,层次分析法在经济计划和管理、能源政策和分配、行为科学、军事指挥、运输、农业、教育、人才、医序、环境保护、冲突求解及决策预报等领域得到了广泛的应用.层次分析法的基本原理与步骤人们在进行社会的、经济的以及科学管理领域问题的系统分析中,面临的常常是一个相互关联、相互制约的众多因素构成的复杂而往往缺少定量数据的系统.层次分析法为这类问题的决策和排序提供了一种新的简洁而实用的建模方法.运用层次分析法,大体上可按下面四个步骤进行:1)分析系统中各因素间的关系,建立系统的递阶层次结构;2)对同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,构造两两比较的判断矩阵;3)由判断矩阵计算被比较元素对于该准则的相对权重,并进行判断矩阵的一致性检验;4)计算各层次对于系统的总排序权重,并进行排序.下面分别说明这四个步骤的实现过程.一、递阶层次结构的建立与特点应用AHP分析决策问题时,首先要把问题条理化、层次化,构造出一个有层次的结构模型,在这个模型下,复杂问题被分解为元素(或因素)的组成部分,这些元素又按其属性及关系形成若干层次,上一层次的元素作为准则对下一层次有关元素起支配作用.这些层次可以分为三类:1)最高层(目标层):这一层次中只有一个元素,一般它是分析问题的预定目标或理想结果,因此也称为目标层;2)中间层(准则层):这一层次包括了为实现目标所涉及的中间环节,它可以由若干个层次组成,包括所需要考虑的准则、子准则,因此也称为准则层;3)最底层(方案层):这一层次包括了为实现目标可供选择的各种措施、决策方案等,因此也称为措施层或方案层.上述层次之间的支配关系不一定是完全的,即可以存在这样的元素:它并不支配下一层次的所有元素,而仅支配其中部分元素,这种自上而下的支配关系所形成的层次结构我们称为递阶层次结构.目标层 准则层方案层图1递接层次结构图示意图递阶层次结构中的层次数与问题的复杂程度及需要分析的详尽程度有关.一般地,层次数不受限制,每一层次中各元素所支配的元素一般不要超过9个,这是因为支配的元素过多会给两两比较带来困难.一个好的层次结构对于解决问题是极为重要的,因而层次结构必须建立在决策者对所面临的问题有全面深入认识基础上,如果在层次划分和确定层次元素间的支配关系上举棋不定,那么最好重新分析问题,弄清元素间相互关系,以确保建立一个合理的层次结构.一个好的递阶层次结构应具有以下特点:1)从上到下顺序地存在支配关系,并用直线段连接表示.除第一层外,每个元素至少受上一层一个元素支配,除最后一层外,每个元素至少支配下一层次一个元素.上下层元素的联系比同层次中元素的联系要强得多,故认为同一层次相邻及不相邻的元素之间不存在支配关系;2)整个结构中层次数不受限制;3)最高层只有一个元素,每个元素所支配的元素一般不超过9个,元素过多时可进一步分组;4)对某些具有子层次的结构可引入虚元素,使之成为递阶层次结构.递阶层次结构是AHP中最简单也是最实用的层次结构形式.当一个复杂问题仅仅用递阶层次结构难以表示,这时就要用更复杂的形式,如内部依存的递阶层结构、反馈层次结构等,它们都是递阶层次结构的扩展形式.(1)树状递阶层次结构(2)完全递阶层次结构(3)不完全递阶层次结构(45)内部依存的层次结构 (6)反馈递阶层次结构(7)非递阶层次结构图2 各种层次结构示意图下面通过实例说明AHP的层次结构模型的建立方法.例1:旅游地选择问题背景:全家外出度假,假如有三个旅游胜地苏州、杭州、桂林供选择,你会怎么办呢?分析:外出旅游,人们在选择旅游地时,主要从以下几个方面考虑:景色、费用、居住、饮食、旅途条件等方面.由此可得层次结构模型.例2:工作选择背景:一个将毕业的大学生面临选择工作岗位,怎么办?