最新纳米薄膜材料的制备教案资料
- 格式:ppt
- 大小:1.29 MB
- 文档页数:13
制备高质量的纳米薄膜的实验方法分享引言:纳米薄膜制备是一项重要的研究领域,应用于电子器件、光学涂层、传感器等众多领域。
高质量的纳米薄膜能够提高器件性能,因此研究人员一直在寻找有效的实验方法来制备高质量的纳米薄膜。
本文将分享一种常用的纳米薄膜制备方法。
实验方法:步骤1:薄膜材料的选择首先,需要选择合适的薄膜材料用于制备纳米薄膜。
常用的薄膜材料包括金属、半导体、氧化物等。
步骤2:基底的选择接下来,需要选择适合的基底用于支持纳米薄膜。
常用的基底材料包括硅、玻璃、聚合物等。
基底的选择应考虑纳米薄膜的成长方向和与薄膜材料的相互作用。
步骤3:制备样品表面的处理在制备纳米薄膜之前,需要对基底进行一系列的处理步骤,以确保样品表面的清洁和平整。
这些处理步骤可以包括超声清洗、化学处理以及机械抛光等。
步骤4:制备纳米薄膜的方法接下来,我们需要选择一种适合的方法来制备纳米薄膜。
常用的方法包括物理气相沉积(PVD)、化学气相沉积(CVD)和溶液法等。
这里我们以物理气相沉积(PVD)为例进行说明。
物理气相沉积(PVD)是一种高温高真空下的薄膜制备方法。
其基本步骤包括:1. 准备目标材料:将目标材料制成方便加工的形状,如片状或颗粒状,以便在实验过程中使用。
2. 清洁真空腔体:确保真空腔体内的洁净度,以避免杂质对制备的纳米薄膜产生影响。
3. 加热目标材料:将目标材料加热至高温,使其蒸发或挥发。
4. 沉积纳米薄膜:目标材料蒸发或挥发后,沉积在基底表面形成纳米薄膜。
可以通过控制沉积时间、温度和气压来调节纳米薄膜的厚度和质量。
步骤5:纳米薄膜的性能表征和优化在制备纳米薄膜后,需要对其进行性能测试和优化。
常见的表征方法包括扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)等。
根据测试结果,可以针对性地优化制备方法,以提高纳米薄膜的质量和性能。
结果和讨论:本文分享了一种常用的纳米薄膜制备方法——物理气相沉积(PVD)。
物理气相沉积是一种高温高真空下的薄膜制备方法,通过将目标材料加热至高温,使其蒸发或挥发后在基底表面形成纳米薄膜。
实验名称:溶胶-凝胶法制备TiO2薄膜材料纳米TiO2具有许多特殊功能,如良好的抗紫外线性能、耐化学腐蚀性能和耐热性、白度好、可见光透射性好以及化学活性高等。
TiO2纳米材料还具有净化空气、杀菌、除臭、超亲水性等功能,已广泛应用于抗菌陶瓷,空气净化器、不用擦拭的汽车后视镜等领域,20世纪80年代末纳米发展起来成为主要的纳米材料之一。
研究表明,紫外线过量照射人体,会使人的记忆力减退、反应迟钝、视力下降、易失眠等影响。
在玻璃上负载TiO2膜可以有效地吸收紫线。
本次实验利用溶胶凝胶法制备TiO2纳米薄膜材料,在一定程度上是对TiO2在实际生活中应用的尝试。
一.实验目的1.了解溶胶-凝胶法制备纳米薄膜材料的应用。
2.掌握溶胶-凝胶法制备纳米薄膜材料的原理以及实际应用。
3.掌握XRD颜射原理以及实际操作技能。
4.掌握根据X-射线衍射图分析晶体的基本方法。
5.二.实验原理溶胶.凝胶法(S01.Gel法,简称S.G法)就是以无机物或金属醇盐作前驱体,在液相将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化,胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。
凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。
溶胶.凝胶法就是将含高化学活性组分的化合物经过溶液、溶胶、凝胶而固化,再经热处理而成的氧化物或其它化合物固体。
