蒸汽动力循环与制冷循环ppt课件
- 格式:ppt
- 大小:1.42 MB
- 文档页数:72
第8章 蒸汽动力循环及制冷循环将热能变为机械能组成循环的热力过程。
根据所采用工质的不同,热力原动机循环分为两类:以蒸汽为工质的称为蒸汽动力循环,而以气体为工质的则称为气体循环。
制冷循环是一种逆向循环。
逆向循环的目的在于把低温物体(热源)的热量转移到高温物体(热源)去。
如果循环的目的是从低温物体(如冷藏室、冷库等)不断地取走热量,以维持物体的低温,称之为制冷循环;如果循环的目的是给高温物体(如供暖的房间)不断地提供热量,以保证高温物体的温度,称之为热泵循环。
本章学习要求要求学生了解蒸汽动力循环的基本过程,掌握Rankine 循环的热力学分析方法,热效率、气耗率的概念与计算,以及Rankine 的改进方法。
在制冷循环中,要求掌握逆Carnot 循环与蒸汽压缩制冷循环的基本组成,制冷系数和单位工质循环量的计算;了解热泵的基本概念和在工业生产中的应用。
最后了解与掌握空气液化及其计算方法。
重点与难点8.1 Rankine 循环HLH s c T T Q w -=-=1ηST图6-1 Rankine 循环示意图 图6-2 Rankine 循环的T-S 图Rankine 循环中工质历经的各个单元过程是完全理想化的(忽略工质的流动阻力与温差传热),以单位质量的工质为基准,运用稳流过程热力学第I 定律进行分析:12→过程:透平机中工质作可逆绝热膨胀过程(等熵膨胀),对外输出轴功S W :1S 21W H H H (kJ kg )-=∆=-⋅(6-1)32→过程:湿蒸汽在冷凝器中的等压等温冷凝过程(相平衡),工质冷凝放热量L Q :1L 32Q H H H (kJ kg )-=∆=-⋅(6-2)34→过程:饱和水在水泵中作可逆绝热压缩过程(等熵压缩),水泵消耗轴功S,PUMP W :1S,PUMP 43W H H H (kJ kg )-=∆=-⋅(6-3)由于水的不可压缩性,在压缩过程中水的体积变化微小,S,PUMP W 可按下式计算:423P S,PUMP H O 43P W VdP V (P P )=≈⋅-⎰(6-4)41→过程,实际上含44'→(给水预热)、4'1'→(等压等温汽化或两相平衡)及1'1→(饱和蒸汽过热)三个阶段,工质在锅炉与过热器中吸收的热量H Q :1H 14Q H H H (kJ kg )-=∆=-⋅(6-5)热效率(即热机效率或第I 定律效率)和汽耗率是评价蒸汽动力循环的经济技术指标。
第七章蒸汽动力循环和制冷循环0、引言蒸汽动力循环:是以蒸汽为工质,将热连续地转变成功的过程,其主要设备是各种热机。
产功的过程。
如:火力发电厂,大型化工厂。
常用的工质是水蒸气。
制冷循环:是将热连续地由低温处输送到高温处的过程,其主要设备是热泵。
耗功的过程。
7.1.蒸汽动力循环一、蒸汽动力循环基本原理主要由水泵、锅炉、透平机和冷凝器组成。
4→1水进入锅炉被加热汽化,直至成为过热蒸汽。
1→2进入透平机膨胀作功。
2→3作功后的低压湿蒸汽进入冷凝器被冷凝成水,回到水泵中。
3→4水在水泵中被压缩升压,再回到锅炉中,完成一个循环。
二、朗肯循环及其热效率原理:朗肯循环是最简单的蒸汽动力循环,主要由:水泵、锅炉、透平机和冷凝器组成。
1、理想朗肯循环3→4饱和水可逆绝热压缩过程。
(等S)4→1高压水等压升温和汽化,可逆吸热过程。
1→2过热蒸汽可逆绝热膨胀过程。
(等S)2→3湿蒸汽等压等温可逆冷却为饱和水(相变)。
气体压缩式制冷机以气体为制冷剂,由压缩机、冷凝器、回热器、膨胀机和冷箱等组成(图1) 。
经压缩机压缩的气体先在冷凝器中被冷却,向冷却水(或空气)放出热量,然后流经回热器被返流气体进一步冷却,并进入膨胀机绝热膨胀,压缩气体的压力和温度同时下降。
气体在膨胀机中膨胀时对外作功,成为压缩机输入功的一部分。
同时膨胀后的气体进入冷箱,吸取被冷却物体的热量,即达到制冷的目的。
此后,气体返流经过回热器,同压缩气体进行热交换后又进入压缩机中被压缩。
气体制冷机都应采用回热器,这不但能提高制冷机的经济性而且可以降低膨胀机前压缩气体的温度,因而降低制冷温度。
气体制冷机能达到的制冷温度范围较宽,从高于0℃到低于-100℃;制冷温度较高时其经济性较差,但当制冷温度低于-90℃时其经济性反而高于蒸气制冷机。
压缩式制冷机蒸气压缩式制冷机由压缩机、冷凝器、蒸发器、节流机构和一些辅助设备组成。
这类制冷机的制冷剂在常温和普通低温下能够液化,在制冷机的工作过程中制冷剂周期性地冷凝和蒸发。