分析:工作选择时,人们主要考虑的准则大概是:能够发挥自己的才干为国家作贡献、丰厚的收入、适合个人的兴趣及发展、良好的声誉、和谐的人际关系、地理位置,等等.据此,可得层次结构.图9-5 工作选择的层次结构例3:过河的效益与代价背景:某港务局要改善一条河道的过河运输条件,为此需要确定是否要建立桥梁或隧道以代替现有的轮渡.分析:此问题中过河方式的确定取决于过河方式的效益与代价(即成本),通常用费效比(即效益/代价)作为选择方案的标准.为此,需要建立两个层次结构,分别考虑过河的效益与代价因素.(1)过河的效益层次结构(1)过河的代价层次结构(2)过河的效益层次结构图3 过河的效益与代价层次结构图例4:科技成果评价科技成果涉及的领域很广,种类很多.本模型仅考虑能直接应用于国民经济的某个生产部门后能直接转化为生产力并带来可定量计算的经济效益的那一类成果.科技成果评价准则可分为效益、水平、规模共3类,并在每类中有若干具体指标,据此可构造出如下的层次结构.图9-3科技成果的评价层次结构例5:教师贡献评价模型教师在整个教学甚至于社会的发展中起着重要的作用,但如何评价教师的贡献呢?常规的方法是一种定性的描述加上一些量化的指标(如教学工作量、论文数量等).若有4名教师待评价,T1、T2、T3、T4,其中T1、T2只从事教学,T4只从事科研,而T3教学、科研都兼顾.试构造该问题的简单层次结构模型.图9-7 评价教师的贡献的层次结构二、构造两两比较的判断矩阵在建立递阶层次结构以后,上下层元素间的隶属关系就被确定了.假定以上层次的元素C为准则,所支配的下一层次的元素为u1、u2、……、un,目的是要按它们对于准则C的相对重要性赋于u1、u2、……、un相应的权重,当u1、u2、……、un对于C的重要性可以直接定量表示时(如利润多少、消耗材料量等),它们相应的权重量可以直接确定,但对于大多数社会经济问题,特别是比较复杂的问题,元素的权重不容易直接获得,这时就需要通过适当的方法导出它们的权重,AHP所用的导出权重的方法就是两两比较的方法.在这一步骤中,决策者要反复地回答问题,针对准则C,两个元素ui和uj那一个更重要,重要程度如何?并按1-9的比例标度对重要性程度赋值,下表列出了1-9标度的含义,这样对于准则C,n个被比较元素通过两两比较构成一个判断矩阵其中aij就是元素ui与uj相对于准则C的重要性的比例标度.表 1—9比例标度的含义标度含义1 两个元素相比,具有相同的重要性3 两个元素相比,前者比后者稍重要5 两个元素相比,前者比后者明显重要7 两个元素相比,前者比后者强烈重要9 两个元素相比,前者比后者极端重要2,4,6,8 表示上述相邻判断的中间值倒 数 若元素i 与元素j 的重要性之比为aij ,那么元素j 与元素i 重要性之比为1/aij显然,判断矩阵具有如下性质:(1)0>ij a ,n j i ,,2,1, =∀(2)(3)1=ii a n i ,,2,1 =∀判断矩阵A称为正互反矩阵.A所具有的性质,使我们对于一个由n 个元素构成的判断矩阵只需给出其上(或下)三角的 个判断即可.在特殊情况下.判断矩阵A的元素具有传递性,即满足等式:时,A称为一致性矩阵.关于判断矩阵,有些问题需要进一步说明:为什么要用两两比较?为什么要用1—9比例标度?为什么要限制被比较个数不超过9个以及个比较是否必要?分析社会经济系统不难看出,许多被测对象只具有相对性质,因而难以用一个绝对标度进行衡量,诸如安全、幸福等概念很难有一个绝对标准,只能在比较中进行估计.这提示我们,在社会的、经济的以及一些类似问题的某些属性的测度中可以考虑采用一种相对标度.