其基本反应如下:(l)水解反应:M(OR)n + H2O → M (OH) x (OR) n-x + xROH(2) 聚合反应:-M-OH + HO-M-→ -M-O-M-+H2O-M-OR + HO-M-→ -M-O-M-+ROH三.实验器材:实验仪器:移液管(10ml)1只量筒(50ml)1只吸量管(5ml)2只小烧杯(100ml ) 2只载玻片若干滴管2只恒温磁力搅拌器1台恒温干燥箱1台原子吸光光度计1台X-射线衍射仪1台马弗炉1台实验原料:三乙醇胺(AR)乙醇(AR)钛酸丁酯(AR)四.实验过程1.取载玻片若干片(一般4-5)片,先用丙酮清洗,再用去离子水清洗,放在烘箱中烘干编号备用。
纳米ZnO薄膜的制备
一、ZnO前驱体的制备
1、实验仪器:25 mL三口烧瓶一个、150 ℃量程的温度计一支、24口冷凝管一根、油浴锅一个、磁力搅拌器、陶瓷加热台;
2、实验试剂:甲基硅油、二水乙酸锌(Zn ( CH3COO ) 2 ·2H2O)、乙醇胺、乙二醇甲醚;
3、实验步骤:
①称量二水乙酸锌1.0975 g
乙醇胺0.3 mL 0.5 mol/L ZnO前驱体
乙二醇甲醚10 mL
在三口烧瓶中将称量好的二水乙酸锌溶解于乙二醇甲醚中,再加入与二水合乙酸锌等摩尔的乙醇胺作为稳定剂;
②冷凝管里从下往上通以冷却水,把烧瓶置于盛有甲基硅油的油浴锅中,在80 ℃下回流2小时;
将烧瓶空冷至室温之后,再在磁力搅拌机上搅拌12小时,再用有机系滤头过滤,得到的就是ZnO前驱体。
二、ZnO薄膜的制备
①将玻璃片清洗干净(丙酮15min、碱液20 min、去离子水10min、异丙醇15min),置于旋涂机上;把陶瓷加热台置于通风橱中,并预先升至200 ℃;
②将过滤好的(可以在要用的时候才过滤,因为比较稳定)ZnO前驱体溶液滴满玻片表面,在转速为3000 r下旋转40 s;
③直接将旋涂好的玻片置于加热台上(可以用锡箔纸包覆,以免污染薄膜表面),反应1小时;此时薄膜应为淡紫色;
④将玻片置于齿状架上,先后放入丙酮、异丙醇中超声约5-7 min,测得薄膜粗糙度大约为2-3 nm。
药物制剂的纳米薄膜制备与应用随着纳米科技的迅速发展,纳米薄膜在药物制剂领域的应用逐渐引起了人们的关注。
纳米薄膜具有独特的物理和化学性质,能够改善药物的溶解度、稳定性和生物利用度,有望成为新一代药物制剂的重要载体。
本文将从纳米薄膜的制备方法及其应用方面进行论述,旨在探讨纳米薄膜对药物制剂的影响。
1. 纳米薄膜的制备方法1.1 物理方法1.1.1 蒸发法蒸发法是最早被采用制备纳米薄膜的方法之一。
通过将药物溶液置于真空下加热蒸发,使药物分子在基底表面沉积形成薄膜。
这种方法制备的纳米薄膜具有良好的结晶性和纯度,适用于药物制剂的长期稳定性要求较高的情况。
1.1.2 磁控溅射法磁控溅射法利用高能粒子轰击靶材产生原子和离子的效应,将离子或原子沉积到基底表面,形成纳米薄膜。
这种方法可以制备出较为均匀的薄膜,适用于药物制剂需要在特定条件下释放的情况。
1.2 化学方法1.2.1 溶胶-凝胶法溶胶-凝胶法是通过溶胶在溶剂中形成凝胶前后的物理或化学变化来制备薄膜。
药物可以以溶胶的形式加入制备纳米薄膜的溶液中,通过凝胶的过程将药物固定在纳米薄膜中。
这种方法具有制备成本低、可扩展性强的优点,适用于制备大面积的纳米薄膜。
1.2.2 自组装法自组装法是一种通过表面活性剂或分子间相互作用自动组装形成纳米薄膜的方法。
药物分子可以利用自身的疏水性或亲水性与其他分子相互作用,形成稳定的纳米薄膜结构。
这种方法具有制备过程简单、成本低的优点,在药物制剂领域有着广泛的应用前景。
2. 纳米薄膜在药物制剂中的应用2.1 药物传输控制纳米薄膜具有较高的表面积和特殊的孔隙结构,可以调控药物的释放速率和途径。
通过控制纳米薄膜的结构和厚度,可以实现药物的缓释、靶向输送等功能。
例如,将纳米薄膜包覆在药物微粒表面,可以延长药物的释放时间,提高药物的生物利用度。
2.2 药物稳定性改善纳米薄膜能够有效地保护药物分子免受环境的影响,改善药物的稳定性。
通过包覆或嵌入药物分子,纳米薄膜可以降低药物的氧化、光敏等反应,增加药物的储存寿命和稳定性。