层次分析法所提出的两两比较判断矩阵正是一种既能适应各种属性测度又能充分利用专家经验和判断的一种相对标度,它的应用可以使系统从无结构向结构化和有序状态转化,因而不能不认为是系统分析中的一大突破.在判断矩阵建立上,层次分析采用了1-9比例标度,这是由于这种比例标度比较符合人们进行判断时的心理习惯.首先我们认为参与比较的对象对于它们所从属的性质或准则有较为接近的强度,否则比较判断的定量化就没有意义了,因而比例标度范围不必过大.如果出现强度在数量级上相差过于悬殊的情形,可以将数量级小的那些对象合并,或将数量级大的对象分解,使强度保持在接近的数量级上,再实施两两比较.其次根据心理学的研究成果,人们在进行比较判断时,通常用相等、较强(弱)、明显强(弱)、很强(弱)、绝对强(弱)这类语言来表达两个因素的某种属性的比较.如果再分仔细些,可以在相邻两级中再插入一级,这样正好是9级,因而用9个数字表达是合适的,而且,这种判断具有互反性.那么能否取1-9之间的非整数作为比例标度呢?一般说来没有必要,这是因为对于一个难以定量的对象提供一个过于精确的标度显然是事倍功半的;另外,有关研究结果表明,使用更细的标度所得的结果与1-9标度的结果一样.当然,如果事物的属性强度十分接近时,也可采用其它标度.最后,应该指出,一般地作次两两比较是必要的.有人认为把所有元素和某个元素比较,即只做n-1个比较就可以了,但这种作法存在着明显的弊病:任何一个判断的失误均可导致不合理的排序,而个别判断的失误对于难以定量的系统往往是难以避免的,进行次比较可以提供更多的信息,通过各种不同角度的反复比较,从而导致一个合理的排序.三、单一准则下n元素相对排序权重的计算,以及判断矩阵的一致性检验(权向量和一致性指标)1、一致性检验通过两两成对比较得到的判断矩阵A不一定满足矩阵的一致性条件,于是找到一个数量标准来衡量矩阵A的不一致程度显得很必要.设W=T n w w w ),,,(21 是n 阶判断矩阵的排序权重向量,当A 为一致性矩阵时,显然有:且满足nW AW这表明,W 为A 的特征向量,且特征根为n ,也就是说对于一致的判断矩阵来说排序向量W 就是A 的特征向量.反过来看,如果A 是一致的的正互反阵,则有以下性质:因此所以这表明 为A 的特征向量,并且由于A 是相对向量W 关于目标Z 的判断矩阵,则W 为诸对象的一个排序.另外,一致的正互反矩阵A 还具有下述性质:(1) A 的转置A T 也是一致的;(2) A 的每一行均为任意指定的一行的正数倍数,从而(3) A 的最大特征根 ,其余特征根全为0;(4) 若A 的 对应于的特征向量为 ,则由上述性质可知,当A 是一致阵时, ,将 对应的特征向量归一化后记为 ,其中 ,W 称为权向量,它表示了元素为u1、u2、……、un 、在目标Z 中的权重. 关于正互反阵A ,根据矩阵论的Perron-Frobenius 定理,有如下结论:Perron 定理:设n 阶方阵A>0,是A 的模最大的特征根,则:(1) 必为正的特征根,且其对应的特征向量w 是正向量;(2)A 的任何其它特征根λ ,恒有:max λλ<(3) 为A 的单特征根,因而它所对应的特征向量除差一个常数因子外是唯一的.且w e A e e A =+∞→k T k k lim 其中T ,,,)111( =ew是对应的归一化特征向量。
层次分析法(AHP )评价模型1.层次分析法简介层次分析法简称AHP (The analytic hierarchy process),由美国的运筹学家T.L.Saaty 提出。
层次分析法要求明确项目的总目标,将其分解为各层子目标、准则层、指标层甚 至指标,构建一种递阶层次结构;构造两两判断矩阵,求解判断矩阵的特征向量,得到 每层的元素相对于上一层次的权重;采用加权的方法确定方案层各指标对总F1标的权 重,反映不同指标的相对重要性。
层次分析法通过制定标准,对难以量化的定性指标标 准化数学运算处理,转化为可以量化的数据,是一个定性和定量结合的方法。
2.层次分析法的一般步骤(1)确定评价目标和范围,构造递阶层次结构。
(2) 构造两两比较矩阵(判断矩阵)对于同一层次的各因素关于上一层中对应准则(目标)的重要性进行两两比较,构造出两两比较的判断矩阵。
用标度法表示比较结果。
如表所示:判断矩阵标注及其含义注:ij C ={2,4,6,8,1/2,1/4,1/6,1/8}表示重要性等级介于 ij C ={l,3,5,7,9,l/3,l/5,l/7,l/9}。
根据此表可以得到对于同一层次指标的判断矩阵mm A ,mm ij m a a a a A )(},...,,{21==A 的性质如下: ①0>ij a ②ijij a a 1=③1==ij a j i 时, (3)由比较矩阵计算被比较因素对上一层对应准则的相对权重(归一化特征向量),并进行判断矩阵的一致性检验。
(4)计算指标层对总目标的组合权重和组合一致性检验,得出各指标对总目标的影响权重。
3.一致性检验由于指标采用的两两比较,有可能出现甲的重要性大于乙、乙的重要性大于两、丙 的重要性却大于甲的情况,因此,确定计算相对权重后要进行組阵一致性判断,矩阵一 致性指标记为CI1max --=n nCI λRICI CR =RI 是平均随机一致性指标,判断矩阵的阶数不同,RI 的取值也不同,RI 的取值见表平均随机一致性指标的取值当时,判断矩阵通过一致性检验,得到的权重具有可信性。
1.层次分析法层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。
层次分析法是在20世纪70年代初,由美国著名的运筹学专家萨蒂教授提出的,萨蒂教授在进行"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题研究时,提出了一种层次权重分析的方法。
层次分析法简单来说,就是将需要解决的问题,归为一个系统。
并且将整个要解决的问题进行目标分解,从而形成多个层次指标通过定性指标模糊量化方法算出层次单排序(权数)和总排序,以作为目标(多指标)、多方案优化决策的系统方法。
在进行层次分析法使用的过程中,需要根据问题按照总目标—子目标—评价准备的层次进行分解,然后用求解判断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递阶归并各备择方案对总目标的最终权重,最终权重最大的就是此问题的最优解决方案。
同时分析法的基本原理就是将问题进行系统化处理,汇总成一个总的目标,并且根据问题的不同以及因素的不同,再将问题进行分解,按照问题之间的关系形成一个彼此相连接的层次,在进行问题解决时逐层分析最终将问题分解到最低层,从而找出最优解。
层次分析法的应用比较适合于具有分层交错评价指标的目标系统,而且目标值又难于定量描述的决策问题。
因此层次分析法多被应用于社会、经济及管理领域的各种问题,因为这些领域的问题多是由许多相互关联,相互制约的因素所构成的在进行分析解决事很难有明确的判断,而通过层次分析法研究者可以将复杂的系统进行层次分解,使得问题更加的简洁从而帮助研究者找出解决问题的方法。
在安全科学和环境科学领域,层次分析法也被经常使用。
在安全生产科学方面,层次分析法常被应用于煤矿的安全研究、危化品评价、油库安全评价、城市灾害应急能力研究以及交通安全评价等。
在环境保护研究中的应用主要包括:水安全评价、水质指标和环境保护措施研究、生态环境质量评价指标体系研究以及水生野生动物保护区污染源确定等。